铅与NaCl胁迫对八仙花抗性生理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以八仙花为试材,研究了八仙花在逆境胁迫下的生理生化特性。有如下几方面:
     1.铅(Pb)胁迫对八仙花生理指标的影响
     以1/2Hoagland营养液为基质的水培法,研究了铅(Pb)胁迫对八仙花生理的影响,Pb(NO_3)_2处理浓度分别为(CK,20,50,100和200mg/L)测定了叶绿素(Chlorophyll,chl)含量,类胡萝卜素(Carotenoid,CAR)含量,脯氨酸(Proline,Pro),丙二醛(Malonaldehyde,MDA)含量,过氧化物酶(Peroxydase,POD)含量,可溶性糖(Soluble sugar)含量。结果表明:
     (1)在Pb胁迫下,八仙花叶片叶绿素含量随Pb处理浓度的增加而降低,在Pb20mg/L处理下高于CK,Pb浓度为50、100、200mg/L处理,叶绿素浓度均高于CK。类胡萝卜素的变化趋势与叶绿素相似。
     (2)MDA含量的变化趋势,随Pb浓度的升高而增加。在Pb200mg/L处理MDA含量为最强。其顺序为:Pb200mg/L>Pb100mg/L>Pb50mg/L>Pb20mg/L>CK。
     (3)在Pb50mg/L处理POD含量为最强。其大小顺序为:Pb50mg/L>Pb20mg/L>Pb100mg/L>Pb200>CK。
     (4)在Pb200mg/L处理脯氨酸含量为最强。脯氨酸含量在Pb处理其顺序为:Pb200 mg/L>Pb100mg/L>Pb50mg/L>Pb20mg/L>CK。
     (5)在Pb100mg/L处理可溶性糖含量为最强。可溶性糖含量在Pb处理其顺序为:Pb100mg/L>Pb200 mg/L>Pb50mg/L>Pb20mg/L>CK。
     2.盐(NaCl)胁迫对八仙花生理指标的影响
     以1/2Hoagland营养液为基质的水培法,研究了NaCl胁迫对八仙花生理生化特性的影响,NaCl浓度分别为(CK,0.01 g/L,0.05 g/L,0.1 g/L,0.5g/L)测定了叶绿素(Chlorophyll,chl)含量、类胡萝卜素(Carotenoid,CAR)含量、丙二醛(Malonal dehyde,MDA)含量、过氧化物酶(Peroxydase,POD)含量、过氧化氢酶(Catalase,CAT)和超氧化物歧化酶(Superoxidedismutase,SOD)。结果如下:
     (1)随着NaCl浓度的增加,叶绿素含量随NaCl处理浓度的增加而降低,在0.01g/L、0.05 g/L、0.1 g/L和0.5 g/L处理均低于CK,类胡萝卜素的变化趋势与叶绿素相似。
     (2)MDA含量的变化趋势为,NaCl0.5g/L处理MDA含量为最高,其大小顺序为;NaCl0.50g/L>NaCl0.10g/L>NaCl0.05g/L>0.01g/L>CK。
     (3)POD含量的变化先下降后上升的趋势,在0.5g/L处理POD含量为最强。其大小顺序为:NaCl0.50g/L>NaCl0.10g/L>NaCl0.05g/L>0.01g/L>CK。
     (4)SOD含量随NaCl浓度的升高而升高,在0.5g/L处理SOD含量为最强。其顺序为:NaCl0.50g/L>NaCl0.10g/L>NaCl0.05g/L>0.01g/L>CK。
     (5)CAT含量对NaCl胁迫反应敏感,在0.5g/L处理CAT含量为最强。其顺序为:NaCl0.10g/L>NaCl0.05g/L>NaCl0.50g/L>0.01g/L>CK。
     3、铅、盐复合胁迫对八仙花生理特性的影响
     以1/2Hoagland营养液为基质的水培法,研究了Pb和NaCl复合对八仙花生理的影响,各处理分别为:(CK、处理1:NaCl0.1g/L,处理2:Pb100 mg/L,处理3:NaCl+Pb。)测定了相对生物量、叶绿素(Chlorophyll,chl)含量、类胡萝卜素(Carotenoid,CAR)含量、丙二醛(Malonal dehyde,MDA)含量、可溶性糖(Soluble sugar)含量。叶、根测定了植株体内Pb元素含量。结果如下:
     (1)植株相对增长量大小顺序为:CK>NaCl0.1g/L>Pb100mg/L>NaCl+Pb。
     (2)MDA含量的变化趋势为:Pb100mg/L>NaCl0.1g/l>NaCl+Pb>CK。
     (3)可溶性糖含量的变化与MDA的含量变化相似,其大小顺序为:Pb100g/L>NaCl0.1g/l>NaCl+Pb>CK。
     (4)在铅盐复合胁迫下八仙花对Pb元素含量的吸收影响不同,Pb100mg/L处理,八仙花根系中铅含量达到2000μg/g。
     4、铅尾矿砂为栽培基质对八仙花生长及生理特性的影响
     以铅尾矿砂与田土配比基质处理八仙花,测定了,细胞膜透性(Membranepermeability)、脯氨酸(Proline)、可溶性糖(Soluble sugar)含量。测定了八仙花植株体内Pb等矿质含量。结果如下:
     (1)细胞膜透性的大小顺序为:铅尾矿砂>2/3铅+1/3田>1/2铅+1/2田>1/3铅+2/3田>CK。
     (2)脯氨酸与可溶性糖变化趋势与细胞膜透性相似。
     铅尾矿砂处理,对八仙花的生长产生明显影响,其中根受铅尾矿砂处理的胁迫程度最高。土壤中过量铅明显增加了八仙各器官中铅的含量,并主要积累在根部。
     植株体铅含量的变化是随着栽培基质中Pb含量的增加,根和叶中铅含量也随之增加,根内pb含量高于叶内Pb含量。根和叶内Pb含量均以处理2(1/2铅尾矿+1/2田土)为最高,根中是1602.25(μg/g),叶中是384.00(μg/g)。
     环境的植物修复具有效率高、成本低及有效性强的优势,可被广泛接受和采纳。可以预见,植物修复在防治和治理土壤重金属污染与环境修复中的作用将日益受到关注,八仙花的应用与产业化开发前景十分广阔。
