凤眼草和蓬子菜化学成分及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.凤眼草为苦木科臭椿属臭椿(Ailanthus altissima(Mill)Swingle)的果实,我国南北均有分布。中医认为凤眼草味苦、涩,性凉。用于清热燥湿,止痢,止血。主治痢疾,白浊,带下,便血,尿血,崩漏。
     本论文对凤眼草的95%乙醇提取物和水提取物进行了研究,利用系统溶剂萃取法、重结晶法、硅胶柱色谱、聚酰胺柱色谱、Sephadex LH-20柱色谱、制备性TLC和HPLC等手段分离得到41个化合物。通过理化性质和波谱数据分析鉴定了它们的结构。分别属于甾体类:豆甾烷-3,6-二酮(stigmastane-3,6-dione,1),豆甾烷-3β,6β-二醇(stigmastane-3β,6β-diol,2),豆甾-4-烯-3,6-二酮(stigmast-4-ene-3,6-dione,3),6β-羟基-豆甾-4-烯-3-酮(6β-hydroxystigmast-4-en-3-one,4),6α-羟基-豆甾-4-烯-3-酮(6α-hydroxystigmast-4-en-3-one,5),豆甾-4-烯-3β,6β-二醇(stigmast-4-ene-3β,6β-diol,6),豆甾-4-烯-3β,6α-二醇(stigmast-4-ene-3β,6α-diol,7),豆甾-4-烯-3-酮(stigmast-4-en-3-one,8),β-谷甾醇(β-sitosterol,9),胡萝卜苷(daucosterol,10),3β-羟基-豆甾-5-烯-7-酮(3β-hydroxystigmast-5-en-7-one,11),豆甾-5-烯-3β,7α-二醇(stigmast-5-ene-3β,7α-diol,12),豆甾-5-烯-3β,7α,20ξ-三醇(stigmast-5-ene-3β,7α,20ξ-triol,13),麦角甾-4,6,8(14),22-四烯-3-酮(ergesta-4,6,8(14),22-tetraen-3-one,14),5α,8α-表二氧化麦角甾-6,22-二烯-3β-醇(5α,8α-epidioxyergesta-6,22-dien-3β-ol,15),5α,8α-表二氧化麦角甾-6,9(11),22-三烯-3β-醇(5α,8α-epidioxyergesta-6,9(11),22-trien-3β-ol,16)。三萜类:9,19-环阿尔廷-23(Z)-烯-3β,25-二醇(9,19-cyclolanost-23(Z)-ene-3β,25-diol,17),环阿尔廷-25-烯-3β,24ξ-二醇(cycloart-25-ene-3β,24ξ-diol,18/19),2β,20(S)-二羟基-达玛烷-24-烯-3-酮(2β,20(S)-dihydroxydammar-24-en-3-one,20),β-香树脂醇(β-amyin,21),齐敦果烷-9(11),12-二烯-3β-醇(olean-9(11),12-dien-3β-ol,22),异齐敦果烷-14-烯-3-酮(D-friedoolean-14-en-3-one,23),熊果酸(ursolic acid,24),22-羟基-何伯烷-3-酮(22-hydroxyhopan-3-one,25),臭椿苦酮A(11β,20-epoxy-1β,2α,12α-pentahydroxypicrasa-3,13(21)-dien-16-one,26)。神经鞘苷类:1-O-β-D-吡喃葡萄糖基-(2S,3R,4E,9E)-2-(2′R-羟基十六烷酰胺基)-4,9-二烯十八烷-1,3-二醇(1-O-β-D-glucopyranosyl-(2S,3R,4E,9E)-2-(2′R-hydroxyhexadecenoylamino)-4,9-octadecadiene-1,3-diol,27)。黄酮类:山柰酚(kaempferol,32),槲皮素(quercetin,33),槲皮素3-O-β-D-吡喃葡萄糖苷(quercetin 3-O-β-D-glucopyranoside,34),山柰酚3,7-O-二α-L-吡喃鼠李糖苷(kaempferol 3,7-O-bis-α-L-rhamnopyranoside,35),3-O-α-L-呋喃阿拉伯糖基-山柰酚7-O-α-L-吡喃鼠李糖苷(3-O-α-L-arabinofuranosyl kaempferol 7-O-α-L-rhamnopyranoside,36)。木脂素类:(+)-异落叶松树脂醇[(+)-isolariciresinol,40],(+)-异落叶松树脂醇9-O-β-D-吡喃葡萄糖苷[(+)-isolariciresinol 9-O-β-D-glucopyranoside,41]。酚酸类:香草醛(vanillin,37),没食子酸(gallic acid,38),七叶内酯(6,7-dihydroxycoumarin,39)。其他类:正三十四烷(n-tetratriacontane,28),卫矛醇(L-evonymitol,29),甘露醇(D-mannitol,30),山梨醇(D-sorbitol,31)。其中,化合物27为未见文献报道的新化合物;化合物2为新天然产物;化合物1-8,11-25,28-31,34-41均是首次从该属分离得到。化合物10,26,32,33均是首次从凤眼草中分离得到。
     本文利用文献,从结构类型、植物分布、生物活性、生合成途径及人工合成方法、结构研究方法等方面对苦味苦素类化合物的研究进展进行了综述。2.蓬子菜为茜草科拉拉藤属(Galium)植物药用全草,我国南北均有分布。中医认为蓬子菜味微辛、苦,性微寒。用于清热解毒、活血通经、祛风止痒。主治肝炎、腹水、咽喉肿痛、疮疔肿毒、妇女闭经、带下、荨麻疹。
     本论文对蓬子菜的95%乙醇回流提取物进行研究,利用系统溶剂萃取法、硅胶柱色谱、聚酰胺柱色谱、Sephadex LH-20柱色谱、制备性TLC和HPLC等手段分离得到34个化合物。通过理化性质和波谱数据分析鉴定了他们的结构。分别属于黄酮类:异鼠李素(isorhamnetin,1),异鼠李素3-O-α-L-吡喃鼠李糖基-(1-6)-β-D-吡喃葡萄苷(isorhamnetin 3-O-α-L-rhamnopyranosyl-(1-6)-β-D-glucopyranoside,2),香叶木素(diosmetin,3),香叶木素7-O-β-D-吡喃葡萄糖苷(diosmetin 7-O-β-D-glucopyranoside,4),香叶木素7-O-β-D-吡喃木糖基-(1-6)-β-D-吡喃葡萄糖苷(diosmetin 7-O-β-D-xylopyranosyl-(1-6)-β-D-glucopyranoside,5),香叶木素7-O-α-L-吡喃鼠李糖基-(1-2)[β-D-吡喃木糖基-(1-6)]-β-D-吡喃葡萄糖苷(diosmetin 7-O-α-L-rhamnopyranosyl-(1-2)-[β-D-xylopyranosyl-(1-6)]-β-D-glucopyranoside,6),山柰酚(kaempferol,7),槲皮素(quercetin,8),3,5,7,3′,4′,3″,5″,7″,3′″,4′″-十羟基-[8-亚甲基-8″]-双黄酮(3,5,7,3′,4′,3″,5″,7″,3′″,4′″-decahydroxyl-[8-CH_2-8″]-biflavone,9)。蒽醌类:2,5-二羟基-1,3-二甲氧基-蒽醌(2,5-dihydroxy-1,3-dimethoxy-anthra-quinone,10),2-羟基-1,3-二甲氧基-蒽醌(2-hydroxy-1,3-dimethoxy-anthraquinone,11),大黄素甲醚(physcione,12),1,3-二羟基-2-甲基-蒽醌(1,3-dihydroxy-2-methyl-anth-raquinone,13),2,8-二羟基-1-甲氧基-蒽醌(2,8-dihydroxy-1-methoxy-anthraquinone,14),1-羟基-2-羟甲基-3-甲氧基-蒽醌(1-hydroxy-2-hydroxymethy-3-methoxy-anthraquinine,15)。木脂素类:(+)-松脂素4,4′-O-二β-D-吡喃葡萄苷[(+)-pinoresinol 4,4′-O-bis-β-D-glucopyranoside,16],(+)-表松脂素[(+)-epipinoresinol,17],松脂素【(+)-medioresinol,18]。环烯醚萜类:morindolide(19),水晶兰苷(monotropein,20),去乙酰车叶草甙酸(deacetyl-asperulosidic acid,21),6α-羟基-京尼平苷(6α-hydroxygeniposide,22),车叶草甙(deacetyl-asperuloside,23)。三萜类:熊果酸(ursolic acid,29),rubifolic acid(30),熊果醛(ursolic aldehyde,31)。酚酸类:东莨菪素(scopoletin,24),阿魏酸(ferulic acid,25),phthalic acid bis-(2-ethyl-hexyl)ester(26),对羟基-苯丙酸(p-hydroxy-phenylpropionic acid,27),香豆酸三十二酯(trans-dotriacontyl-coumarate,28)。其它类:正三十二烷醇(n-dotriacontanol,32),β-谷甾醇(β-sitosterol,33),胡萝卜苷(daucosterol,34)。其中,化合物6,9,10为未见文献报道的新化合物;化合物1,2,11,14-19,23,25-32为首次从该属分离得到。化合物12,24为首次从蓬子菜中分离得到。
     本论文以E.coli,S.aureus,P.aeruginosa和S.typhiuriun为受试菌,采用琼脂扩散纸片法对凤眼草和蓬子菜抗菌活性成分进行追踪,测定凤眼草水提大孔树脂洗脱物、95%乙醇提取物乙酸乙酯萃取部分和正丁醇萃取部分均有不同程度的抗菌活性,有效成分的分离鉴定表明,黄酮类化合物和木脂素类物质是主要的抗菌活性物质。蓬子菜的95%乙醇回流提取液的正丁醇层具有抗菌作用,所得单体化合物中,黄酮类化合物活性最强,部分蒽醌、环烯醚萜和木脂素类化合物具有较好的抗菌活性。利用二倍稀释法测定抗菌活性化合物的最小抑菌浓度(MIC)。
     借助超氧化歧化酶(SOD)测试盒,对29个单体化合物(7个来自凤眼草,22个来自蓬子菜)进行体外清除超氧阴离子(O_2~(-.))测试研究。同时,采用MTT法,对凤眼草和蓬子菜粗提物体外肿瘤抑制活性进行了初步研究,其中蓬子菜提取物的正丁醇层对人体肿瘤细胞(MCF-7和SF188)均有潜在的生长抑制抑制活性,对MCF-7的IC_(50)为424μg/ml。而石油醚乳化层对SF188显示出明显的抑制活性,IC_(50)为342μg/ml。
1.Ailanthus altissima Swingle (Simaroubaceae) is widespread in China. The fruits ofthis plant have traditionally been used for the treatment of antimalarial, antibacterial andgynecopathia.
