GaN基蓝紫光激光器制备的理论与关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽禁带Ⅲ-Ⅴ族GaN基半导体材料在发光二极管、激光器、光电探测器以及高温、高频和大功率电子器件等方面有着诱人的应用前景和巨大的市场需求,是近年来光电子材料领域研究的热门课题。特别是发光波段在400-410nm的GaN基蓝紫光激光器是高密度光存储系统中最有希望的光源,因此制作蓝紫光短波长的激光器一直是人们研究的焦点,但GaN基激光器材料的生长和器件的制备方面还存在一些困难,特别是GaN基材料的P型掺杂、厚且无裂的AlGaN材料生长、高质量的P型GaN欧姆接触等。
     本文针对以上一些问题并结合GaN基激光器的研制工作开展了一系列的相关的研究,比如:一维光场模拟、相关材料的生长和低P型欧姆接触的研究。主要包括以下内容:
     1)采用传输矩阵的方法对GaN基激光器的光场分布进行一维理论模拟,并分析了各层材料及结构对GaN基激光器光场分布的影响。模拟发现:当增加N型限制层Al_xGa_(1-x)N/GaN SLS的厚度和Al组分,或者在N型限制层较薄的情况下适当增加波导层厚度时,都能抑制反波导行为;而在保证质量的情况下,N型接触层的厚度则是越薄越好。值得一提的是,研究中首次发现,当波导层采用InGaN或InGaN/GaN SLS结构时,对光的限制能力将会明显提高,相应地阈值电流密度会降低。以获得大的光场限制因子和低的阈值电流密度为目标,优化出了各层材料参数:分别取N和P型接触层GaN的厚度为2000nm和200nm情况下,N型限制层Al_xGa_(1-x)N/GaN SLS厚度600nm(120对超晶格),Al组分为0.22;N型波导层GaN厚度90nm,有源区In_(0.14)Ga_(0.86)N/GaN量子阱数为2;P型电子阻挡层Al_(0.2)Ga_(0.8)N厚度10nm;P型波导层GaN厚度70nm;P型限制层Al_xGa_(1-x)N/GaN SLS厚度300nm(60对超晶格),Al组分为0.22。
     2)研究了TMAl的流量和生长温度对AlGaN材料的的影响,重点研究如何获得厚且无裂AlGaN材料,本文采用AlGaN/GaN超晶格代替厚的AlGaN的生长,获得厚且无裂的限制层材料。
     3)理论分析InGaN/GaN MQW有源区发射波长与阱和垒的组分、厚度关系,发现通过适当组合阱和垒的In组分与厚度,可以调整发射波长。并通过生长LED结构来优化有源区,改变有源区阱的生长温度,发现其温度变化与发射波长呈线性关系,由此可以通过调节阱温,获得特定发射波长,并且还讨论了变温生长对InGaN/GaN MQW光学特性的影响。
     4)研究了获得p-GaN欧姆接触的低接触电阻方法。
     ①对p-GaN表面预处理方法和合金化的时间、温度、氛围进行了优化。
     ②在对该工艺优化的基础上,对比分析了两种不同材料的欧姆接触,即体材料p-GaN和采用p-InGaN/p-GaN超晶格薄层为顶层的p型材料。研究发现,在p-GaN上直接沉积一层p-InGaN/GaN超晶格薄层材料能够有效降低欧姆接触电阻,并在优化接触工艺为550℃、氧气氛围下合金30分钟的条件下,获得较低的比接触电阻率1.99×10~(-4)Ωcm~2。
     ③对p-InGaN/p-GaN超晶格薄层形成低阻欧姆接触的原因进行了理论分析,首次研究了超晶格薄层中p-GaN层温度变化对欧姆接触的影响,以及超晶格层生长过程中以p-GaN或者p-InGaN作为终止层时对欧姆接触性能的影响。发现在较低温度下生长p-GaN有利于欧姆接触的形成,而值得注意的是,以p-InGaN作为终止层可以获得更低的欧姆接触,针对此结果,文中进行了较为深入的分析。
     ④应用应变平衡理论,首次提出用p-InGaN/p-AlGaN超晶格代替p-InGaN/p-GaN超晶格层做p-GaN的顶层,并获得更低的欧姆接触电阻,其比接触电阻率为:7.27×10~(-5)Ω.cm~2。并从能带和空穴电荷密度两个方面分析接触电阻降低的原因。最后把应变补偿效应的超晶格材料应用在发光二极管(LED)上,相对常规LED而言,获得较低的工作电压。
GaN basedⅢ-Ⅴnitrides as a wide band gap semiconductor has played a key role in the research field of opoelectronic materials and devices, due to its promising appliciations and great potential market in LEDs,short-wavelength laser diodes,ultraviolet detectors, high temperature and high power electronic devices.Especially, GaN based bule-violet laser diodes with wavelength from 400 nm to 410 nm is the most promising light resource for high density storage system, therefore fabricating bule-violet short-weavelength laser is research focus of people.While for GaN base lasers, there are still some difficulties in growthing the related materials and fabricating devices, in particular,p-type GaN doping,crack-free thick AlGaN growth, high quality p-type ohmic contact.
     For exploring the above-mentioned problems, a series of studies were carried out on GaN base laser diodes, including simulation on one-dimension optical field, growth of related materials, investigation on low-resistance ohmic contact to p-GaN.The main contents were as followings:
     1) Through adopting transfer-matrix, one-dimension optical-field of GaN-base laser diodes was simulated, and the effect of each layer on GaN-base laser diodes was analysed. It was found that the thickness and Al component of n-typed AlGaN/GaN superlattice layer(SLS) should be increased in order to avoid the anti-waveguide behavior, If a thicker cladding couldn't be grown, approximate fundamental mode operation could be obtained by increasing the thickness of the GaN waveguide slightly.In the condition of good quality, the thinner the thickness of the n-type contact layer was, the smaller the optical confinement factor was. It is the first time to propose that through adopting InGaN or InGaN/GaN SLS as waveguide layer optical can be confined better, and lower threshold current density can be obtained.When the maximum optical confinement factor and the lowest threshold current density were chosen as object functions, the AlGaN/GaN/InGaN separate confinement heterojunction(SCH)MQW layer structure was optimized.When the thickness of the n-type contact layer GaN was assumed to be 2000nm, the p-type contact layer thickness is 200nm, which can be devided as follows: n-type cladding layer AlGaN/GaN SLS thickness is 600nm (120 pairs SLS), Al composition is 0.22; n-type waveguide layer thickness is 90nm, the number of the quantumwell of active layer is two; the p-type electron blocking layer AlGaN thickness is 10nm; p-type waveguide layer GaN thickness is 70nm;p-type cladding layer AlGaN/GaN SLS thickness is 300nm (60 pairs SLS), Al composition is 0.22.
     2) the effects of The TMA1 flow rate and growth temperature on AlGaN qualtity were investigated.We focused on how to obtain crack-free thick AlGaN material. In the thesis, AlGaN was substituted by AlGaN/GaN SLS, and free-crack thick cladding layer was obtained.