The research were about Physiological and Biochemical Properties of hydrangea under the Pb and NaCI intimidate,The main results as follows: 1.Effects of different Pb concentrations on physiological and biochemical index of H.macrophylla
     Effects of LEAD(Pb) intimidation on physical signs of hydrangea were studies by hydroponic culture based in Hoagland nutrient solution.
     The hydroponic culture with different concentrations of Pb(NO_(3))_(2) were(CK, 20,50,100,200 mg/L),then measured the content of Chlorophyll,chl,Carotenoid, CAR,Proline,Malonaldehyde,MDA,Peroxydase,POD,Soluble sugar.
     The results show that
     (1) Under the Pb treatment,chlorophyll content of Hydrangea decreased as the Pb concentration increased.Chlorophyll concentration were lower than CK at 20mg/L Pb treatment also at 50,100,200 mg/L Pb treatment,The variety of Carotenoids was similar.
     (2) The content of MDA elevated as the Pb concentrations increased.The content of MDA was highest at 200mg/L Pb treatment.The order was:Pb200 mg/L > Pb 100mg/L>Pb50mg/L> Pb20mg/L> CK.
     (3) The content of POD reached peak at 50mg/L Pb treatment.The order was: Pb50mg/L> Pb20mg/L> Pbl00mg/L> Pb200 mg/L > CK.
     (4) The content of PRO was highest at 200mg/L Pb treatment.Its order was: Pb200> mg/L> Pb 100mg/L> Pb50mg/L> Pb20mg/L> CK.
     (5) The content of soluble sugar achieved highest at 100mg/L Pb treatment,its order was:Pb100mg/L> Pb200> mg/L> Pb50mg/L> Pb20mg/L> CK. 2.The effects of different NaCI concentrations on physiological and biochemical signs of hydrangea
     Effects of NaCI intimidation on physical signs of hydrangea were studies by hydroponic culture based in 1/2Hoagland nutrient solution.
     The hydroponic culture with different concentrations of NaCI were(CK,20 mg/L,50 mg/L,100 mg/L and 200 mg/L) respectively,then measured the content of Chlorophyll,Carotenoid,Malonal dehyde,Peroxydase,Catalase,Superoxidedismutase. The results are as follows:
     (1) As the NaCIconcentration increased,The content of chlorophyll decreased contrary and it was lower than CK at these concentration of NaCI:0.01g/L,0.05g/L, 0.1g/L,0.5g/L.arotenoids has similar variety trends.
     (2) The content of MDA increased with NaCI concentration increasing.At the 0.5g/L NaCI treatment,the content of MDA was the strongest.Following order was: NaC10.50g/L> NaC10.10g/L> NaC10.05g/L>0.01g/L> CK
     (3) The content of POD has upward trend after the first decline,The content of POD was the strongest at the 0.5g/L treatment,its order was:NaC10.50g/L> NaC10.10g/L> NaC10.05g/L> 0.01g/L> CK.