     Forty-one compounds were separated from the fruits of A. altissima Swingle byusing chromatographic and recrystallized methods.
     On the basis of physico-chemical properties and spectroscopic analysis, theirstructures were identified as follows. Steroids: stigmastane-3,6-dione (1) , stigmastane-3β,6β-diol (2) , stigmast-4-ene-3,6-dione (3) , 6β-hydroxystigmast-4-en-3-one (4) ,6α-hydroxystigmast-4-en-3-one (5) , stigmast-4-ene-3β,6β-diol (6) , stigmast-4-ene-3β,6α-diol (7) , stigmast-4-en-3-one (8) ,β-sitosterol (9) , daucosterol (10) , 3β-hydroxy-stigmast-5-en-7-one (11) , stigmast-5-ene-3β,7α-diol (12) , stigmast-5-ene-3β,7α,20ξ-triol (13) , ergesta-4,6,8(14) ,22-tetraen-3-one (14) , 5α,8α-epidioxyergesta-6,22-dien-3β-ol (15) , 5α,8α-epidioxyergesta-6,9(11) ,22-trien-3β-ol (16) . Triterpenoids: 9,19-cyclolanost-23(Z)-ene-3β,25-diol (17) , cycloart-25-ene-3β, 24ξ-diol (18/19) , 2β,20(S)-dihydroxydammar-24-en-3-one (20) ,β-amyirn (21) , olean-9(11) ,12-dien-3β-ol (22) ,D-friedoolean-14-en-3-one (23) , ursolic acid (24) , 22-hydroxyhopan-3-one (25) ,11β,20-epoxy-1β,2α,12α-pentahydroxypicrasa-3,13(21) -dien-16-one (26) . Cerebrosides: 1-O-β-D-glucopyranosyl-(2S,3R,4E,9E)-2-(2'R-hydroxyhexadecenoylamino)-4,9-octa-decadiene-1,3-diol (27) . Flavonoids: kaempferol (32) , quercetin (33) , quercetin 3-O-β-D-glucopyranoside (34) , kaempferol 3,7-O-bis-α-L-rhamnopyranoside (35) , 3-O-α-L-arabinofuranosyl kaempferol 7-O-α-L-rhamnopyranoside (36) . Lignanoids: (+)-isolariciresinol (40) , (+)-isolariciresinol 9-O-β-D-glucopyranoside (41) . Phenolicacids: vanillin (37) , gallic acid (38) , 6,7-dihydroxycoumarin (39) . Others: n-tetra-triacontane (28) , L-evonymitol (29) , D-mannitol (30) , D-sorbitol (31) .
     Among them, compound 27 was a new compound; compound 2 was a new naturalproduct; compounds 1-8, 11-25, 28-31, 34-41 were firstly isolated from this genus;compounds 10, 26, 32, 33 were isolated from the fruits of Ailanthus altissima Swinglefor the first time.
     A review on the biosynthesis, pharmacological actions and spectral characters of 锘縬uassinoid type triterpenoids was given on the base of references and our study work.2.Galium verum L. (Rubiaceae) is an herbal medicine widely distributed in the China,which has good therapy effect on phlebophlogosis and hepatitis as a famous folkmedicine.鈽匱hirty-four compounds were separated from G. verum L. by using chromatographicand recrystallized methods.鈽匫n the basis of physico-chemical properties and spectroscopic analysis, theirstructures were identified as follows. Flavonoids: isorhamnetin (1) , isorhamnetin3-O-伪-L-rhamnopyranosyl (1-6) -尾-D-glucopyranoside (2) , diosmetin (3) , diosmetin7-O-尾-D-glucopyranoside (4) , diosmetin 7-O-尾-D-xylopyranosyl-(1-6) -尾-D-gluco-pyranoside(5) , diosmetin 7-O-伪-L-rhamnopyranosyl-( 1-2) -[尾-D-xylopyranosyl-( 1-6) ]-尾-D-glucopyranoside (6) , kaempferol (7) , quercetin (8) , 3,5,7,3',4',3",5",7",3"',4"'-decahydroxyl-[8-CH_2-8"]-biflavone (9) . Anthraquinones.路2, 5-dihydroxy-1, 3-di-methoxy-anthraquinone (10) , 2-hydroxy-1, 3-dimethoxy-anthraquinone (11) , physcione(12) , 1,3-dihydroxy-2-methyl-anthraquinone (13) , 2,8-dihydroxy-1-methoxy-anthra-quinone (14) ,1-hydroxy-2-hydroxymethyl-3-methoxy-anthraquinone (15) . Lignanoids:(+)-pinoresinol 4,4'-O-bis-尾-D-glucopyranoside (16) , (+)-epipinoresinol (17) , (+)-medioresinol (18) . Iridoids: morindolide (19) , monotropein (20) , deacetyl-asperulo-sidic acid (21) , 6伪-hydroxygeniposide (22) , deacetyl-asperuloside (23) . Triterpenoids:ursolic acid (29) , rubifolic acid (30) , ursolic aldehyde (31) . Phenolic acids:scopoletin (24) , ferulic acid (25) , phthalic acid bis-(2-ethyl-hexyl) ester (26) , p-hydroxy-phenylpropionic acid (27) , trans-dotriacontyl-coumarate (28) . Others: n-dotriacontanol (32) ,尾-sitosterol (33) , daucosterol (34) .鈽匒mong them, compounds 6, 9 and 10 were new compounds; compounds 1, 2,11,14-19, 23, 25-32 were firstly isolated from this genus; compounds 12, 24 were isolatedfrom the Galium verum L. for the first time.鈽匬harmacological tests showed that the extract of fruits of Ailanthus altissimaSwingle had the effect on E. coli, S. aureus, P. aeruginosa and S. typhiuriun in vitro.The EtOAc extract exhibited the best result, which gave the effective activity againsttested bacterium. By the chromatographic isolation, the major compounds obtained from this part were flavonoids and lignanoids. The n-butanol extract from G. verum L.showed the potential activity against tested bacterium. By the chromatographic isolation,the major compounds obtained from this part were flavonoids. Minimal inhibitoryconcentrations (MIC) of effective components were measured using two-fold dilutionmethod.
     The anti-oxidative activity of twenty-nine compounds isolated from fruits of A.altissima Swingle (seven compounds) and G. verum L. (twenty-two compounds) wastested, and some of them showed effective antioxidations.
     By MTT methods, the in vitro cytotoxicity activities against cancer cell lines of theextract were assayed. The emulsive part between petroleum and water of G. verum L.showed moderate activity against human cancer cell line (SF188) with an IC_(50) value of342μg/ml; the n-butanol part displayed potential activity with an IC_(50) value of 424μg/ml against MCF-7 cell line.
引文
[1]马丽莎.四川苦木科植物资源及其开发利用.四川林业科技,1997,18(4):35-49.
    [2]朱秀谦,张平安,陈建业.河南臭椿属观赏类型的研究.河南林业科技,2000,20(1):10-15.