     3) The relationship between the emitting wavelength of InGaN/GaN MQW active region and the composition, the thickness of well and barrier was analyzed theoretically.It was found adjusting the composition and thickness of well and barrier properly, the wavelength needed can be obtained.In experiment, the active region was optimized through growthing LED structure.Through changing the well growth temperature, we found that the relationship between emitting wavelength and well temperature was a linear function, Thus, we can obtain special emitting weavelength through adjusting well temperature.Finally, we discussed the effect of changing well temperature on the optical character of InGaN/GaN MQW.
     4) The methods to obtain low ohmic contact to p-GaN was investigated.
     ①The surface treatment, annealing temperature and time and atmosphere of p-GaN were optimized.
     ②Base on the above mentioned optimization condition, comparing Ni/Au contacting p-GaN with p-InGaN/p-GaN SLS as capping layer directy, we found that Ni/Au contact p-InGaN/p-GaN SLS can produce lower specific contact resistivity.When the temperature was chosen to be 550℃, the time of alloying in oxygen atmosphere was 30 minute, the lower specific contact resistivity(pc) was 1.99×10~(-4)Ωcm~2.
     ③The reason of p-InGaN/p-GaN SLS forming low specific contact resistivity was investigated further.Firstly, the influence of temperature change of p-GaN in p-InGaN/p-GaN SLS on ohmic contact is discussed.It is found that the growth temperature of p-GaN in p-InGaN/p-GaN SLS increased, the contact resistance increased.Moreover, the effect of surface layer of capping p-InGaN/p-GaN superlattices on the contact to p-GaN was discussed. It was found that the specific contact resistance (pc) to p-type InGaN was lower when p-GaN was used as the surface layer.
     ④Using strained-balance theroy, substituteing p-InGaN/p-GaN SLS by p-InGaN/p-AlGaN SLS as p-GaN capping layer was proposed firstly, and lower specific contact resistivity was obtained. the value of P_c was 7.27×10~(-5)Ωcm~2 at room temperature.Furthermore, from the aspects of the band and the hole charge density, we analysed the reason of reduction on the contact resistance.Finally, we obtained low turn-on voltage and series resistance of InGaN-GaN LEDs using strained-compensated and strain-induced piezoelectric p-InGaN/p-AlGaN superlattice as contact layer.
引文
[1] M.I.Nathan,W.P.Dumke,GBurns,et al,Stimulated emission of radiation from GaAs p-n junctions[J].Appl.Phys.Lett,Vol.l:62(1962)
    [2]R.N.Hall,G.E.Fenner,J.D.Kingsley,et al,Coherent Light Emission From GaAs Junctions[J].Phys. Rev.Lett,Vol.9:366(1962)
    [3]W.P.Dumke,Interband,Transitions and MaserAction[J].phys.Rev,Vol.l27:1559(1962)
    [4]H.Kromer,A.proposed class of hetero-junction.injection lasers[J].Proc.IEEE,Vol.51:1573(1963)
    [5]Zh.I.Alferov and R.F.Kazarinov,Semiconductor laser with electrical pumping[J].Author'sCertificate,N181737(1963)
    [6]RS.Rupprecht, LMWoodall,GD.Pettit,efficient visible electroluminescence at 300°k from Gal-xAlxAs p-n junctions grown by liquid-phase epitaxy[J].Appl. Phys.Lett,Vol.11:81(1967)
    [7]I.Hayashi,M.B.Panish,P.W.Foy,et al,Junction lasers which operate continuously at room temperature[J].Appl.Phys.Lett,Vol.l7:109-111(1970)
    [8]William,F.Brinkman,Thomas.L,Koch,Dabid.V,Lang,Daniel.P,Wilt,The laser behind the communication revolution,Bell Labs Technical Journal[J].Vol.150:167(2000)
    [9]H.Kressel,J.K.Butler,F.Z.Hawrylo,et al,Mode.guiding.in.symmetrical (AlGa)As/GaAs heterojunction lasers with very narrow active regions.[J]. RCA Review,Vol.32: 393-401(1971)
    [10]J.W.Matthews,A.E.Blakeslee,Defects in epitaxial multilayers I Misfit dislocations[J].J.Cryst. Growth,Vol.27:118-125(1974)
    [11]D.Dingle,K.L.Shaklee,R.F.Leheny,and R.B.Zrtterstrom, Stimulated Emission and Laser Action in Gallium Nitride [J].Appl.Phys.Lett,Vol.19:5 (1971)
    [12]M.A.Khan,S.Krishnankutty,R.A.Skogman,J.N.Kuznia,and.D.T.Olsom,Vertical-cavity stimulated emission from photopumped InGaN/GaN heterojunctions at room temperature [J].Appl.Phys.Lett,Vol65:520 (1994)
    [13]H.Amano,T.Tanaka,Y.Kunii,K.Kato,S.T.Kim,and.I.Akasaki,Room-temperature violet stimulatedv emission from optically pumped AlGaN/GaInN double heterostructure[J].Appl.Phys.Lett,Vol.64:1377.(1994)
    [14]A.S.Zubrilov,V.I.Nikolaev,D.V.Tsvetkov,V.A.Dmitriev,K.G.Irvine,J.A.Edmond,andC.H.Carter[J].Appl.Phys.Lett.Vol.67:533(1995)
    [15]S.Strite.and.H.Morkoc,GaN,AlN,and.InN.A.review[J].J.Vac.Technol.Vol.10:1237(1992)
    [16]H.Morkoc,S.Strite,GB.Gao,M.E.Lin,B.Sverdlov,and.M.Bums,Large-band-bandgap.SiC,Ⅲ-Ⅴ.nitride,and.Ⅱ-Ⅵ.ZnSe-based.semiconductor.device.technoloies[J].J.Appl.Phys.Vol.76:1363(1994)
    [17]H.Amano,M.Kito,K.Hiramatsu,and I.Akasaki, P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J].Jpn.J.Appl.Phys.Vol.28:2112(1989)
    [18]S.Nakamura and T.Mukai,Thermal annealing.effects on p-type Mg-doped GaN films[J].Jpn.J.Appl.Phys.Vol.31:1457(1992)
    [19]A.A.Khan,J.N.Kuznia,D.T.Olson,M.Blasingame,and.R.Bhattarai,Schottky barrier photodetector based on Mg-doped p-type GaN films[J].Appl.Phys.Lett.Vol.63:455 (1992)
    [20]S.Nakamura,T.Mukai,M.Senoh,and.Nagahama,and.N.Iwasa,InxGaN/InyGaN superlattices grown on GaN films [J]..J.Appl.Phys,Vol.74:3911(1993)
    [21]ENakamura,T Kobayashiet al,Room-ternperature pulsed operation of a GaInN multiple-quantum-well laser diode with optimized well number[J].J.Cryst.Growth, Vol.l89:841(1998)
    [22]T.Asano, K.Yanashima, T.Asatsuma,et al, CW Operation of AlGaInN-GaN Laser Diodes [J].Phys. Stat.Sol.(a),Vol.176:23(1999)