     (4) The content of SOD increased with the increasing of NaCI concentration,at the 0.5g/L NaCI treatment,The content of SOD was the strongest.Followed order was: NaC10.50g/L> NaC10.10g/L> NaC10.05g/L> 0.01g/L> CK.
     (5)The content of CAT was sensitive to the NaCI intimidation,the content of CAT was the strongest at the 0.5g/L NaCI treatment.The order was:NaC10.10g/L> NaC10.05g/L> NaCI0.50g/L> 0.01g/L> CK. 3.The effects of Pb and NaCI and their compound contamination on physiological and biochemical properties of hydrangea
     Effects of LEAD(Pb) and NaCI compound intimidation on physical signs of hydrangea were studies by hydroponic culture based in 1/2 Hoagland nutrient solution. All treatment were:(CK,treatment 1:NaC10.1g/L,treatment 2:Pb100 mg/L,treatment 3:NaCI + Pb.) this part determinated contents of relative biomass,chlorophyll, carotenoids,malondialdehyde,soluble sugar.Plant leaves was measured in Pb, elements' content.The results are as follows:
     (1) Pb-NaCI compound contamination affected the relative growth rate in plants. The order was:CK> NaC10.1g/L> Pb100mg/L> NaCI+Pb.
     (2) The content of MDA changed as follow:Pb100mg/L>NaC10.1g/L> NaCI+ Pb>CK.
     (3) Changes in the content of soluble sugar were similar to content of MDA,the order was:Pb100g/L> NaC10.1 g/L> NaC1+Pb>CK.
     (4) Hydrangea has different absorption ability to Pb and other elements under Pb -NaCI compound contamination,at 100mg/L Pb treatment,the content of Pb reaches 2000μg/g in Hydrangea's root,Reached the national standards for lead accumulation. 4.The effects of lead mine grit as a culture medium on the growth and physiological & biochemical properties of hydrangea
     Combined soil with Lead mine grit as a culture medium,experiments maesured the content of relative biomass,membrane permeability,proline and soluble sugar. Mineral contents such as Pb also were determined in Hydrangea plant.The results are as follows:
     (1) different treatments has a significant impact on on relative biomass,the order was:pure soil>1/3 Pb+2/3 soil>1/2 Lead+1/2 soil>soil+Hoagland nutrient solution>Lead mine.
     (2) the order of Membrane permeability was:Lead mine.>soil+Hoagland nutrient solution>1/2 Pb+1/2 soil>1/3 Pb+2/3 soil>pure soil.
     (3) The trends of proline and soluble sugar were similar to membrane permeability.
     The growth of Hydrangea was effected through Lead Mine grit treatment obviously, while roots suffers greatest intimidation.Excessive level of Pb in soil significantly increased the content of Pb in Hydrangea's various organs,and mainly accumulated in the roots.
     In the soil Cultivation,the content of Pb reached 1602.25μg/g in roots was much higher than 384.00μg/g in leaves,the content of Pb in roots was higher than leaves,they both reached the highest in treatments 2(1/2 lead mine grit+1/2 soil).
     The variance analysis showed that treatment differences reached significance level.
     Using plants to Repair the environment has good superiority like high efficiency, low cost,strong effectiveness and widely accepting and adopting.It is foreseeable that phytoremediation will be increasingly concerned in the Prevention and control of soil heavy metals pollution and environmental restoration.The application of hydrangeas and industrialization development have broad prospects.
引文
[1]黄铭洪.环境污染与生态恢复[M].北京,科学出版社,2003:27-41.
    [2]刘衍君,吴仁海.人类活动对土壤环境的影响及对策[J].新疆环境保护,2002,24(3):32-35.
    [3]甘宗祁,王林云等.茶叶铅污染及控制措施研究[J].中国食品卫生杂志,2001,13(2):37-38.
    [4]杨金燕,杨肖娥,何振立.土壤中铅的来源及生物有效性[J].土壤通报2005,36(5):765-772.
    [5]韩玉林.鸢尾属(IrisL.)植物铅积累、耐性及污染土壤修复潜力研究[D].南京:南京农业大学,2007.
    [6]白瑞琴,韩蕾,李燕,孙振元,樊明寿.重金属铅对蜀葵、二月蓝种子萌发和幼苗生长的毒害效应研究.内蒙古农业大学学报:自然科学版.2009(1):1-5.
    [7]杨丹慧.重金属对高等植物光合膜结构和功能的影响[J].植物学通报,1991,8(3):26-29.