    [3]Hirokazu N., Tetsuo F., Masami I., et al. On the structure of ailanthone, a bitter principle from Ailanthus altissima. Chemistry Letters, 1982, (5): 661-2.
    [4]Masami I., Takahiko T., Tatsushi M., et al. Constituents of the root bark of Ailanthus altissima Swingle. Isolation and x-ray crystal structures of shinjudilactone and shinjulactone C and conversion of ailanthone into shinjudilactone. Bulletin of the Chemical Society of Japan, 1983, 56(12): 3683-93.
    [5]Tetsuo F., Masami I., Hirokazu N., Tatsushi M., et al. Structure determination of bitter principles of Ailanthus altissima. Structures of shinjulactones B, D, and E. Bulletin of the Chemical Society of Japan, 1984, 57(9): 2484-9.
    [6]Masami I., Tetsuo F., Takahiko T., et al. Structures of shinjulactones D and E, new bitter principles of Ailanthus altissima Swingle, Chemical & Pharmaceutical Bulletin, 1983.31(6): 2179-82.
    [7]Kengo K., Narihiko F., Tomomi H., et al. Two New Quassinoids, Ailantinols A and B, and Related Compounds from Ailanthus altissima. Journal of Natural Products, 1996, 59(7): 683-686.
    [8]Yoshio N., Takahiko T., Takeyoshi T., et al. Structure determination of shinjulactones M and N, new bitter principles from Ailanthus altissima Swingle. Bulletin of the Chemical Society of Japan, 1986, 59(5): 1638-40.
    [9]Hirokazu N., Masami I., Tetsuo F., et al. Structure determination of bitter principles in Ailanthus altissima. Structure of shinjulactone A and revised structure of ailanthone. Bulletin of the Chemical Society of Japan, 1983, 56(12): 3694-8.
    [10]Shin Y., Masami I., Takahiko T., et al. Constituents of seeds of Ailanthus altissima Swingle. Isolation and structures of shinjuglycosides A, B. C, and D. Bulletin of the Chemical Society of Japan, 1984, 57(9): 2496-501.
    [11]Masami I., Shin Y., Takahiko T., et al. Structure determination of bitter principles of Ailanthus altissima. Structures of shinjulactones F, I, J, and K. Bulletin of the Chemical Society of Japan, 1984, 57(10): 2885-92.
    [12] Masami I., Takahiko T., Takeyoshi T., Structure determination of a new bitter principle, shinjulactone L, from Ailanthus altissima. Bulletin of the Chemical Society of Japan, 1985, 58(9): 2723-4.
    [13] Masami I., Shin Y., Takahiko T., et al. Shinjulactones G and H, new bitter principles of Ailanthus altissima Swingle. Bulletin of the Chemical Society of Japan, 1984, 57(7): 2013-14.
    [14] Yoshio N., Takahiko T., Takeyoshi T., et al. Bitter principles of Ailanthus altissima Swingle.Structure determination of shinjuglycosides E and F. Chemical & Pharmaceutical Bulletin,1987, 35(10): 4302-6.
    [15] Sadaaki T., Narihiko F., Masayoshi O., et al. Three new quassinoids, ailantinol E, F, and G,from Ailanthus altissima. Chemical & Pharmaceutical Bulletin, 2003, 51(4): 385-389.
    [16] Masami I., Tatsushi M., Hiroshi H., et al. Shinjulactone C from Ailanthus altissima SWINGLE.Tetrahedron Letters, 1982, 23(11): 1205-6.
    [17] Kengo K., Narihiko F., Masayoshi O., et al. Two new quassinoids, ailantinols C and D, from Ailanthus altissima. Bulletin of the Chemical Society of Japan, 1996,69(12): 3613-3617.
    [18] Masami I., Tatsushi M., Hiroshi H., et al. Shinjudilactone, a new bitter principle from Ailanthus altissima Swingle. Chemistry Letters, 1981, (11): 1597-8.
    [19] Masami I., Shin Y., Takahiko T., et al. Shinjulactone F, a new bitter principle with a 5H-picrasane skeleton from Ailanthus altissima Swingle. Chemistry Letters, 1984, (4): 555-6.
    [20] Tetsuo F., Hirokazu N., Tatsushi M., et al. Structure of shinjulactone B, a new bitter principle from Ailanthus altissima. Chemistry Letters, 1981, (12): 1797-8.
    [21] Varga E., Szendrei K., Reisch J., et al. Indole alkaloids of Ailanthus altissima. Planta medica,1980,40:337-339.
    [22] Ohmoto T., Koike K., Sakamoto Y, Studies on the conctituents of Ailanthus altissima Swingle.II. alkaloidal constituents. Chem Pharm Bull, 1981, 29 (2): 390-395.
    [23] Ohmoto T., Koike K., Studies on the conctituents of Ailanthus altissima Swingle. III. The alkaloidal constituents. Chem Pharm Bull, 1984, 32 (1): 170-173.
    [24] Souleles C., Kokkalou E., A new β-carboline alkaliod from Ailanthus altissima. Plata Medica,1989, 55: 286-287.
    [25] Crepi-perellino N., Guicciardi A., Malyszko G., Occurence of indole alkaloids in Ailanthus altissima cell cultures. J Nat Prod, 1986, 49 (6): 1010-1014.
    [26]El-Baky, A. M., Darwish, F. M. Ibraheim, Z. Z. et al. Phenolic compounds from Ailanthus altissima Swingle. Bulletin of Pharmaceutical Sciences, Assiut University, 2000, 23(2): 111-116.
    [27]Barakat, H. H. Chemical investigation of the constitutive phenolics of Ailanthus altissima; the structure of a new flavone glycoside gallate. Natural Product Sciences, 1998, 4(3): 153-157.
    [28]Hwang S. W., Lee J. R., Lee, J., et al. New coumarins from the Ailanthus altissima. Heterocycles, 2005, 65(8): 1963-1966.
    [29]郭允珍,孟宪纾,高其品。抗癌植物药的开发研究—中药椿皮的抗癌活性成分。中草药,1985,16(7):334.
    [30]Ansari S. H., Ali M. Two new phytosterols from Ailanthus altissima (mill) swingle. Acta Horticulturae, 2003, 597(Proceedings of the International Conference on Medicinal and Aromatic Plants, Part Ⅱ, 2001), 91-94.
    [31]Masuk K. M., Ayhan D., Alipasa A., Fatty acids of Ailanthus altissima. Environmental & Biomedical Problems, 1994, 46(3): 45-8.
    [32]Lu J. sh., Liu L., Deng Q. Y., Chemical components of the volatile oil from the seeds of Ailanthus altissima (Mill.) Swingle. Fenxi Ceshi Xuebao, 2003, 22(4): 39-41.
    [33]Beuchat L. R., Lechowich R. V., Schanderl S. H., et al. Inhibition of bacterial growth by chlorophyllide a. Quart. Bull. 1966, 48(3): 411-16.
    [34]Chirkina N. N., Degtyareva A. P., Chemical nature of the antiviral principle of some higher plants. Editor(s): Aizenman, B. E. Fitontsidy, Mater. Soveshch., 6th (1972), Meeting Date 1969, 147-50.
    [35]Ohmoto T., Sung Y. I., Antimycotie substances in the crude drugs. Ⅱ. Shoyakugaku Zasshi, 1982, 36(4): 307-14.
    [36]施瑶 李定祥 闵知大 花椒属植物对口腔致病菌的抗菌活性.中国天然药物,2005,3(4):248-251.
    [37]沈逸萍.凤眼草体外抗菌实验研究.时珍国医国药,1999,10(7):499.
    [38]Kengo K., Narihiko F., Harukuni T., et al. Quassinoids as inhibitors of Epstein-Barr virus early antigen activation. Cancer Letters, 1997, 113(1,2): 165-168.
    [39]Sadaaki T., Narihiko F., Mou X. Y., et al. Conversion of quassinoids for enhancement of inhibitory effect against Epstein-Barr virus early antigen activation. Introduction of lipophilic side chain and esterification of diosphenol. Chemical & Pharmaceutical Bulletin, 2000, 48(6):876-878.
    [40] Sadaaki T., Narihiko F., Masayoshi O., et al. Cancer chemo preventive effect of quassinoid derivatives. Introduction of side chain to shinjulactone C for enhancement of inhibitory effect on Epstein-Barr virus activation. Cancer Letters, 2002,185(1): 47-51.
    [41] Kokai J., Koho T. The physiologically active hydroxymethylcanthinone from Ailanthus altissima. Japan: JP 83-220600 19831125,1985.
    [42] Omoto T., Shinho, Y., Kajiro N. Ishiwatari, Hiroe; Ito, Hiroshi.Antiulcer alkaloids from Picrasma ailanthoids. Japan: JP 88-155940 19880623,1990.