    [23]T.Takeuchi,T.Detchprohm, et al.Fabrication and Characterization of GaN-Based Laser Diode Grown on Thick n-AlGaN Contact Layer [J].Phys. Stat. Sol. (a),Vol.176:31 (1999)
    [24]M.Kuramoto,C.Sasaoka,YHisanaga,Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well Laser Diodes Grown on an n-GaN Substrate with a Backside n-Contact [J].Phys.Stat.Sol.(a),Vol.176:35(1999)
    [25]M.Kneissl, D.P.Bour,N.M.Johnson,et al,Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching[J].Appl. Phys. Lett.Vol.72:1539(1998)
    [26]S.Nakamura,M.Senoh,et al,Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes[J],Jpn.J.Appl.Phys.Vol.34:L74(1996)
    [27]S.Nakamura,M.Senoh,et al,Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes [J],Jpn.J.Appl.Phys.Vol.34:L74(1996)
    [28]S.Nakamura, M. Senoh,et al,InGaN-based multi-quantum-well-structure laser diodes[J],Appl. Phys.Lett.Vol.68:2105(1996)
    [29]S.Nakamura,M.Senoh,et al,Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime [J].Appl.Phys.LettVol.70:868(1997)
    [30]S.Nakamura,M.Swnoh,et al,Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes [J].Appl.Phys.Lett.Vol.69:4056(1996)
    [31]S. Nakamura, M. Senoh,et al.Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours [J],Appl.Phys.LettVol.70:1417(1997)
    [32]S. Nakamura, M. Senoh, et al, Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours[J],Appl.Phys.Lett.Vol.70:1417(1997)
    [33]S.Nakamura,M.Swnoh, Subband emissions of InGaN multi-quantum-well laser diodes under room-temperature continuous wave operation[J].Appl.Phys.Lett.Vol.70:2753(1997)
    [34]S.Nakamura,M.Senoh,et.al,InGaN/GaN/AlGaN Based Laser diodes with Modulation-Doped Strained-Layer Superlattices[J].Jpn.J.Appl.Phys.Part.2,Vol.36:1059(1997)
    [35]A.Usui,H.Sunakawa,A.Sakai,and A.A.Yamaguchi, Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy [J].Jpn.J.AppI.Phys.Part 2,Vol.36:899(1997)
    [36]O.H.Nam, M.D.Bremser,et al, Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy [J]. Appl.Phys.Lett.Vol.71(1997)
    [37]S.Nakamura,M.Senoh,et al,Violet InGaN/GaN/AlGaN-Based Laser Diodes Operable at 50℃ with a Fundamental Transverse Mode[J].J pn.J.Appl.Phys,Vol.38:L226(1999)
    [38]S.Nakamura,M.Senoh,et.al,InGaN/GaN/AlGaN Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices[J].Jpn.J.Appl.Phys.Part.2,Vol.36:1568(1997)
    [39]S.Nakamura,M.Senoh,et al,InGaN/GaN/AlGaN based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate [J].Appl.Phys.Lett.Vol.72:211(1998)
    [40]S.Nakamura,M.Senoh,et al,Continuous-wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates[J].Appl.Phys.Lett.Vol.72:2014(1998)
    [41]S.Nakamura,M.Senoh,et al,Violet InGaN/GaN/AlGaN based laser diodes with an output power of 420 mW[J].Jap.J.Appl.Phys.Part2,Vol.37:627(1998)
    [42]S.Nakamura,M.Senoh,et al,InGaN/GaN/AlGaN based laser diodes with cleaved facets grown on GaN substrates[J].Appl.Phys.Lett.Vol.73:832(1998)
    [43]S.Nakamura, M. Senoh,et al,Violet InGaN/GaN/AlGaN Based Laser Diodes Operable at 50 C. with a Fundamental Transverse Mode[J].Jpn.J.Appl.Phys.Vol.38:L226(1999)
    [44]S.Nakamura,M.Senoh,et al,Blue InGaN based laser diodes with an emission wavelength of 450 nm[J].Appl. Phys.Lett,Vol.76:22 (2000)
    [45]Shin-ichi Nagahama,Naruhito Iwasa,et al,High-Power and Long-Lifetime InGaN Multi-Quantum-Well Laser Diodes Grown on Low-Dislocation-Density GaN Substrates[J].Jpn. J. Appl. Phys. Part 2,Vol.39:647 (2000)
    [46]S.Nagahama,T.Yanamoto,M.Sano et al,Wavelength Dependence of InGaN Laser Diode Characteristics[J].Jpn.J.Appl.Phys.Lett,Vol.40:3075(2001)
    [47]S. Nagahama, T.Yanamoto,et al,Ultraviolet GaN Single Quantum Well Laser Diodes [J].Jpn.J.Appl.Phys,Vol.40:L787 (2001)
    [48]陈良惠,叶晓军,GaN基蓝光半导体激光器的发展[J],物理学和高新技术,Vol.32:302-308(2003)
    [49]S. Kijima,T. Tojyo, S. Goto,et al Novel Techniques for Stabilizing Transverse Mode in AlGaInN Based Laser Diodes[J].Phys.Stat.Sol.(a),Vol.188:55 (2001)
    [50]M.Takeya,T.Tojyo,et al ,High-Power AlGalnN Lasers[J].Phys.Stat.Sol. (a),Vol.192:269(2002)
    [51]S.Goto,M.Ohta,Y.Yabuki,et al, Super high-power AlGalnN based laser diodes with a.single broad-area stripe emitter fabricated on a GaN substrate[J].Phys.Stat.Sol.(a) Vol.200:122 (2003)
    [52]W.S.Wong,M. Kneissl,et al, Continuous wave InGaN multiple-quantum well laser diodes on copper substrates[J].Appl.Phys.Lett,Vol.78:1198(2001)
    [53]M. Kuramoto,C. Sasaoka, et al, Reduction of Internal Loss and Threshold Current in a Laser Diode with a Ridge by Selective Re-Growth[J].Phys.Stat.Sol.(a),Vol.192:329(2002)
    [1]Johnson.W.C,Parsons.J.B,Crew.M.C.Nitrogen compounds of gallium Ⅲ gallic nitride[J] J.Phys.Chem,Vol.2(36):2651(1932)
    [2]Juza.R,H.Hahn,Zeitchrift Ueber die Kristallstrukturen ,von Cu_3N,GaN und InN Metal lamide und Metallnitride[J].Anorganische.Allgemeine.Chemie,Vol.234:282(1938)
    [3]H.G Grimmeiss,H Koelmans,Cross sections for the quenching of lead resonance radiation[J].Phys. Rev.A Vol.l4:264(1959)
    [4]Maruska.H.P,Tietjen.J,The preparation and properties of vapor-deposited single crystal line GaN[J] .Appl.Phys.Lett, Vol.l5:327-329(1969)
    [5]S.Nakamura,Y.Harada,and M.Senoh,Apply,Novel metalorganic chemical vapor deposition system for GaN[J].growth,Apply.Phys.Lett.Vol.58(18):2021-2023(1991)
    [6]Isamu Akasaki,Nitride semiconductors impact on the future world[J].J.Cryst.Growth, Vol.237-239(2):905-911(2002)
    [7]S.Nakamura, and G. Fasol,The blue Laser diode[M].Springer-Verlag, Heidelberg, ed. 1, 1997
    [8]H.Amano,M.Kito,K.Hiramatsu,I.AkasakiP-Type Conduction in Mg-Doped GaN Treated with Low-Energy ElectroaBeam Inadiation[J].Jpn.JAppl,VoL28:L2112(1989)