    [8]窦争霞,胡荣梅.土壤中的铅对三种蔬菜的影响[J].环境科学学报,1987,7(6):367-371.
    [9]张娇,余涛,杨忠芳,冯海艳,张建,张明.湖南洞庭湖地区土壤—作物系统铅含量及其影响因素[J].地脂通报,2007,26(7):886-891.
    [10]童建华,梁艳萍,刘素纯,赵文魁.水稻铅污染研究进展.亚热带植物科学:2009(2):74-78.
    [11]祝鹏飞,宁平,曾向东,王海娟,赵睿,贺彬,刘晓海.有色冶炼污染区土壤污染及重金属超积累植物的研究,安全与环境工程2006,13(1):48-51.
    [12]吴双桃,吴晓芙,胡日利等铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境.2004,13(2):156-167.
    [13]何金清.铅污染对儿童健康影响的研究.中国妇幼保健,2006,21(6):788-789.
    [14]徐进,徐立红.环境铅污染及其毒性的研究进展[J].环境与职业医学,2005,22(3):271-274.
    [15]窦争霞,胡荣梅.土壤中的铅对三种蔬菜的影响[J].环境科学学报,1987,7(6):367-371.
    [16]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112.
    [17]杜彩莲.铅处理对小麦种子萌发和幼苗生长的影响[J].潍坊学院学报,2007,7(4):87-89.
    [18]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268.
    [19]李荣春.Cd,Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J]植物生态学报,2000,24(2):238-242.
    [20]黄雅琴,杨在中.蔬菜对重金属的吸收累积特点[J].内蒙古大学学报(自然科学版),1995,26(5):608-615.
    [21]周鸿,曲仲湘,王焕校.铅对几种农作物的影响及迁移积累初探[J].环境科学学报,1983,3(3):222-233.
    [22]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响.草业科学,2003,20(6):73-75.
    [23]Qureshi M I,Abdin M Z,Qadir S and Iqba M.Cassia angustifolia Biol Plantarum Lead-induced oxidative stress and metabolic alterations 2007,51(1)121-128.
    [24]高扬,石秀红,何正腌,郑易之.硝酸铅对大蒜根尖细胞有丝分裂的影响.吉林农业大学学报2004,26(6):603-605.
    [25]郑爱珍,王启明,吴诗光.大豆发育早期对铅胁迫的响应[J].种子,2006,25(3):10-12.
    [26]宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响[J].山地农业生物学报,2004,23(2):134-138.
    [27]庞欣王,红彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响闭.环境科学,2001,22(5):108-111.
    [28]王树会,许美玲.重金属铅胁迫对不同烟草品种种子发芽的影响[J].种子,2006,25(8):27-29.
    [29]李荣春.Cd,Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影 响[J].植物生态学报,2000,24(2):238-242.
    [30]Tung G,Temple P J.Uptake and localization of lead in corn(Zea maysL.)seedlings,a study by histochemical and electron microscopy[J].The Science of the Total Environment,1996,188:71-85.
    [31]Mishra S,Srivastava S,Tripathi R D,et al.Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation[J].Chemosphere,2006,65:1027-1039.
    [32]Verma S,Dubey R S.Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J].Plant Science,2003,164:645-655.
    [33]严密,王立成,杨红飞等.铅对光头稗幼苗生长的影响及其抗性生理研究[J].上海交通大学学报(农业科学版),2006,24(5):419-424.
    [34]曹莹,黄瑞冬,曹志强.铅胁迫对玉米生理生化特性的影响[J].玉米科学,2005,13(3):61-64.
    [35]任安芝,高玉葆,刘爽.铬、福、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    [36]Vassil A D,Kapulnik Y,Raskin I,et al.The role of EDTA in lead transport andaccumulation by Indian mustard[J].Plant Physiol.,1998,117:447-453.
    [37]Reddy A M,Kumar S G,Jyothsnakumari G,et al.Lead induced changes in antioxidantmetabolism of horsegram(Macrotyloma uniflorum(Lam.) Verde.And bengalgram(Cicerarietinum L.)[J].Chemosphere,2005,60:97-104.
    [38]林琦,陈英旭,陈怀满等.小麦根际铅、福的生态效应[J].生态学报,2000,20(4):419-424.
    [39]周泽义.中国蔬菜重金属污染控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [40]韩玉林,黄苏珍.铅与盐胁迫对黄菖蒲生长及生理抗性的影响,2008,36(34):14860-14861,14875.
    [41]韩玉林,黄苏珍.铅与盐胁迫对喜盐鸢尾生长及生理抗性的影响,2008,28(8):1649-1653.