    [43] Tada H., Yasuda F., Otani K., et al. New antiulcer quassinoids from Eurycoma longifolia.European Journal of Medicinal Chemistry, 1991,26(3): 345-9.
    [44] O'Neill M. J., Bray D. H., Boardman P., et al. Plants as sources of antimalarial drugs. Part 1.In vitro test method for the evaluation of crude extracts from plants. Planta Medica, 1985, (5):394-8.
    [45] Bray D. H., Boardman P., O'Neill M. J., et al. Plants as a source of antimalarial drugs. 5. Activities of Ailanthus altissima stem constituents and of some related quassinoids.Phytotherapy Research, 1987, 1(1): 22-4.
    [46] Okunade A. L., Bikoff R. E., Casper S. J., et al. A ntiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytotherapy research: PTR, 2003,17(6): 675-7.
    [47] Ferreira M. E., Fournet A., Rojas A., et al. Use of canthin-6-one and plant extracts containing it and its derivatives for the treatment of the Chagas' disease.Patent French 2002-14729 20021125 (2004).
    [48] Tadaaki S., Akiko H., Nobuaki A., et al. Search for a potential drug amongst -carboline alkaloids- in vitro and mouse studies. Experimental Parasitology, 2005, 110(2): 134-139.
    
    [49] Jin M. H., Jumin Y., Lee, E. Y., et al.Anti-inflammatory activity of Ailanthus altissima in ovalbumin-induced lung inflammation. Biological & Pharmaceutical Bulletin, 2006, 29(5):884-888.
    [50] Rahman S., Fukamiya N., Okano M., Anti-tuberculosis activity of quassinoids. Chem Pharm Bull., 1997, 45 (9): 1527-1529.
    [51]国家中医药局管理局《中华本草》编委会.中华本草第五分册[M].上海:上海科学技术出版社,1977,3829-3830.
    [1]Greca M. D., Monaco P., Previtera L. Stigmasterols from Typha Latifolia. J. Nat. Prod., 1990, 53(6): 1430-1435.
    [2]Kimura Y., Akihisa T., Yasukawa K., et al. Structures of five hydroxylated sterols from the seeds of Trichosanthes kirilowii MAXIM. Chemical & Pharmaceutical Bulletin, 1995, 43:1813-1817.
    [3]Pierre, L., Andre, G., Stephane, G., et al. Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil. J. Arg. Food. Chem., 2003, 51: 4284-4290.
    [4]Rao A. V., Nageswara K., Kobayashi M. (24s)-24-Methylcholest-4-ene-3β, 6β-diol from a gorgonian of the Andaman and Nicoban Islands. Indian J. Chem. Sect B. 1995, 34B(1): 78-80.
    [5]何爱民,郝红艳,王明时,等.垂盆草中的甾醇化合物.中国药科大学学报,1997,28(5):271-274.
    [6]闫素娟,苏镜娱,张广文,等,里骨海绵Stelletta tenuis lindgren中的甾类化合物.中山大学学报(自然科学版),2001,40(2):54-57.
    [7]梅双喜,潘晓晖,侯振富,等.沙芥化学成分的研究.Chin.Pharm.J.,1999,34(6):366-367.
    [8]Youla S., Tsantrios P. L., Folkins J. F. et al. Approaches towards the synthesis of a sulfur analog of ergosterol peroxide. Can.J.Chem, 1992, 70:158-164.
    [9]Greca M. D., Mangoni L., Molinaro A., et al. 5β-8β-Epidioxyergosta-6, 22-dien-3β-ol from Typha latifolia. Gazz Chim Ital, 1990, 120(6): 391-392.
    [10]马伟光,李兴从,王德祖,等.松橄榄中的麦角甾醇类过氧化物.云南植物研究,1994,16(2):196-200.
    [11]HUA H. M., Li X., Pei, Y. H. The spectral characterization of Cycloartane triterpenoids. Nat. Prod. Res. Dev., 2001, 13: 65-70.
    [12]Marina D. G., Antonio F., Pietro M. Cycloartane triterpenes from Juncos effasus. Phytochemistry, 1994, 35(4): 1017-1022.
    [13]华会明,侯柏玲,李文,等.柳穿鱼中三萜化合物的研究.中草药,2000,3l(6):409412.
    [14]Asakawa J., Kasai R., Yamasaki K. ~~(13)C-NMR study of ginseng sapogenins and their related dammarane type triterpenes. Tetrahedron, 1977, 33(15): 1935-1939.
    [15]姚新生.天然药物化学第二版[M].北京:人民卫生出版社,1988,360.
    [16]Roderick A. B., Anibal L. P., Tereza C. V. A new triterpene from Vellozia Compacta. Chem. Pharm. Bull., 1984, 32(9): 3674-3677.
    [17]Kobayashi Y., Takeda T., Ogihara Y., New triterpenoid glycosides from the leaves of Bupleurum Rotundifolium L.Chem. Pharm. Bull., 1981, 29: 2222.
    [18]Hui W.H., Li M. M. An Examination of the Euphorbiacace of Hong.Part 16.Triterpenoids from Glochidion macrophyllum and G.puberum. J Chem Soc Perkin Trans Ⅰ., 1978, 897-904.
    [19]Pinto A. C., Peixoto E. M., Fiorani N. G. M., Diterpenes with Pimarane and Cleistanthane Skeletons from Velloxia piresiana. Phytochemistry. 1984, 23(6): 1293-1296.
    [20]商士斌,陈于澎.岩生越橘化学成分的研究.中国中药杂志,1992,17(4):230-232.
    [21]Wilkins A. L., Ronaldson K. J., Jager P. M., et al. A ~(13)C-NMR study of some oxygenated hopane triterpenes. Aust. J. Chem. 1987, 40: 1713.
    [22]Yoshimura S., Ishibashi M., Takahiko H., et al. Constituents of seeds of Ailanthus altissima Swingle. Isolation and structures of shinJuglycosides A, B, C, and D. Bull Chem Soc Jpn, 1984, 57(9): 2496-2501.
    [23]Naora H., Furuno M. T. Structure determination of bitter principles in Ailanthus altissima. Structure of shinJulactone A and revised structure of ailanthone. Bull Chem Soc Jpn, 1983, 56(12): 3694-3698.
    [24]Kubota K., Fukamiya N., Okano M., et al. Two new quassinoids, ailantinols C and D, from Ailanthus altissima. Bull Chem Soc Jpn, 1996, 69(12): 3613-3617.
    [25]Qi J. H., Ojika M., Sakagami Y., Termitomycesphins A+D, Novel Neuritogenic Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus. Tetrahedron, 2000, 56: 5835-5841.
    [26]Jiyoung R., Ju S. K., Sam S. K. Cerebrosides from Longan Arillus. Arch. Pharm. Res., 2003, 26(2): 138-142.
    [27]Chen J.H., Cui G.Y., Liu J.Y., et al. Phytochemistry, 2003, 903-906.
    [28]Higuchi R., M. Inagaki K. Togawa T. et al. Liebigs Ann. Chem., 1994, 653-658.
    [29]Sadtler Research Laboratories Inc. Sadtler Standard Infrared Grating Spectra [M]. Vol: 15-16. The United Stated of America: Sadtler Research Laboratories Inc. 1969:15298.
    [30]Sadtler Research Laboratories Inc. Sadtler Standard Infrared Grating Spectra [M]. Vol: 21-21. The United Stated of America: Sadtler Research Laboratories Inc. 1971: 2102j.
    [31]Sadtler Research Laboratories Inc. Sadtler Standard Carbon-13 NMR Spectra [M]. The United Stated of America: Sadtler Research Laboratories Inc. 1978: 4205c.
    [32]中华人民共和国卫生部药典委员会编 药品红外光谱集 第二卷[M].北京:化学工业出版社,1995,光谱26号.
    [33]叶敏,阎玉凝,乔梁,等。中药菟丝子化学成分研究。中国中药杂志。2002,27(2):115-117.
    [34]Petler A., Ward R., Lansgray T., The carbon-13 nuclear magnetic resonance spectra of flavonoids and related compounds. J of the Chemical Society, Perkin Trans., 1976, 2475-2483.
    [35]罗思齐,金惠芳.北柴胡茎叶的化学成分研究.中药通报.1988,13(1):36-38.
    [36]Sadtler Research Laboratories Inc. Sadtler Standard Carbon-13 NMR Spectra [M]. The United Stated of America: Sadtler Research Laboratories Inc. 1979. 6224C.
    [37]刘东,鞠建华,杨峻山.狭叶崖爬藤化学成分的研究.中草药,2003,34(1):4-6.
    [38]Sadtler Research Laboratories Inc. Sadtler Standard Carbon-13 NMR Spectra [M]. The United Stated of America: Sadtler Research Laboratories Inc. 1989. 26842C.
    [39]Fumiko A., Tatsuo Y. Lignan glycosides from Parsonsia Laevigata. Phytochemistry, 1989, 28(6): 1737-1741.