    [9]I.Akasaki,H.Amano,M.Senoh,and.K.Hiramatsu,J.Lumin.hotoluminescence.of.Mg-Doped P-Type GaN and Electroluminescence of GaN PN-Junction Len[J].Journal of,LuminescencemVol.48-9:666-670(1991)
    [10]S,Nakamura,T.Mukai,M.Senoh,and N.Iwasa, Thermal annealing effects on p-type Mg-doped GaN films[J].Jpn.J Appl.Phys,Part 2,Vol.31:L139-L142(1992)
    [11]C.Wang and R. F. Davis,Deposition of highly resistive undoped and p-type magnesium-doped gallium nitride films by modified gas source molecular beam epitaxy[J].Appl.Phys.Lett,Vol.63(7):990-992(1993)
    [12]M.Rubin,N.Newman,J.S.Chan,T.C.Fu,and J.T.Ross,P-type gallium nitride by reactive ion-beam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg [J].Jpn.J.Appl.Phys.Vol.64:64(1994)
    [13]J.Neugebauer and C.Van,De.Walle,Atomic geometry and electronic structure of native defects in GaN[J].Phys. Rev. B .Vol.50(11):8067-8070(1994)
    [14]S.Nakamura and T.T.Mukai,High-quality InGaN films grown on GaN films [J].Jpn. J. Appl. Phys.,Part 2,Vol.31:L1457-L1459(1992)
    [15]T.S.Zheleva,0.H.Nam,M.D.Bremser, and R. F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures [J].Appl. Phys. Lett. Vol.71:2472(1997)
    [16]Nasser,N.Morgan,Ye.Zhizhen,Xu.Yabou,Evalutation of GaN growth improvement techniques,[J].Materials Science and Engineering B,Vol.90:201-205.(2002)
    [17]D.B.Thomson,T.Gehrke,K.J.Linthicum,P.Rapagopal,and R.F. Davis, Ranges of deposition temperatures applicable for Metalorganic Vapor Phase Epitaxy of GaN films via the technique of pendeo-Epitaxy [C]. MRS Internet J.Nitride Semicond.Res,4S1:G3.37(1999)
    [18]江剑平,半导体激光器[M].北京:电子工业出版社,2001:59-63
    [19]T.D.Visser,H.Blok et al,Modal analysis of a planar waveguide with gain and losses [J].IEEE J.Quant.Electron.Vol.31(10):1803(1995)
    [20]曹庄琪,导波光学中的转移矩阵方法[M].上海交通大学出版社,2000年9月
    [21]S.Hansmann,H.Burkhard,et al,Design and realization of InGaAs/GaAs strained layer DFB quantumwell lasers[J].IEEE J. Lightwave Technol.,Vol.10 (5):620 (1992)
    [22]M.J.Bergmann,Optical-field calculations for lossy multiple -layer Al_xGa_(1-x)N/In_xGa_(1-x) laser diodes[J].J. Appl.Phys.Vol.84:1196 (1998)
    [23]王俊,大功率量子阱激光器设计及直接调制特性研究[J].博士论文,2006:43-46
    [24]郭长志,半导体激光模式理论[M].北京:人民邮电出版社,1989:52-53
    [25]Wemple.S.H,DiDomenico.M,Behavior of the electronic dielectric constant in covalent and ionic matericals[J].Phys.Rev.B,Vol.3(4):1338-1341(1971)
    [26]M.A.Afromowitz,M.Publication Refractive index of Ga_(1-x)Al_xAs[J].Solid.State.Communications,Vol.15:59-62(1974)
    [27]S.Adachi,Refractive,indices of Ⅲ-Ⅴ compounds:key properties of InGaAsPrelevant device design[J].J.Appl.Phys.,Vol.53(8):5863-5867(1982)
    [28]M.Ferhat,J.Furthmuller and F.Bechstedt,Gap bowing and Stokes shift in InGaN alloys: First-principles studies[J].Appl.Phys,Lett,Vol 80:1394-1396 (2002).
    [29]Yen-kuang.Kuo,Wen-Wei.Lin,Jiann.Lin,Band-Gap Bowing Parameter of the In_xGa_(1-x)N Derived From Theoretical Simulation[J].Jpn,J,Appl.phys,Vol.40:3157-3158,(2001)
    [30]T.Takeuchi, H. Takeuchi, et al, Optical Properties of Strained AlGaN and GaInN on GaN[J].Japanese Journal of AppliedPhysics, Part 2 (Letters),Vvol.36:L177-179 (1997)
    [31]S.Yoshida,S.Misawa,and S.Gonda, Properties of AlGaN films prepared by reactive molecular beam epitaxy[J].Journal of Applied Physics,Vol.53:6844 (1982)
    [32]D.K.Wickenden,C.B.Bargeron,et al, High quality self-nucleated AlGaN layers on (0001)sapphire by low-pressure metalorganic chemical vapor eposition[J].Applied Physics Letters, Vol.65:2024 (1994)
    [33]K.Osamura,K.Nakajima,et al, Fundamental Absorption Edge in GaN, InN and Their Alloys [J].Solid StateCommunications, Vol. 11:617(1972)
    [34]Y.Koide,H.Itoh,M.R.H.Khan,et al Energy band-gap bowing parameter in an Al_xGa_(1-x)N alloy[J].Journal of Applied Physics, Vol.61:4540 (1987)
    [35]Umit.Ozgur,Grady.Webb-Wood,and Henry.O.Everitt,Feng.Yun and Hadis.Morkoc,Systematic measurement of AlGaN refractive indices[J]. Appl.Phys,Lett,Vol 79:17,(2001)
    [36]H.Y.Zhang,X.H.He,et al,Waveguide study and refractive indices of GaN: Mg epitaxial film[J].Stall,Optics Letters, Vol.21:1529-1531 (1996)
    [37]M.J.Bergmannand.H.C.Casey,Optical-field.calculations.for.lossy.multiple-layer AlGaN/InGaN laser diodes[J].J. Appl. Phys,Vol.84:1196 (1998)
    [38]Umit.Ozgur,Grady.Webb-Wood,HenryO.Everitt, Feng Yun Hadis Morkoc, Systematic measurement of AlGaN refractive indices [J].Appl.Phys,Lett,Vol79:17 (2001)
    [39] K ressel H , Bu tler J K, Sem iconducto r lasers and hetero junction LEDs [J].New York Academic Press (1977 )
    
    [40]Peter S,Zo ry J,Quan tum w ell lasers, [M].Boston,Academic P ress, 1993:347,429
    [41 ]Shuji.Nakamura,J.Thin.Blue.light.emitting.laser.diodes[M].solid.films , 1999:343-344
    [1]S. Nakamura, T. Mukai, M. Senoh,etal,High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes[J].Appl. Phys. Lett.,Vol.67: 1868(1994)
    [2]M. Senoh,S. Nakamura, S. Nagahama,etal,Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes[J]. Appl.Phys. Lett.,Vol.69:4056(1996)
    [3]Y. F. Wu, D. Kapolnek ,J. P. Ibbetson, et al,Very-High Power Density AlGaN/GaN HEMTs, [J].IEEE Trans. Electron Devices,Vol.48,No3:586-590 (2001)
    [4]Chumbes, E.M.Schremer,A.T.Smart,J.A.,etal,AlGaN/GaN high electron mobility transistors on Si(111)substrates [J].IEEE Trans. Electron. Vol.48,No3:586-590(2001)
    [5]Hong-Mei Wang,Jiang-Ping Zhang,Chang-Qing Chen,etal,AIN/AlGaN superlattice as dislocation filter for low-threading-dislocation thick AlGaN layer onsapphire[J].Appl.Phys.Lett,Vol.81,No.4. :604-606(2002)
    [6]Satoshi Kamiyama, Motoaki Iwaya, Nobuaki Hayashi,etal,Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure[J].J.Crystal.Growth,Vol.223:83-91(2001).