    [42]刘秀梅,聂俊华,王庆仁等.六种植物对铅的吸收与耐性研究[J].植物生态学报,2002,26(5):533-537.
    [43]季丽英,肖听,冯启言.铅和镉对油菜幼苗的影响[J].现代农业科技,2006,3:48-49.
    [45]刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究,《环境科学学报》,2006,26(12):2019-2043.
    [46]葛才林,孙锦荷等、重金属胁迫对水稻萌发种子淀粉酶活性的影响[J].西北农林科技大学学报,2002,30(3):47-52.
    [47]张开明.鸢尾属(Iris L.)4种植物cu积累、胁迫耐性及EDTA调节影响研究[D].南京:南京农业大学,2006.
    [48]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
    [49]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版),2004,27(1):71-74.
    [50]蒋先军,骆永明,赵其国,重金属富集植物Brassicajuncea对铜、锌、镉、铅污染的响应[J],土壤,2000,2:71-76.
    [51]张开明,佟海英,黄苏珍等.Cu胁迫对黄菖蒲和马蔺Cu富集及其他营养元素吸收的影响[J].植物资源与环境学报,2007,16(1):18-22.
    [52]Farquhar Annual Review of Plant Physiology Vol.33:317-345(Volume publication date June 1982)
    [53]李德明,朱祝军,刘永华,王玉清.镉对小白菜光合作用特性影响的研究,浙江大学学报:农业与生命科学版[J],2005,31(4):459-464.
    [54]李德明,贺立红,朱祝军,几种重金属离子对小白菜种子萌发及生理活性的影响,种子[J].2005,24(6):27-29.
    [55]孙光闻,朱祝军,方学智,不同镉水平对白菜生长及抗氧化酶活性的影响,园艺学报[J].2004,31(3):378-380.
    [56]黄益宗,胡莹,刘云霞,朱永官.重金属污染土壤添加骨炭对苗期水稻吸收重金属的影响.农业环境科学学报[J].2006,25(6):1481-1486.
    [57]徐红霞,翁晓燕,毛伟华,杨勇.镉胁迫对水稻光合,叶绿素荧光特性和能量分配的影响,中国水稻科学[J].2005,19(4):338-342.
    [58]Zhang Fengqin,Wang Youshao,Yin Jianping,et al.Research advances on the resistance of mangrove plants to heavy metal pollution[J].Acta Botany Yunnan,2005,27(3):225-231.
    [59]TAKEMURA T,HANAGTA N,SUGIHARA K,et al.Physioloical and biochemical responses to salt stress in the mangrove,Bruguiera gymnorrhiza[J].Aquatic Botany,2000,68:15-28.
    [60]YE Y,NORA F Y TAM,WONG Y S,et al.Growth and physiological responses of two mangrove species(Bruguiera gymnorrhiza and Kandelia candel) to waterlogging[J].Environmental and Experimental Botany,2003,49:209-221.
    [61]CHANCE B,MACHLY A.Assay of catalases and peroxidasws[J].Methods Enzymol,1955,2:764-775.
    [62]HEATH R L,PACKER L.Photoperoxidation in isolated chloroplacts,kineticsand stoichemistry of fatty acid peroxidation.Arch[J].Biochem Biophs,1968,125:189-198.
    [63]HALLIWELL H.The toxic effects of oxygen on plant tissues[C]OBERLEYIW.Super Oxide Dismutase(volⅠ).Boca Raton:CRC Press,1982,89:125-129.
    [64]LONGSP,HUMPHRIE S S.Photo inhibition of photosynthesis in nature.Annu Rev[J].Plant Physiology Plant Mobility.
    [65]Marmiroli,G Antonioli,E Maestri,N Marmiroli,Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb,Environmental Pollution,2005,134(2):217-227.
    [66]Lincoln Taiz,Plant Physiology(Fourth Edition),University of California Cruz (M),2006,3-10.
    [67]Bernd Market,Plants as Biomonitors Indicators for Heavy Metals in the Terrestrial Environment(M),Weinein,New York.Basel Cambridge,USA,1993:191.
    [68]AH Qureshi,M Arshad,K Masud,A comparative study of EDTA-gel derived BSCCO and Pb-BSCCO ystems by thermoanalytical and X-ray diffraction techniques,Journal of Thermal Analysis and Calorimetry,2005,81(2):363-367.
    [69]A.Thomas Ruley,Nilesh C.,Antioxidant defense in a lead accumulating plant,Sesbania drummondii,Plant Physiology and Biochemistry,2004,42(11):899-906.