    [40]Pei Y. H., Li X., Zhu T. R. Studies on the structure of a new isocoumarin glucoside of the root sprouts of Agrimonia pilosa Ledeb. Yaoxue Xuebao, 1989, 24(11): 837-40.
    [1]药品微生物学及检验技术[M]郑钧镛,王光宝 人民卫生出版社 1989.1版347.
    [2]潘家祜,江明华.生化药理学[M].上海:复旦大学出版社,2004:76-114.
    [3]谭卫东,金红,罗弟祥,等.抗肿瘤药物筛选中MTT法和SRB法的比较[J].天然产物研究与开发,1999,11(3):17-22.
    [1]Winckler, F. L. Quassin and Neoquassin. Rep. Pharm. 1835, 4: 85.
    [2]Clark, E. P. Quassin. I. The Preparation and Purification of Quassin and Neoquassin, with Information Concerning their Molecular Formulas. J. Am.Chem.Soc. 1937, 59(5): 927-931.
    [3]Valenta, Z., Papadopoulos, S., Podesva, C. Quassin and neoquassin. Tetrahedron, 1961, 15: 100.
    [4]Suong N. N., Bhatnagar S., Polonsky J., et al. Structure of lauryeolactone A and B, new C18-quassinoids from Eurycoma longifolia and revised structure of eurycomalactone. Tetrahedron Letters, 1982, 23(49): 5159-62.
    [5]Ang H. H., Yukio H. Y., Fukaya H., et al. Quassinoids from Eurycoma longifolia. Phytochemistry, 2002, 59: 833-837.
    [6]Coombes P. H., Dashnie N., MulhollandD., et al. Quassinoids from the leaves of the Madagascan Simaroubaceae Samadera madagascariensis. Phytochemistry, 2005, 66, (23): 2734-2739.
    [7]Ishibashi M., Furuno T., Hietter H., et al. Bitter principles of Ailanthus altissima Swingle. Studies on oxidative degradation of the A-ring of ailanthone derivatives. Chem. Phrm.Bull., 1987, 30(11): 35.
    [8]林隆泽,张金生,张仲良,许任生 鸦胆子化学成分的研究Ⅰ.鸦胆子酮酸等五个苦木素的分离和鉴定化学学报40(1) 1982 73-78
    [9]Kazunori I., Narihiko F., Masayoshi O., et al. Catalytic hydrogenation of dehydroquassinoids and cytotoxic antitumor activity of the hydrogenation products. Bulletin of the Chemical Society of Japan, 1992, 65(10): 2684-9.
    [10]Suong N. N., Subodh B., Polonsky J., et al. Structure of laurycolactone A and B, new C18-quassinoids from Eurycoma longifolia and revised structure of eurycomalactone. Tetrahedron Letters, 1982, 23(49): 5159-62.
    [11]Helen J., Lewis D. E., Sawyer J. F. et al. Cedronin and 7-epicedronin: x-ray crystal structure analysis. Journal of Natural Products, 1987, 50(4): 700-5.
    [12]Kazuo K., Taichi O., Indaquassin A and B: quassinoids from Quassia indica. Phytochemistry, 1993, 34(2): 505-9.
    [13]Kazuo O., Taichi O., Quassinoids from Quassia indica. Phytochemistry, 1994, 35(2): 459-63.
    [14]Isao K., Taifo M., Ko-ichi Y., et al. Indonesian medicinal plants. ⅩⅦ. Characterization of quassinoids from the stems of Quassia indica. Chemical & Pharmaceutical Bulletin, 1996, 44(11): 2009-2014.
    [15] Hiroshi M., Etsuko K., Koichi T., et al. New quassinoids from the roots of Eurycoma longifolia.Chemistry Letters, 1990, (5): 749-52.
    [16] Christian M., Polonsky J., Vuilhorgne M. et al. Isolation and structure of sergeolide a potent cytotoxic quassinoid from Picrolemma pseudocoffea. Tetrahedron Letters, 1982,23(6): 647-50.
    [17] Polonsky J. Bhatnagar S., Moretti C. 15-Deacetylsergeolide, a potent antileukemic quassinoid from Picrolemma pseudocoffe. Journal of Natural Products, 1984, 47(6): 994-6.
    [18] Forgacs P., Provost J., Touche A., et al. Structures of odyendane and odyendene, two new quassinoids from Odyendea gabonensis (Pierre) Engl. Simaroubaceae. Tetrahedron Letters,1985,26(29): 3457-60.
    [19] Fernandes J. B., Vieira I. J., Filho R. B. et al. 20(R)- and 20(S)-Simarolide Epimers Isolated from Simaba cuneata: Chemical Shifts Assignment of Carbon and Hydrogen Atoms. Braz.Chem. Soc, 1999,10(1), 76.
    [20] JB-son Bredenberg: Chem and Ind 1964, (11): 73.
    [21] Polonsky, J. Fortschr Chem. Org. Naturst., 1973, 30: 101.
    [22] Hideji I., Qin X. R., Hiroshi M., et al. C18 and C19 quassinoids from Eurycoma longifolia.Journal of Natural Products, 1993, 56(10): 1766-71.
    [23] Hitotsuyanagi Y., Kim I. H., Hasuda T., et al. A structure-activity relationship study of brusatol,an antitumor quassinoids. Tetrahedron, 2006,62(17): 4262-4271.
    [24] Fukamiya N., Lee K, H., Muhammad I., et al. Structure-activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Letters, 2005,220(1): 37-48.
    [25] Hall I. H., Liou Y. F., Okano M., et al. Antitumor agentsXLVI: In vitro effects of esters of brusatol, bisbrusatol,and related compounds on nucleic acid and protein synthesisof P-388 lymphocytic leukemia cells, J. Pharm. Sci. 1982, 71: 345-348.
    [26] Mata-Greenwood E., Daeuble J. F., Grieco P.A., et al. Novel esters of glaucarubolone as inducers of terminaldifferentiation of promyelocytic HL-60 cells and inhibitors of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesion formation in mouse mammary organ culture, J. Nat.Prod., 2001, 64: 1509-1513.
    [27] O'Neill M. J., Bray D. H., Boardman P., et al. Plants as sources of antimalaria drugs: In vitro antimalarial activities of some quassinoids, Antimicro. Agents Chemother. 1986, 30: 101-104.
    [28] Guru P. Y., Warhurst D. C, Harris A., et al. Antimalaria activity of bruceantin in vitro, Ann.Trop. Med. Parasit. 1983,77: 433-435.
    [29] Liou Y. F., Hall I. H., Okano M., et al. Antitumor, Agents XLVIII: Structure-activity relationships of quassinoids as in vitro protein synthesis inhibitors of P-388 lymphocytic leukemia tumor cell metabolism, J. Pharm. Sci. 1982,71: 430-435.
    [30] Bray D. H., Boardman P., O'Neill M. J. et al. Plants as a source of antimalarial drugs. 5. Activities of Ailanthus altissima stem constituents and of some related quassinoids.Phytotherapy Research, 2006,1(1): 22-24.
    [31] O'Neill J., Bray D. H., Boardman P., et al. Plants as Sources of Antimalarial Drugs: In Vitro Antimalarial Activities of Some Quassinoids. Antimicrobial Agents and Chemotherapy, 1986,30(1): 1101-104.
    [32] Ajaiyeoba E.O., Abalogu U. I., Krebs H. C, et al. In vivo antimalarial activities of Quassia amara and Quassia undulata plant extracts in mice. J. Ethnopharmacol, 1999,67(3): 321-32.[33] Luyengi L, Suh N, Fong HH, et al. Phytochemistry, 1996, 43(2): 409-412.
    [34] Okunade A. L., Bikoff R. E., Casper S. J., et al. Antiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytotherapy research,2003, 17(6): 675-7.
    [35] Kuo P. C, Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia.Bioorgnic and Medicinal Chemistry, 2004, 12: 537-544.
    [36] Okano M., Fukamiya N., Tagahara K., et al. Anti-hiv activity of quassinoids. Bioorganic & Medicinal Chemistry Letters, 1996, 6(6): 701-706.
    [37] Hall I. H., Lee K. H., Sumida Y., et al. Anti-inflammatory agents HI: Structure-activity relationships of brusatol and related quassinoids. J. Pharm. Sci. 1983, 72: 1282-1284.
    [38] Rahman S., Fukamiya N., Okano M., Anti-tuberculosis activity of quassinoids. Chem Pharm Bull., 1997, 45(9): 1527-1529.
    [39] Bhatnager S. C, Caruso A. J., Polonsky J. Biologically active quassinoids: synthesis methodology for the conversion of chaparrin into glaucarubolone esters and quassinoids.Tetrahedron, 1987, 43(15): 3471.
    [40] Cuendet M., Pezzuto J. M. Antitumor activity of bruceantin: An old drug with new promise.J.Nat. Prod., 2004, 67: 269.