    [7]Takayuki.Kashima,Ryo.Nakamura,.Motoaki.Iwaya.,et al,Microscopic Investigation of Al_(0.43)Ga_(0.57)N on Sapphire[J].Jpn.J.Appl.Phys,Vol.38:L1515-L1518(1999)
    [8]J.P.Zhang,H.M.Wang,W.H.Sun,etal,High-Quality AlGaN Layers over Pulsed Atomic-Layer Epitaxially Grown AIN Templates for Deep Ultraviolet Light-Emitting Diodes[J].J.Electron.Mater,Vol:32,No.5(2003).
    [9]J.R.Creighton,W.G.Breiland,M.E.Coltrin,et al,Gas-phase nanoparticle formation during AlGaN metalorganic vapor phase epitaxy[J]. Appl. Phys. Lett,Vol81:2626 (2002)
    [10]J. Han, J.J. Figiel, M.H. Crawford,et al, OMVPE growth and gas-phase reactions of AlGaN for UV emitters[J]. J. Cryst. Growth Vol:195:No.l:291-296(1998)
    [11]D.G..Zhao,Z.S.Liu,J.Zhu,etal,Effect of Al incorporation on the AlGaN growth by metalorganic chemical vapor deposition[J].Applied Surface Science,Vol.253:2452-2455(2006)
    [12]C.H.CHen, H. Liu, D. Steigerwalda, Study of Parasitic Reactions Between NH_3 and TMGa or TMAl[J]J.Electron.Mater ,Vol25:No.6:1004-1008(1996).
    [13] M. Matloubian, M. Gershenzon, MOCVD epitaxlay growth of single crystal GaN,AlN AND Al_xGa_(1-x)N [J].J.Electron. Mater,Vol.14:No.5:633-644(1985)
    [14]W.Van der Stricht, I. Moerman,P.Demeester, etal,Study of GaN and InGaN films grown by metalorganic chemical vapour deposition[J].J. Cryst. Growth ,Vol.170:344(1994)
    [15]YG Zhou, R Zhang, WP Li,et al,Gas-phase parasitic reactions and Al incorporation efficiency in light radiation heating, low-pressure metal-organic chemical vapor deposition of AlGaN[J]. Materials LettersVol.45:331-335(2000)
    [16]S. Nakamura,In Situ Monitoring of GaN Growth Using Interference Effects[J].Jpn.J.Appl.Phys.Vol.30:1620-1627 (1991)
    [17]C.Stampfl and Chris.G.,Vande.Walle, Doping of AlxGa1-xN[J].Appl. Phys. Lett. Vol.72:459(1998)
    [18]S.Keller,Steven.P.DenBaars,Metalorganic chemical vapor deposition of group #### nitrides-a discussion of critical issues [J].J. Crystal. Growth., Vol.248:479-486(2003)
    [19]K.Itoh,K.Hiramatsu, H.Amano,et al,Preparation of AlxGa1-xN/GaN heterostructure by MOVPE[J].J.Cryst.Growth,Vol.104:533-538 (1990)
    [20]A. Hangleiter, JY Duboz,et al,Metalorganic Vapor Phase Epitaxial Growth of GaInN/GaN hetero structures and quantum wells[J].Mater. Res. Soc.Symp.Proc.Vol.449:3 (1997)
    [21]J. Han, K.W.Waldrip,et al,Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers[J].Appl. Phys. Lett.Vol.78:67(2001)
    [22]J. P. Zhang, M. A. Khan,et al, Pulsed atomic-layer epitaxy of ultrahigh-quality Al_xGa_(1-x)N structures for deep ultraviolet emissions below 230 nm [J].Appl. Phys. Lett.Vol.81:4392 (2002)
    [23]I.-H. Lee, T. G Kim, and Y. Park, Growth of crack-free AlGaN film on high-temperature thin AlN interlayer[J].J.Cryst. Growth Vol.234:305(2002)
    [24]S.Kamiyama,M.Iwaya,et al, Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure[J].J.Cryst. Growth Vol.223:83 (2001)
    [25]H. Amano and I. Akasaki, Critical issues in AlxGa1-xN growth[J].Opt. Mater.Vol.19:219 (2001)
    [26]J.Han,K.E.Waldrip,et al, Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers[J].Appl. Phys. Lett.,Vol.78:67 (2001)
    [27]H.Amano,T.Takeuchi,et al Structural and optical properties of nitride based heterostructure and quantum well structure[J].Mater. Res. Soc. Symp. Proc.Vol.449:1143 (1997)
    [28]张克从,张乐漶主编,《晶体生长科学与技术下册》[M].科学出版社,pp.503(1997).
    [29]张群,原子力显微镜[J].上海计量测试,29卷第五期,pp.38-39(2002)
    [30]毛明华,AllnN材料的生长及其紫外LED的研制[J]厦门大学硕士学位论文,pp7(2008)
    [31]张克从 张乐潓主编《晶体生长科学与技术下册》[M]科学出版社,pp.485.(1997)
    [32]康凌,欧姆接触的研究,[J].厦门大学硕士学位论文,pp24(2004)
    [1]F.Bemardini and V.Fiorentini,Spontaneous versus Piezoelectric Polarization in III-V Nitrides:Conceptual Aspects and Practical Consequences[J].Phys. Status Solidi B Vol.216:391(1999).