    [70]章文华.植物的抗盐机理和盐害防治[J].植物生理学通讯,1997,33(6):479-482.
    [72]陈年来,马国军,张玉鑫,等甜瓜种子萌发和幼苗生长对NaCI胁迫的响应[J].中国沙漠,2006,26(5):814-819.
    [73]万超文,邵桂花,陈-舞,等盐胁迫下大豆耐盐性与籽粒化学品脂的关系[J].中国油料作物学报,2002,24(2):67-72.
    [74]杨秀红,李建民,董学会,等盐胁迫对甘草幼苗生长及其生理指标的影响[J].华北农学报,2006,21(4):39-42.
    [75]任艳芳,何俊瑜.NaCl胁迫对莴苣幼苗生长和光合性能的影响[J].华北农学报,2008,23(4):149-153.
    [76]王增进,张玉先.大豆盐胁迫研究进展[J].黑龙江八-农垦大学学报,2005, 17(6):26-29.
    [77]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂脂过氧化作用的影响[J].生态学报,2002,22(4):503-507.
    [78]林植芳,李双顺,林桂珠.过氧化物在衰老叶片和叶绿体中的积累与膜脂过氧化的关系[J].植物生理学报,1988,14(1):12-16.
    [79]Bowler C,Van Montagu M,InzeD.Superoxide dismutase and strees tolerance[J].Ann Rev Plant Physiol PlantMol Biol,1992,43:83-96.
    [80]Ahmed S,Nawata E,HosokawaM.Alterations in photosynthesis andsome antioxidant enzymatic activities of mungbean subjected to waterlogging[J].PlantSci,2002,163:117-123.
    [81]许详明,叶和春,李国风.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,17(6):536-542.
    [82]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984(1):15-21.
    [83]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006(1):66-70.
    [84]张广华,葛会波,李青云,等.SOD对草莓叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [85]张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006(2):47-49.
    [86]NOITE K D,HAWSON A D,GAAGE D A.Proline accumulation and methylation to p rolinbetaine in citrus:implications for genetic engineering of stress resistance[J].J Amer.Soc.Hort.Sic.1997,122:8-13.
    [87]STOREY R,WA IKER R R.Citrus and salinity[J].Sci.Hort.,1999,78:39-81.
    [88]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000(6):379-387.
    [89]朱德民.植物生长与耐盐性[J].科学农业(台),1982,30(3-4):202.
    [90]戴伟民,蔡润,何欢乐等盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报,2001,18(1):58-62.
    [91]林栖凤,邓用川,吴多桂等.耐盐辣椒分子育种[J].生物工程进展,1999(5):19-24.
    [92]陈坚,周木虎.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响[J].湘潭师范学院学报:自然科学版,2002,24(4):44-48.
    [93]段九菊,郭世荣,康云艳等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响 [J].应用生态学报,2008,19(1):7-64.
    [94]Liang Y C,Chen Q,Liu Q,et al.Exogenous silicon(Si)increases antioxidant enzyme activity and reduce lipidperoxidation in roots of salt -stressed barley (Hordeumvulgare L.)[J].Journal of Plant Physiology,2003(160):1157-1164.
    [95]Verma S,Mishra S N.Putrescine alleviation of growth insalt stressed Brassica juncea by inducing antioxidative defensesystem[J].Journal of Plant Physiology,2005(162):669-677.
    [96]冯永军,陈为峰,张黄娜等.设施园艺土壤的盐化与治理对策[J].农业工程学报,2001,17(2):111-114.
    [97]张云起,刘世琦,杨凤娟等.耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108.
    [98]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1989(2):12-16.
    [99]Davenport S B,Gallego SM,BenavidesM P,et al.Behaviour of antioxidant defense system in the adap tixer esponse to salt stress in Helianthus annuus L.cells[J].Plant Growth Regulation,2003,40(1):81-88.
    [100]王瑞兰,汪琼,易俗.铀尾沙胁迫对水稻和小麦幼苗叶绿素含量及抗氧化酶的影响.作物学报,2005,8:1064-1068.
    [101]Meng H G,Li Z,Liu YJ.Investigation on characteristics of greenhouse soils in Shengyang region[J].Chin.J.Soil Sci.2000,31(2):70-711.
    [102]张木清,陈如凯.NaCl胁迫对甘蔗生长影响的机理研究[J].甘蔗,1994,1(3):8-121.
    [103]汪宗立,刘晓忠,王志霞.水稻耐盐性的生理研究[J].江苏农业学报,1986,2(3):1-91.