    [41] Bhatnagar S. C, Caruso A. J., Polonsky J., Biologically active quassinoids : synthetic methodology for the conversion of chaparrin into glaucarubolone esters and quassinoid analogs. Tetrahedron, 1987,43(15): 3471.
    
    [42] Tamuraa S., Fukamiyaa N., Okanoa M., et al. Cancer chemopreventive effect of quassinoid derivatives. Introduction of side chain to shinjulactone C for enhancement of inhibitory effect on Epstein-Barr virus activation. Cancer Letters, 2002, 185:47-51.
    [43]林隆泽,张金生,陈仲良,等.鸦胆子化学成分的研究 鸦胆子酮酸等五个苦木素的分离鉴定 化学学报,1982,40(1):73—78.
    [44]Diakanamwa C., Diallo B., Vanhaelen-Fastre R. et al. 14-Hydroxychapparinone, a new quassinoid from Hannoa chlorantha. Journal of Natural Products, 1993, 56(10): 1817-20.
    [45]Vidari G., Ferrino S., Grieco P., et al. Quassinoids: total synthesis of dl-quassin. J. Am. Chem. SOC. 1984, 106(12): 3539-3548.
    [46]Hirota H., Miyaji K., Nakamura T. et al. Synthetic studies on quassinoids: a stereoselective construction of the picrasane skeleton. Tetrahedron Lett., 1984, 25(46): 5299-5302.
    [47]Hirota H., Yokohama A., Miyaji K. et al. Synthetic studies on quassinoids: Total synthesis of (+)-amarolide Tetrahedron Lett. 1987, 28(4): 435-438.
    [48]Hirota H., Yokohama A., Miyaji K. et al. Total synthesis of (+)-amarolide, a quassinoid bitter principle. J. Org. Chem., 1991, 56:1119.
    [49]Grieco P. A., Parker D. T., Nargund R. P. Total synthesis of a highly oxygenated quassinoid, (.+-.)-klaineanone. J. Am. Chem. Soc.,1988, 110(16): 5568-9.
    [50]Grieco P. A., Lis R., Ferrino S., et al. Quassinoids: total synthesis of dl-castelanolide. J. Org. Chem., 1984, 49(13): 2342-2347.
    [51]Gross R. S., Grieco P. A., Collins J. L., et al. Synthetic studies on quassinoids: total synthesis of (+-)-chaparrinone. J. Am. Chem. Soc., 1990, 112(26): 9436-7.
    [52]Grieco P. A., Collins J. L., Moher E. D., et al. Synthetic studies on quassinoids: total synthesis of (-)-chaparrinone, (-)-glaucarubolone, and (+)-glaucarubinone. J. Am. Chem. Soc., 1993, 115(14): 6078-93.
    [53]VanderRoest J. M., Grieco P.A., Total synthesis of (+-)-brueeantin. J. Am. Chem. Soc., 1993, 115(13): 5841-42.
    [54]Sasaki M., Murae T., Takahashi T., Synthesis of (.+-.)-15-deoxybrueeolide and conversion of (-)-15-deoxybruceolide into (-)-bruceantin: total synthesis of bruceantin. J. Org. Chem., 1990, 55(2): 528-540.
    [55]Kim M., Kawada K., Gross R. S., et al. An enantioselective synthesis of (+)-picrasin B, (+)-.DELTA.2-picrasin B, and (+)-quassin from the R-(-) enantiomer of the Wieland-Miescher ketone. J. Org. Chem., 1990, 55(2): 504-511.
    [56]Collins J. L., Grieco P. A., Gross R. S., Synthesis of the highly oxygenated quassinoid shinjulactone D. J. Org. Chem., 1991, 56(25): 7167-69.
    [57]Fleck T. J., Grieco P. A., Synthetic studies on quassinoids: total synthesis of (±)-glaucarubolone and (±)-holacanthone. Tetrahedron Lett., 1992, 33(14): 1813-16.
    [58]Moher E. D., Collins J. L., Grieco P. A., Synthetic studies on quassinoids: total synthesis of simalikalactone D and assignment of the absolute configuration of the.alpha.-methylbutyrate ester side chain. J. Am. Chem. Soc.,1992, 114(7): 2764-5.
    [59]Grieco P. A., Collins J. L., Huffman J. C., Synthetic Studies on Quassinoids: Synthesis of (±)-Shinjudilactone and (±)-13-epi-Shinjudilactone J. Org. Chem., 1998, 63(25): 9576-79.
    [60]Moher E. D., Grieco P. A., Collins J. L., (R)-(+)-and (S)-(-)-5-Ethyl-5-methyl-1,3-dioxolane-2,4-dione reagents for the direct preparation of.alpha.-hydroxy-.alpha.-methylbutyrate esters: assignment of the absolute configuration of the.alpha.-acetoxy-.alpha.-methylbutyrate ester side chain of quassimarin via total synthe J. Org. Chem., 1993, 58 (15): 3789-90.
    [61]Grieco P. A., Pineiro-Nunez M. M., C19 Quassinoids: Total Synthesis of dL-Samaderin B. J. Am. Chem. Soc., 1994, 116(17): 7606-15.
    [62]Shing T. K. M., Jiang Q., Mak T. C. W., Total Synthesis of (+)-Quassin from (+)-Carvone J. Org. Chem., 1998, 63(7): 2056-7.
    [63]Grieco P. A., Cowen S. D., Mohammadi F., Synthetic studies on highly oxygenated quassinoids: Total synthesis of (±)-14β,15β-dihydroxyklaineanone. Tetrahedron Lett., 1996, 37(16): 2699-2702.
    [64]Moher E. D., Reilly M., Grieco P. A. et al. Synthetic Studies on Quassinoids: Transformation of (-)-Glaucarubolone into (-)-Peninsularinone. In Vivo Antitumor Evaluation of (-)-Glaucarubolone, (-)-Chaparrinone, and (-)-Peninsularinone J. Org. Chem., 1998, 63(10): 3508-10.
    [65]Grieco P. A., Vidari G., Ferrino S., Elaboration of the carbon skeleton of quassinoids synthesis of (1β,9β-1-hydroxypicras-12-en-16-one. Tetrahedron Lett., 1980, 21 (17): 1619-1622.
    [66]Weller D. D., Stirchak E. P., Quassinoid synthesis via o-quinone Diels-Alder reactions. J. Org. Chem. 1983, 48(25): 4873-79.
    [67]Stevens R. V., Angle S. R., Kloc K. et al. Quassinoids. 2. A new approach to the BCD ring system. J. Org. Chem. 1986, 51(23): 4347-53.
    [68]Shing T. K. M., Jiang Q., Total Synthesis of (+)-Quassin. J. Org. Chem., 2000, 65(21): 7059-7069.
    [69]Claude S.. The ever-challenging quassinoids. Synlett, 2006, (1): 23-32.
    [70]Takeya K., Kobata H., Ozeki A., et al. Quassinoids from Ailanthus vilmoriniana. Phytochemistry 1998, 48(3): 565-568.
    [71]Kubota K., Fukamiya N., M Okano., et al. Two New Quassinoids, Ailantinols C and D, from Ailanthus Altissima. Bull. Chem.Soc.Jpn 1996, 69:3613-3617.
    [72]Kanchanapoom T., Kasai R., Chumsri P., et al. Quassinoids from Eurycoma harmandiana. Phytochemistry, 2001, 57(8): 1205-1208.
    [73]Koike T., Mitsunaga K., Fukuda K., et al. Studies on the constituents of Indonesian Picrasma javanica. Ⅲ. Structures of new quassinoids, javanicins A, C and D. Chemical & Pharmaceutical Bulletin, 1989, 37(11): 2991-4.
    [74]Koike K., Yokoh M., Furukawa M., et al. Picrasane quassinoids from Picrasma Javanica. Phytochemistry, 1995, 40(1): 233-238.
    [75]Koike K., Ohmoto T., Quassinoids from Picrasma javanica. Phytochemistry, 1990, 29(8): 2617-2621.
    [76]Okano M., Fujita T., Fukamiya, N., et al. New Quassinoid Glucosides, Picrasinoside-A,-B,-C,-D,-E,-F, and-G and New Hemiacetals, Picrasinol-A and-B, from the Stem Bark of Picrasma ailanthoides PLANCHON. Bull.Chem.Soc.Jpn, 1985, 58(6): 1793-1800.
    [77]Grieco P. A., Haddad J., Marta, M., et al. Quassinoids from the twigs and thorns of Castela polyandra.Phytochemistry, 1999, 50: 637-645.
    [78]Polonsky J., Baskevitch Z., Gottlieb H. E., et al., J Org. Chem. 1975, 40: 2499.
    [79]Aono H., Koike K., Ohmoto T. Alkaloids and quassinoids from Ailanthus malabarica. Phytochemistry, 1994, 37(2): 579-84.