    [2]T.Takeuchi,S.Sota,et al,Quantum-Confined Stark Effect due to Piezoelectric Fields in GalnN Strained Quantum Wells[J].Jpn.J.Appl.Phys.,Part2, Vol.36:L382(1997)
    [3]T.Takeuchi,C.Wetzel,et al,Determination of piezoelectric fields in strained GalnN quantum wells using the quantum-confined Stark effect[J].Appl. Phys. Lett. Vol 73:1691(1998)
    [4]P.de.Mierry,J.M.Bethoux,et al,Vertical Cavity InGaN LEDs Grown by MOVPE[J].Phys. Status Solidi a Vol. 192:335(2002)
    [5]C.Y.Lai,T.M.Hsu,et al,Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy [J].J.AppI.Phys.Vol.91:531 (2002)
    [6]E.bernardini,V.Fiorentini,and D.Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides[J].Phys.Rev.B,Vol.56:R10024(1997)
    [7]A.F.Wright,Elastic properties of zinc-blende and wurtzite AlN, GaN,and InN [J].J.Appl. Phys,Vol.82:2833(1997)
    [8]C.Deger,E.Born,et al,Sound velocity of AlxGal-xN thin films obtained by surface acoustic-wave measurements [J].Appl. Phys. Lett.,Vol.72:2400 (1998)
    [9]V.Fiorentini,F.Bernardini,et al,Effects of macroscopic polarization in III-V nitride multiple quantum wells[J].Phys.Rev.B,Vol.60:8849(1999)
    [10]I.Vurgaftman and J.R.Meyer,Band parameters for nitrogen-containing semiconductors[J].J. Appl.Phys.Vol.94:3675 (2003)
    [11]F.Stengel,S.N.Mohammad,H.Morkoc,Theoretical characteristics of AlGaN/GaN modfets[J].J. Appl.Phys.Vol.80:3031 (1996)
    
    [12]M.Zervos,A.Kostopoulos,et al,Investigation into the charge distribution and barrier profile tailoring in AlGaN/GaN double heterostructures by self-consistent Poisson-Schrodinger calculations and capacitance-voltage profiling[J].J.Appl. Phys,Vol.91:4387 (2002) .
    [13]J.Piprek and S. Nakamura,Physics of high-power InGaN/GaN lasers[J].J,IEE Proc.Optoelectron.Vol.149:145(2002)
    [14]A.Kunold and P.Pereyra,Photoluminescence transitions in semiconductor superlattices Theoretical calculations for InGaN blue laser device[J].J. Appl. Phys. Vol.93:5018(2003)
    [15]C. Y. Lai, T. M. Hsu, et al,Direct measurement of piezoelectric field in Ino.23Gao.77N/GaN multiple quantum wells by electrotransmission spectroscopy [J].J. Appl. Phys.Vol.91:531(2002)
    [16]L.Hedin,B.I.Lundqvist,Explicit local exchange-correlation potentials[J].J. Phy. C,Vol. 4:2064 (1971) .
    [17]J.M.Li.Y.W.Lu,D.B.Li,et al,Effect of spontaneous and piezoelectric polarization on intersubband transition in Al_xGa_(1-x)N/GaN quantum well [J].J.Vac.Sci.Technol.B Vol.22:2568(2004).
    [18]Li.J.M,L(?).Y.W,et al,Effect of spontaneous and piezoelectric polarization on intersubband transition in Al_xGa_(1-x)N/GaN quantum well [J].J.Vac.Sci. Technol. B Vol.22:2568(2004)
    [19]M.Shimizu,K.Hiramatsu,and N.Sawaki,Metalorganic vapor phase epitaxy growth of (In_xGa_(1-x)N/GaN)~n layered structures and reduction of indium droplets[J].J. Crystal. Growth.,Vol.145:209(1994)
    [20]D.J.Kim et. al,Effect of growth pressure on indium incorporation during the growth of InGaN by MOCVD[J]. J. Electron Mat.Vol.30:99(2001)
    [21]T.Matsuoka,N.Yoshimoto,et al,Wide-gap semiconductor InGaN and InGaAln grown by MOVPE[J].J.Electron.Mater,Vol.21:157(1992)
    [22]A.Sohmer,Mater.Res.Soc,et al,GaInN/GaN-Heterostructures and Quantum Wells Grown by Metalorganic Vapor-Phase Epitaxy[J].Inter.J.Nit.Semi.Res.,Vol.2:14(1997)
    [23]H.C.Lin,C.K.Shu,et al,Growth temperature effects on In_xGa_(1-x)N films studied by X-ray and photoluminescence [J].J.Crystal. Growth.Vol.189/190:57 (1998)
    [24]F.Scholz,J.Off,A.Sohmer,V.Syganow, MOVPE of GaInN heterostructures and quantum wells[J].J.Crystal Growth.Vol.189/190:8 (1998)
    [25]E.L. Piner, M. K. Behbehani, et al, Impurity dependence on hydrogen and ammonia flow rates in InGaN bulk films[J].Appl.Phys.Lett.Vol.71:2032 (1997)
    [26]L.W.Wu,S.J.Chang,et al,Influence of Si-doping on the characteristics of InGaN/GaN multiplequantum-well blue light emitting diodes[J]. IEEE J. Quantum Electronics, Vol.38:446 (2002)
    [27]M. Y. Ryu, P. W. Yu,et al,Effects of Si-doping in the barriers on the recombination dynamics in In_(0.15)Ga_(0.85)N/In_(0.015)Ga_(0.985)N quantum wells[J].J.Appl. Phys.Vol.89:634 (2001)
    [28]T.Wang,H.Saeki,J.Bai,et al, Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures[J].Appl. Phys. Lett. Vol.76:1737 (2000)
    [29]Y.C.Cheng,S.W.Feng,et al,antum dot formation in InGaN/GaN quantum well structures with silicon doping and the mechanisms for radiative efficiency improvement[J].Phys. Stat.Sol. (c) Vol.0:1093 (2003)
    [30]N.A.Shapiro,P.Perlin,et al,MRS Internet Journal Research Nitride Semiconductor [J].MRS Internet J.Nitride Semicond. Res.Vol.5:1(2000)
    [31]T.L.Tsai,C.S.Chang,et al,Effect of Barrier Thickness and Barrier Doping on the Properties of InGaN/GaN Multiple-Quantum-Well Structure Light Emitting Diode[J].Phys.Stat.Sol.(c) Vol.0:263(2002)
    [32]H.K.Cho, J. Y. Lee,et al,Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells[J].Appl. Phys. Lett.Vol.79:2594 (2001)
    [33]k. Jacobs, B. V. Daele,et al,Effect of growth interrupt and growth rate on MOVPE-grown InGaN/GaN MQW structures[J].J. Cryst. Growth Vol.248:498 (2003)
    [34]H.W.Shim,R.J.Choi,et al,Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes[J].Appl. Phys. Lett.Vol.81:3552 (2002)
    [35]H.Kollmer, Jin Seo Im,et al,Intra- and interwell transitions in GaInN/GaN multiple quantum wells with built-in piezoelectric fields[J].Appl.Phys.Lett.Vol.74:82(1999)
    [36]江风益,李述体,王立,彭学新,熊传兵.金属有机化学气相沉积生长InGaN薄膜的研究[J].光学学报,Vol.21(12):1463-1466(2001)
    [37]Lin HC,Shu C K,OuJ,et al,Growth temperature effects on In_xGa_(1-x)N films studied by X-ray and photoluminescence[J].J.Crystal.Growth.Vol.l89/190:57-60(1998)
    [38]S. Nakamura,and G. Fasol,The blue laser diode[M]. Springer, Berlin, 93 (1997)
    [39]Ogino.T, Mechanism of yellow luminescence in GaN[J]. Jpn J Appl Phys Vol.19:2395(1980).