    [104]查仁明.果树耐盐机理研究进展[J].渝西学院学报,1997,2:38-401.
    [105]蒋武生.盐对番茄植株生长和细胞膜透性的影响[J].河南农业科学,1992,(6):23-251.
    [106]王冉,陈贵林,宋伟.NaCl胁迫对2种南瓜幼苗离子含量的影响[J].植物生理与分子生物学学报,2006,32(1):94-98.
    [107]张树清,张夫道,刘秀梅.NaCl对大白菜种子萌发和幼苗生长的影响[J].植物营养与肥料学报,2006,12(1):138-141.
    [108]蒋武生.盐对番茄植株生长和细胞膜透性的影响[J].河南农业科学1992(6):23-25.
    [109]王宝增,赵可夫.低浓度NaCl对玉米生长的效应[J].植物生理学通讯,2006,42(8):628-632.
    [110]周峰,李平华,王宝山.K~+营养与植物耐盐性的关系[J].植物生理学通讯,2003,39(1):67-70.
    [111]Fu J,Huang B.Involvement of antioxidants and lipidperoxidation in the adaption of two cool-season grassesto localized drought stress[J]Environmental and Experimental Botany,2001,45:105-114.
    [112]王俊刚,陈国仓等.水分胁迫对2种生态型芦苇的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561-565.
    [113]王建华,刘鸿先1SOD在植物逆境及衰老中的作用[J].植物生理学通讯,1980,(1):1-7.
    [114]任文伟,罗山泉,郑师章不同种源羊草的SOD、POD的活性及丙二醛含量的比较[J].植物生态学报,1997,21(1):77-82.
    [115]廖祥儒,朱新产活性氧代谢和植物抗盐性[J].生命的化学,1996,6(16):19-23.
    [116]李彦,张英鹏,孙明,高弼模盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,24(1):258-265.
    [117]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-61.
    [118]赵可夫.植物抗盐生理.北京:中国科学出版社,1993.1-3.
    [119]Zhu J K.Plant salt tolerance.Trends in Plant Science.2001,6(2):66-71.
    [120]王宝山.赵可夫.邹墒.作物耐盐机理研究进展及提高作物抗盐性的对策.1997.14(增刊):25-30.
    [121]赵可夫等.对小麦幼苗降低盐害效应的研究.植物学报.1993,35(1):51-56.
    [122]杨富裕.周禾.草坪草抗盐性研究进展.草原与草坪.2001.(1):10-13.
    [123]Dudeck A E,Peacock C H,Sheehan T J.An evaluation ofgermination media for turfgrass salinity StudieS.J Amer SocHort Sci.1986.111(2):170-173.
    [124]Creenway H,Mechanism of salt tolerance in nonhalophytes.Ann Rev Plant Physiol.1980.31:149-190.
    [125]徐颖.盐分胁迫下植物的渗透调节.山东电大学报,2000(3):34-36.
    [126]利容千,王建波.植物逆境细胞及生理学武汉大学出版社.2002:217.
    [127]刘友良,汪良驹.植物生理与分子生物学.科学出版社.1997:763-769.
    [128]苏晓华等.林木遗传图谱研究的现状与展望.林业科技通讯.1995.5:10-12.
    [129]Levitt J.Responses of Plants to environmental Stresses.Academic Press.1980:375-393.
    [130]杨国会,马尧,李如升,田永清.NaCl对甘草叶片脯氨酸含量以及脂膜相对透性的影响.2000.20(5):43-45.
    [131]戴高兴,彭克勤.皮灿辉.钙对植物耐盐的影响.中国农业通报,2003.19(3):97-101.
    [132]Gramer G R.Displacement of Ca~(2+) and Na'from the plasmalema of rottlells.Plant Physiol.1985.79:207-211.
    [133]赵自国,陆静梅.植物耐盐性研究及进展.长春师范学院学报.2002,21(1):51-53.
    [134]许吉明,叶和春,李国风.植物抗盐机理的研究进展.应用与环境生物学报,2000.6(4):379-387.
    [135]张其德,盐胁迫对植物及其光合作用的影响(中).植物杂志.2001(1):28-29.
    [136]SariI1 M.A.atuyanan.Physiol Plant.1968.211:1201-1209.
    [137]Strogonov B P.Structure and function of PlanL cell in saline babitate.Halsted Press.New York,1973.
    [138]刘吉振,张谊模,李燕,张洪成,向华丰,徐卫红.蔬菜重金属污染的控制技术研究进展.江西农业学报,2009(8):103-104、108.