    [80]Okano M., Fukamiya N., Aratani T., et al., Antitumor agents 74. Bruceanol-A and-B, two new antileukemic quassinoids from Brucea antidysenterica. Journal of Natural Products, 1985, 48(6): 972-5.
    [81]Sakaki T., Yoshimura S., Ishibashi M., et al., Structures of new quassinoid glycosides, yadanziosides A, B, C, D, E, G, H, and new quassinoids, dehydrobrusatol and dehydrobruceantinol from Brucea javanica (L.) MERR. Bulletin of the Chemical Society of Japan, 1985, 58(9): 2680-6.
    [82]Sakaki T., Yoshimura S., Tsuyuki T., et al., Structures of yadanziosides K, M, N, and O, new quassinoid glycosides from Brucea javanica (L.) Merr. Bulletin of the Chemical Society of Japan, 1986, 59(11): 3541-6.
    [1] Bock K., Jensen S. R., Nielsen B. J., Secogalioside, an iridoid glucoside from Galium album Mill. and carbon-13 NMR spectra of some seco-iridoid glucosides. Organic Chemistry and Biochemistry, 1976, B30(8): 743-8.
    [2] Kuiper J., Labadie R. P., Polyploid complexes within the genus Galium. Part 1: Anthraquinones of Galium album. Planta Medica, 1981,42(4): 390-9.
    [3] Kuiper J., Labadie R. P., Polyploid complexes within the genus Galium. 2: Galiprenylin, a new A-ring prenylated anthraquinone of Galium album. Planta Medica, 1983,48(1): 24-6.
    [4] Nedjalka H., Maya M., Mincho A., et al. Iridoid glucosides from Galium album and G. lovcense.Phytochemistry, 1996, 43(3): 625-628.
    [5] Seabra R. M., Silveira J. A., Vasconcelos M. H., Phenolic compounds from Galium aparine and G. broteroanum. Plantes Medicinales et Phytotherapie, 1993, 26(1): 49-51.
    [6] Deliorman D., Calis I., Ergun F. Iridoids from Galium aparine. Pharmaceutical Biology (Lisse,Netherlands), 2001, 39(3): 234-235.
    [7] Bilge S., Fatma E., Isolation and structural studies on the alkaloids of Galium aparine L. Gazi Universitesi Eczacilik Fakultesi Dergisi, 1988,5(1): 33-40.
    [8] Bilge S., Fatma E., The first isolation of an isoquinoline alkaloid from Galium aparine L. Journal of Faculty of Pharmacy of Gazi University, 1991, 8(1): 13-15.
    [9] Ushakov V. B., Kopylova V. N., Luk'yanchikov M. S., et al. Anthraquinones of Galium articulatum. Khimiya Prirodnykh Soedinenii, 1988, (2): 300.
    [10] Seabra R. M., Silveira J. A., Vasconcelos M. H. Phenolic compounds from Galium aparine and G broteroanum. Plantes Medicinales et Phytotherapie, 1993, 26(1): 49-51.
    
    [11] Mahfouz A. G, Jean R., Flavonic glycosides of Galium cruciatum (Rubiacees). Bulletin des Travaux de la Societe de Pharmacie de Lyon, 1974,18(3): 100-2.
    
    [12] Zhuravlev N. S., Shtefan L. M., Anthraquinones from Galium fagetorum Khimiya Prirodnykh Soedinenii, 1984, (4): 520.
    [13] Zhuravlev N. S., Shtefan L. M., Luchkina T. V., Anthraquinones of Galium fagetorum. II. Khimiya Prirodnykh Soedinenii, 1987, (6): 908.
    [14] Orhan D. Deliorman F. Novel flavanone glucoside with free radical scavenging properties from Galium fissurense. Pharmaceutical Biology (Lisse, Netherlands), 2003,41(7): 475-478.
    [15] Paris R., Tzakou O., Couladi M., et al. Polyphenolic constituents of aerial parts of Galium heldreichii. Plantes Medicinales et Phytotherapie, 1988, 22(3): 203-8.
    [16] Maya M., Nedjalka H., Mincho A., et al. Iridoid glucosides from Galium humifusum, Journal of Biosciences, 1999, 54(7/8): 488-491.
    [17] Maya M., Nedjalka H., Stefan S., et al. Macedonine, a non-glycosidic iridoid from Galium macedonicum. Phytochemistry, 1996,42(4): 1227-1229.
    [18] Tzakou O., Philianos, S., Harvala C, Study on polyphenolic compounds of Galium melanantherum Boiss, Plantes Medicinales et Phytotherapie, 1988,22(4): 261-6.
    [19] Borisov M. I., Flavonoids of Galium mollugo. Rastitel'nye Resursy, 1974, 10(1): 66-71.
    [20] Davini E., Esposito P., Lavarone C, et al. New iridoids from reinvestigation of Galium mollugo,Chem. Biotechnol. Biol. Act. Nat. Prod., 1981, 3(1): 326-31.
    [21] Armandodoriano B., Marcella G., Carlo I., et al. Iridoids. XXV. New iridoid glucosides from Rubiaceae. Gazzetta Chimica Italiana, 1978,108(1-2): 13-16.
    [22] Carlo I., Alina S., Corrado T., et al. Mollugoside, an iridoid glucoside from Galium mollugo.Phytochemistry, 1983,22(1): 175-8.
    [23] Lutz H., Eckhard L., 2-Methoxycarbonyl-3-prenyl-l,4-naphthoquinone, a metabolite related to the biosynthesis of mollugin and anthraquinones in Galium mollugo L. Journal of the Chemical Society, Chemical Communications, 1981, (7): 334-6.
    [24] Hermann S., Ferdinand S., Structure and synthesis of furomollugin from rhizomes of Galium mollugo L. (Rubiaceae). Justus Liebigs Annalen der Chemie, 1976, (10): 1772-6.
    [25] Hermann S., Ferdinand S., Volker S., Mollugin, a new pigment from rhizomes of Galium mollugo L. Justus Liebigs Annalen der Chemie, 1976, (7-8): 1295-306.
    [26] Shinichi U., Masami U., Hiroyuki I., et al. Studies on monoterpene glucosides and related natural products. Part 50. Iridoids from Galium mollugo. Phytochemistry, 1984, 23(11): 2535-7.
    [27] Seabra R. M., Alves E. A., Phenolic compounds in Galium palustre. Revista Portuguesa de Farmacia, 1995,45(3): 121-3.
    [28] Elcin G., Tuna T. O., Ertan T., Iridoids and flavonoids from Galium paschale Forsskal. Marmara Universitesi Eczacilik Dergisi, 1996, 12(2): 81-84.
    [29] Rosa S., Iodice C, Mitova M., et al. Triterpene saponins and iridoid glucosides from Galium rivale. Phytochemistry, 2000, 54(8): 751-756.
    [30] Rosa S., Maya M., Nedyalka H., et al. Rivalosides A and B, two 19-oxo triterpenoid saponins from Galium rivale. Journal of Natural Products, 2000, 63(7): 1012-1014.
    [31] Borisov M. I. Flavonoids of Galium ruthenicum. Khimiya Prirodnykh Soedinenii, 1974, (5): 662-3.
    [32] Emma D. L., Akos K., Peter T, et al. Iridoid and secoiridoid glycosides. Hung. Teljes, 1983, 19 pp.
    [33] Halim A. F., Abd El-Fattah H., El-Gamal A. A., et al. Anthraquinones from Galium sinaicum.Phytochemistry, 1992, 31(1): 355-6.
    [34] El-Gamal A. A., Takeya K., Itokawa H., et al. Anthraquinones from the polar fractions of Galium sinaicum. Phytochemistry, 1996,42(4): 1149-1155.
    [35] El-Gamal A. A., Koichi T, Hideji I., et al. Anthraquinones from Galium sinaicum.Phytochemistry, 1995, 40(1): 245-51.
    [36] El-Gamal A. A., Takeya K., Itokawa H., et al. Lignan bis-glucosides from Galium sinaicum.Phytochemistry, 1997,45(3): 597-600.
    [37] El-Gamal A. A., Halim A. F., Amer M. M., et al. Flavonol glycosides from Galium sinaicum.Alexandria Journal of Pharmaceutical Sciences, 1999,13(1): 41-47.
    [38] Junko K., Tamaki O., Kiyoshi T. Anthraquinones of Galium spurium. Phytochemistry, 1993,33(6): 1540-2.
    [39] Jean R., Hassan M. Flavone glycosides from Galium verum (Rubiaceae). Sciences Naturelles,1972,274(11): 1746-8.
    [40] Boejthe-Horvath K., Hetenyi F., Kocsis A., et al. Iridoid glycosides from Galium verum.Phytochemistry, 1982, 21(12): 2917-19.
    [41] Bojthe-Horvath K., Kocsis A., Parkanyi L., et al. A new iridoid glycoside from Galium verum L. First x-ray analysis of atricyclic iridoid glycoside. Tetrahedron Letters, 1982, 23(9): 965-6.