    [40]Polyakov.A.Y,et al,On the origin of electrically active defects in AlGaN alloys grown by organometallic vapor phase epitaxy[J].J Appl Phys,Vol.80:6349(1996)
    [41]Niebuhr.R, Basic studies of gallium nitride growth on sapphire by metalorganie chemical vapor deposition and optical properties of deposited layers[J].J.Electron Mater,Vol.24:1531(1995)
    [42]Jones.R,Elsner.J, Haugk.M, et al, Interaction of Oxygen with Threading Dislocations in GaN[J].J.Phys State Sol,Vol.171:167(1999)
    [43]Li,X,Bohn.P.W,Coleman.J, Impurity states are the origin of yellow-band emission in GaN structures produced by epitaxial lateral overgrowth[J].J.Appl Phys Lett,Vol.75:4049(1999)
    [44]Yang.S.H,Ahn.S.H,Jeong.M.S,et al, Structural and Optical Properties of GaN Films Grown by the Direct Reaction of Ga and NH_3 in a CVD Reactor[J].J.Sol Stat Electro,Vol.44:1655(2000)
    [45]隋妍萍,于广辉,孟胜,雷本亮,王笑龙,王新中,齐鸣,射频等离子体辅助MBE生长GaN及Mg掺杂的光致发光[J].发光学报Vol.27(6):971-975(2006)
    [46]Sasaki.T,Zembutsu.S, Substrate-orientation dependence of GaN single-crystal films grown by metalorganic vapor-phase epitaxy[J].J.Appl.Phys,Vol.61(7):1(1987)
    [47]Schon.O,Schineller.B,Heuken.M,Becard.R, Comparison of hydrogen and nitrogen as carrier gas for MOVPE growth of GaN[J],J.Crystal.Growth,vol.189/190:335,(1998)
    [48]Van.Der.Stricht.W,Moerman.I,Demeester.P,MOVPE growth optimization of high quality InGaN films[J].MRS Internet Journal of Nitride Semiconductor Research Vol.2,Article 16(1996)
    [49]Li Shuti,Wang Li,Xing Yong,et al,Study of the blue luminescence in no doped GaN at room temperature [J].Chinese Journal of Luminescence(发光学报),Vol.21(1):29-32(in Chinese)(2000)
    [50]Li.Shuti,Wang.Li,Xing.Yong,et al,Study of the blue luminescence in no doped GaN at room temperature[J].Chinese Journal of Luminescence,Vol.21(1):29-32(in Chinese) (2000)
    [51]K.Kazlauskas, G. Tamulaitis,et al,Exciton hopping in In_({x})Ga_({1-x})N multiple quantum wells[J].Physical Review B,Vol.71:085306(2005)
    [52]H.C.Yang, P. F. Kuo, T. Y. Lin, and Y. F. Chen,Mechanism of luminescence in InGaN/GaN multiple quantum wells[J].Appl.Phys.Lett.Vol.76:3712(2000)
    [1]S.Nakamura,M.Senoh,N.Iwasa,S.Nagahama,T.Yamada,andT.Mukai,Superbright Green InGaN Single Quantum Well-Structure Light-Emitting Diodes[J]. Jpn. J. Appl.Phys.,Part2,Vol.34: 1332-1335(1995)
    [2]T.Mukai, D. Morita, and S. Nakamura, High-power UV InGaN/AlGaN double-heterostructure LEDs[J].J.Cryst. Growth Vol.189/190:778-781(1998)
    [3]W. Yang, T. Nohava, S. Krishnankutty, R. Torreano, S. Mcpherson, and H. Marsh, High gain GaN/AlGaN heterojunction phototransistor[J].T Appl. Phys. Lett.,Vol.73(7): 978-980(1998)
    [4]M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, Metal semiconductor field effect transistor based on single crystal GaN[J].Appl. Phys. Lett.,Vol.62(15): 1786-1787(1993)
    [5]Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra,High Al-content AlGaN/GaN MODFETs for ultrahigh performance[J].T,IEEE Electron Device Lett,Vol.19:50-53(1998)
    [6]M. E. Lin, Z. Ma, F. Y. Huang, et al,Low Resistance Ohmic Contacts On Wide Band-gap GaN[J]. Appl.Phys. Lett.Vol.64(8): 1003-1005(1994)
    [7]Y.F.Wu,W.N.Jiang,B.P.Keller,Low Resistance Ohmic Contact To n-GaN With A Separate Layer Method[J].Solid State Electronics,Vol.44(2):165-168(1997)
    [8]A.Motayed,R.C.Wood,O.S.Diouf et al,Electrical,thermal,and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-typeGaN[J].J.Appl.Phys,Vol.93(2):1087-1094(2003)
    [9]Z. fan, S. N.Mohammad, W. Kim,et al, Very low resistance multilayer Ohmic contact to n - GaN [J].Appl. Phys. Lett.Vol.68(12):1672-1674(1996)
    [10]J.Burm,K.Chu,W.A.Davis et al,Ultra-low resistive ohmic contacts on n-GaN using Si implantan'on[J].Appl.Phys.Lett.Vol.70(4):467-469(1997)
    [11]Ho J K,Jong C S, Huang C N et al, Low-resistance ohmic contacts to p-type GaN[J].Appl. Phys. Lett Vol.86 (8):4491-4497(1999)
    [12] Suzuki M, Kawakami T, Arai T et al, Low-resistance Ta/Ti Ohmic contacts for p-type GaN [J].Appl.Phys. Lett.,Vol.74 (2):275-277,(1999);
    [13]Jang J S, Park S J, Seong T Y,et al., Low resistance and thermally stable Pt/Ru Ohmic contacts to p-type GaN[J].Physica Status Solidi (A) Applied Research,Vol.180.(1):103-107(2000)
    [14]Z.Z.Chen,Z.X.Qin,YZ.Tong,et al,Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient[J].Materials Science and Engineering B,Vol.100:199-2003(2003)
    [15]Liu, S.H. Hwang, J.M.,Hwang,et al,Ohmic contact to p-type GaN using a novel Ni/Cu scheme[J].Applied Surface Science, Vol.212-213:907-911(2003)
    [16]Sands.T,Marshall.E.D,Wang.L.C.Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phase [J].J. Mater. Res.Vol.3(5):914-921(1988)
    [17]Kumakura K,Makimoto T,and Kobayashi N.Kobayashi,Low-resistance nonalloyed ohmic contact to p-type GaN using strained InGaN contact layer [J].Appl. Phys. Lett.Vol.79(16):2588-2590(2001)
    [18]刘恩科,朱秉升,罗晋生等 半导体物理学[M]第八章,北京,国防工业出版社,2004年
    [19]施敏著,赵鹤鸣等译,半导体器件物理与工艺(第二版)(M),苏州大学出版社出版发行,2002年12月第一版,226-227
    [20]H. Berger,Models for contacts to planar devices[J].Solid-State Electron.Vol.15(2):145-158(1972)
    [21]G. S. Marlow and M. B. Das, The effects of contact size and non-zero metal resistance in the determination of specific contact resistance[J].Solid-State Electron.vol.5(2):91-94(1982)
    [22]Reeves G K.Specific contact resistance using a circular transmission line model[J].Solid State Electronics, Vol.23:487(1980)
    [23]田洪涛,激光诱导下GaN的p型掺杂和型欧姆接触的研究[J],厦门大学博士论文,2003年9月
    [24]J.K.Kim, J.L. Lee, et al,Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment[J].Appl. Phys. Lett.Vol.73:2953(1998)
    [25]J.S. Jang, S.J. Park, T.Y.Seong, Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment[J].J.Vac.Sci.Technol. B,Vol.17:2667 (1999)
    [26]J.S. Jang, I.S. Chang,et al.Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN[J].Appl Phys Lett,Vol.74:70(1999)
    [27]V. Rajagopal Reddy, et al,Electrical and structural properties of low-resistance Pt/Ag/Au ohmic contacts to p-type GaN[J].Soli.Sta.Elec,Vol.49:1213(2005)
    [28]J.K.Ho,C.S.Jong,et al.Low-resistance ohmic contacts to p-type GaN[J].Appl Phys Lett ,Vol.74:1275(1999).
    [29]Y. Koide,T. Maeda, et al,Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN[J].J. Electron. Mater.Vol.28:341 (1999)
    [30]A.P.Zhang,BLuo, et al,Role of annealing conditions and surface treatment on ohmic contacts to p-GaN and p-Al0.1Ga0.9N/GaN superlattices[J].Appl. Phys. Lett.Vol.79:3636(2001)
    [31]M.E. Lin, F.Y. Huang,H. Morkoc, Nonalloyed ohmic contacts on GaN using InN/GaN short-period superlattices [J].Appl. Phys. Lett.Vol.64:2557 (1994)
    [32]K.Kumakura, T. Makimoto, N. Kobayashi, Ohmic Contact to p-GaN Using a Strained InGaN Contact Layer and Its Thermal Stability[J].Jpn. J. Appl.Phys. Vol.42:2254(2003)
    [33]C.H.Kuo,J.K.Shen, G.C. Chi, Y.L. Huang, T.W.Yeh,Low-resistance Ni/Au ohmic contact to Mg-doped of Al_(0.15)Ga_(0.85)/GaN superlattices[J].Soli.Sta.Elec.Vol.45:717(2001)
    [34]Ja.Soon.Jang,Seong.Jin.Sohn,Dong.wan.Kim,Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice[J].Semicon.Sci.Technol.Vol.21:L37(2006)
    [35]Ishikawa.H,Kobayashi.S,Koide.K,et al,Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces [J]. J. Appl. Phys. Vol.81(3): 1315-1322.(1997)
    [36]Jong K.K., Ho W. J., Changmin J.,et al., Reduction of ohmic contact resistivity p-type GaN by surface treatment[J].J.Curren Appl. Phys.Vol.1:385-388(2001)
    [37]J.L.Lee, J. K. Kim, J. W. Lee, et. al, Effect of surface treatment by KOH solution on ohmic contact formation of p-type GaN[J].J.Solid-State Electronics Vol.43:435-438(1999)
    [38]J.K.Sheu, Y.k.su, G.C.Chi,et.al, High-transparency Ni/Au ohmic contact to p-type GaN[J]. J. Appl.Phys.Lett.Vol.74(16):2340-2342(1999)
    [39]Y. Koide, T. Maeda, T. Kawakami,et.al, Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN[J].J.Electron.Mater. Vol.28:341(1999)
    [40]J-K.Ho,C-S.Jong, C-N.Huang,et al,Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN[J].J.Appl.Phys.Vol.86:3826(1999).
    [41]Y.-L. Li, E.F.Schubert, et al, Low-resistance ohmic contacts to p-type GaN[J].Appl.Phys.Lett.Vol.76:2728 (2000)
    [42]T.Gessmann, Y.-L. Li,et al, Ohmic contacts to p-type GaN mediated by polarization fields in thin InGaN capping layers[J].Appl. Phys. Lett.Vol.80:986 (2002)
    [43]O Ambacher,J Majewski,et atl,Pyroelectric properties of Al(In)GaN/GaN hetero-and quantum well structures[J].J. Phys.Condens.Matter Vol.14:3399 (2002)
    [44]N.J.Ekins-Daukes,K.Kawaguchi,J.Zhang, Strain-Balanced Criteria for Multiple Quantum Well Structures and Its Signature in X-ray Rocking Curves[J].Crystal Growth and design,Vol.2,No.4:287-292(2002)
    [45]R.Czernecki, S. Krukowski, et al, Strain-compensated AlGaNGaN/InGaN cladding layers in homoepitaxial nitride devices [J].Appl. Phys. Lett.Vol.91:231914(2007)
    [46]Wu M F,Zhou S Q,Yao S D,Zhao Q and Vantomme A,High precision determination of the elastic strain of InGaN/GaN multiple quantum wells[J].J.Vac.Sci.Technol, Vol.22:921(2004)
    [47]Chen D J,Shen B ,Bi ZX ,et al,GaN_(1-x)P_x ternary alloys with high P composition grown by metal-organic chemical vapor deposition[J]. Journal of Crystal Growth, Vol 255,Issues 1-2:52-56(2003)
    [48]Perlin P,Jauberthie-Carillon C,Itie J P,et al,Raman scatteringand x-ray-absorption spectroscopy in gallium nitride under high pressure[J].Phys Rev.B 45:83(1992)
    [49]Kozawa T, Kachi T,Kano H,Nagase H , Koide N ,Manabe K,Thermal stress in GaN epitaxial layers grown on sapphire substrates [J].J .Appl.Phys,Vol.77:4389(1995)
    [50]Demangeot F,Frandon J,Renucci M A,Briot O,Gil B,Aulombard R L,Raman determination of phonon deformation potentials in     [51]Correia M R , Pereira S ,Pereira E,et al, Raman study of the A (LO) phonon in relaxed and pseudomorphic InGaN epilayers[J].Applied physics letters,Vol.83:4761(2003)
    [52]王瑞敏,陈光德,竹有章,六方相InGaN外延膜的显微Raman散射[J].物理学报,Vol.55,No.2:914-919(2006)
    [53]郑清红,尹以安,刘宝林,InGaN/AlGaN超晶格降低p-GaN欧姆接触[J].半导体光电,31期(2009)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700