    [42] Kocsis A., Szabo L., Tetenyi P. Further iridoid glycosides of Galium verum L. Chem.Biotechnol. Biol. Act. Nat. Prod., [Proa], 3rd (1987).
    [43] Borisov M. I. Coumarins of the genus Asperula and Galium. Khimiya Prirodnykh Soedinenii,1974, 10(1): 82.
    [44]Mitova M., Passov S., Handjieva N. Paeoniflorin from Galium aegeum. Fitoterapia, 1999, 70(1): 109-110.
    [45]Banthorpe D. V., White J. J. Novel anthraquinones from undifferentiated cell cultures of Galium verum. Phytochemistry, 1995, 38(1): 107-11.
    [46]Lucyna P. Isolation of phloretic acid from plant material. Polish Journal of Pharmacology and Pharmacy, 1973, 25(5): 465-7.
    [47]Borisov M. I., Kovalev V. N., Zaitsev V. G., Chemical composition of Galium verum. Khimiya Prirodnykh Soedinenii, 1971, 7(4): 529-30.
    [48]Hill R. A new glucoside from madder. Nature, 1934, 134: 628.
    [49]Ionkova I., Alferman A. Use of DNA for detection and isolation of potential anticancer agents from plants. Farmatsiya, 2000, 47(1-2): 10-16.
    [50]张鞍灵,张康健,赵晓明.绿原酸分布、提取与生物活性研究综述.西北林学院学报,1999,14(2):73-82.
    [51]Mantle D., Eddeb F., Picketing A. T. Comparison of relative antioxidant activities of Btitish medicinal plant species in vitro. Journal of Ethnopharmacology, 2000, 72(1,2): 47-51.
    [52]Lindsey K. L., Motsei M. L., Jager A. K. Screening of South African food plants for antioxidant activity. Journal of Food Science, 2002, 67(6): 2129-2131.
    [53]Ahmet M., Zeynep T., Ufuk O., et al. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata tauriea (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp, verum (Rubiaceae), Urtica dioica (Urticaceae). Biological & Pharmaceutical Bulletin, 2004, 27(5): 702-705.
    [54]Ogata M., Hoshi M., Shimotohno K. Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J Am Oil Chem Soc. 1997, 74(5): 557-562.
    [55]Michele C. M. D., Glauco M. M. D. Heparan Sulfate vs Diosmin: Effects on Microcirculation in Chronic Venous. Insufficiency of the Lower Extremities, 1996, 13(3): 178-190.
    [56]Masanod M., Kumiko T., Akiko S., et al. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F. Phytoehemistry, 2002, 60(2): 163-166.
    [57]李令根,徐恒,赵钢,等.康脉注射液结合西药治疗动脉硬化闭塞症92例.中国中西医结合杂志,2003,23(7):555.
    [58]郭伟光,于洪源,李凤男,等.复方蓬子菜提取液离子电导入法治疗血栓闭塞性脉管炎100例临床观察.中国中医药科技,1997,(2):115-116.
    [1]Petler A., Ward R., Lansgray T. The carbon-13 nuclear magnetic resonance spectra of flavonids and related compounds. Journal of the Chemical Society, Perkin Trans. 1976: 2475-2483.
    [2]Agrawal P. K. Carbon-13 NMR of Flavonids. New York: Esevier Scientific Publishing Company, 1989: 213.
    [3]Paris R., Tzakou O., Couladi M., et al. Polyphenolic constituents of aerial parts of Galium heldreichii. Plantes Medicinales et Phytotherapie, 1988, 22(3): 203-8.
    [4]Borisov M.I. Flavonoids of Galium mollugo. Rastitel'nye Resursy, 1974, 10(1): 66-71.
    [5]Seabra R. M., Alves E. A., Phenolic compounds in Galium palustre. Revista Portuguesa de Farmacia, 1995, 45(3): 121-3.
    [6]Sang S.G., Lao A., Wang H.C., et al. Furostanol saponins from Allium tuberosum. Phytochemistry, 1999, 52(8): 1611-1615.
    [7]叶敏,阎玉凝,乔梁,等.中药菟丝子化学成分研究.中国中药杂志.2002,27(2):115-117.
    [8]吴立军主编.天然药物化学(第四版).北京:人民卫生出版社,2003:204.
    [9]Derek V. Banthorpe, John J. Whte, Novel anthraquinone from undifferentiated cell cultures of Galium Verum. Phytochemistry, 1995, 38(1): 107-111.
    [10]Halim A. F., El-Fattah H. A., El-Gamal A. A., et al. Anthraquinones from Galium Sinaicum. Phytochemistry, 1991, 31(1): 355-356.
    [11]杨莉,王云,毕志明,等.束花石斛化学成分研究。中国天然药物,2004,2(5):280-282.
    [12]Thomson R. H., Brew E. J. C. Naturally occurring quinines. ⅩⅨ. Anthraquinones in Hymenodictyon excelsum and Damnacanthus major. Journal of the Chemical Society [Section]C: Organic, 1971, (10): 2001-7.
    [13]Mariko K., Ute F., Mio N., et al. Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry, 1998, 48(1): 107-111.
    [14]徐任生主编.天然产物化学(第二版)。北京:科学出版社,2004:633.
    [15]黄文武,孔德云,杨培明。小木通木脂素成分研究。中国天然药物,2003,1(4):190-202.
    [16]Nishibe S., Tsukamoto H., Hisada S. Effects of O-methylation and O-glucosylationon carbon-13 nuclear magnetic resonance chemical shifts of matairesinol, (+)-pinoresinol and (+)-epipinoresinol. Chem. Pharm. Bull., 1984, 32 (11): 4653-4657.
    [17]Yoshikawa M., Yamaguchi S., Nishisaka H., et al. Chemical Constituents of Chinese Natural Medicine, Modndae Radix, the Driod Roots of Morinda officianlis HOW.: Structures of Morindolide and Morofficinaioside. Chem. Pharm. Bull., 1995,43 (9): 1462-1465.
    [18]Bianco A., Bolli D., Passacantilli P. Aucubigenin-1-O-β-Serotinoside, a New Iridoid Glycoside From Odontites verna ssp. Serotina. J.Nat.Prod., 1981, 44(4): 448-451.
    [19]Bergeron C., Marston A., Antus S., et al. Flavonoids from Pyrola Elliptica. Phytochemistry, 1998, 49(1): 233-236.
    [20]Inouye H., Inouye S., Shimoka a N., et al. Iridoid glucosides from paederia scandens. Tetrahedron lett., 1968, (6): 683-688.
    [21]Inouye H., Okigawa M., Shimokawa N.. Studies on Monoterpene Glucosides.Ⅷ,Artefacts formed during Extraction of Asperuloside and Paederoside. Chem. Pharrm. Bull., 1969, 17 (9): 1949-1954.
    [22]Chritie A. Boros, Frank R. Stermitz Iridoods an updated review part 1. J. Nat. Prod., 1990, 53(5): 1115.
    [23]Bianco A., Guiso M., Iavarone C., et al. Gazz. Chim. Ital. 1978, (108): 13.
    [24]Nakamoto K., Otsuka H., Yamasaki K. 7-O-Acetyl loganic acid from Alangium platanifolium var. Trilobum. Phytochemistry, 1988, 27 (6): 1856-8.
    [25]张卫东,孔德云,李惠庭,等.灯盏花的化学成分研究(Ⅰ).中国医药工业杂志,1998,29 (11):498-500.
    [26]刘茁,董焱,王宁,等.广金钱草的化学成分.沈阳药科大学学报2005,22(6):422-424.
    [27]钱浩,胡巧玲 广枣化学成分的研究.现在应用药学,1992,9(3):212-213.
    [28]Zuo G. Y., He H. P., Hong X., et al. Chemical constituents of Spiraea japonica var. ovalifolia.. Yunnan Zhiwu Yanjiu, 2005, 27(1): 101-106.
    [29]商士斌,陈于澎.岩生越橘化学成分的研究.中国中药杂志,1992,17(4):230-232.
    [30]Talapatra S. K., Sarkar A. C., Talapatra B. Terpenoid and related compounds. Part ⅩⅤ111. Two pentacyclic triterpenes from Rubia cordifolia. Phytochemistry, 1981, 20(8): 1923-7.
    [31]Kim D. H., Han K. M., Chung I. S., et al. Triterpenoids from the flower of Campsis grandiflora K. Schum. as human Acyl-CoA: Cholesterol acyltransferase inhibitors. Archives of Pharmacal Research, 2005, 28(5): 550-556.
    [1]Ahmet M., Zeynep T., Ufuk O., et al. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp, verum (Rubiaceae), Urtica dioica (Urticaceae). Biological & Pharmaceutical Bulletin, 2004, 27(5): 702-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700