    [139]Lauchli A.Salt An adaptation of Liegunles for cropsand Pastures under saline conditions.Salinity tolerance in Plants.In Staples Ⅱ C.Toenniesson G H(eds).New York.John-iley SOILS.1984,171-187.
    [1]窦争霞,胡荣梅.土壤中的铅对三种蔬菜的影响[J].环境科学学报,1987,7(6):367-371.
    [2]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学报,1997,17(2):199-205.
    [3]黄铭洪.环境污染与生态恢复[M].北京,科学出版社,2003:27-41.
    [4]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112.
    [5]杜彩莲.铅处理对小麦种子萌发和幼苗生长的影响[J].潍坊学院学报,2007,7(4):87-89.
    [6]徐进,徐立红.环境铅污染及其毒性的研究进展[J].环境与职业医学,2005, 22(3):271-274.
    [7]杨金燕,杨肖娥,何振立.土壤中铅的来源及生物有效性[J].土壤通报2005,36(5):765-772.
    [8]夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996.
    [9]韩玉林.鸢尾属(Iris L.)植物铅积累、耐性及污染土壤修复潜力研究[D].南京农业大学,2007.
    [10]杨丹慧.重金属对高等植物光合膜结构和功能的影响[J].植物学通报,1991,8(3):26-29.
    [11]黄雅琴,杨在中.蔬菜对重金属的吸收累积特点[J].内蒙古大学学报(自然科学版),1995,26(5):608-615.
    [12]周鸿,曲仲湘,王焕校.铅对几种农作物的影响及迁移积累初探[J].环境科学学报,1983,3(3):222-233.
    [13]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响.草业科学,2003,20(6):73-75
    [14]郑爱珍,王启明,吴诗光.大豆发育早期对铅胁迫的响应[J].种子,2006,25(3):10-12.
    [15]宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响[J].山地农业生物学报,2004,23(2):134-138.
    [16]庞欣王,红彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境科学,2001,22(5):108-111.
    [17]王树会,许美玲.重金属铅胁迫对不同烟草品种种子发芽的影响[J].种子,2006,25(8):27-29.
    [18]严密,王立成,杨红飞等.铅对光头稗幼苗生长的影响及其抗性生理研究[J].上海交通大学学报(农业科学版),2006,24(5):419-424.
    [19]曹莹,黄瑞冬,曹志强.铅胁迫对玉米生理生化特性的影响[J].玉米科学,2005,13(3):61-64.
    [20]周泽义.中国蔬菜重金属污染控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [21]刘秀梅,聂俊华,王庆仁等.六种植物对铅的吸收与耐性研究[J].植物生态学报,2002,26(5):533-537.
    [22]季丽英,肖听,冯启言.铅和镉对油菜幼苗的影响[J].现代农业科技,2006.3:48-49.
    [23]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
    [24]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版),2004,27(1):71-74.
    [25]蒋先军,骆永明,赵其国,重金属富集植物Brassica juncea对铜、锌、镉、铅污染的响应[J],土壤,2000,2:71-76.
    [26]李德明,贺立红,朱祝军,几种重金属离子对小白菜种子萌发及生理活性影响,种子[J].2005,24(6):27-29.
    [27]徐红霞,翁晓燕,毛伟华,杨勇,镉胁迫对水稻光合,叶绿素荧光特性和能量分配的影响,中国水稻科学[J].2005,19(4):338-342.
    [28]Chen Yinxia.Ecological effects of the mangrove on the environment[J].Marine Environmental Science,1995,14(4):51-56.
    [30]Zhang Fengqin,Wang Youshao,Yin Jianping,et al.Research advances on the resistance of mangrove plants to heavy metal pollution[J].Acta Botany Yunnan,2005,27(3):225-231.
    [31]TARO TAKEMURA,NOBUTAKA HANAGTA,KOICHI SUGIHARA,et al.Physioloical and biochemical responses to salt stress in the mangrove,Bruguiera gymnorrhiza[J].Aquatic Botany,2000,68:15-28.
    [32]YE Y,NORA F Y TAM,WONG Y S,et al.Growth and physiological responses of two mangrove species(Bruguiera gymnorrhiza and Kandelia candel) to waterlogging[J].Environmental and Experimental Botany,2003,49:209-221.
    [33]CHANCE B,MACHLY A.Assay of catalases and peroxidasws[J].Methods Enzymol,1955,2:764-775.
    [34]HEATH R L,PACKER L.Photoperoxidation in isolated chloroplacts,kineticsand stoichemistry of fatty acid peroxidation.Arch[J].Biochem Biophs,1968,125:189-198.
    [35]HALLIWELL H.The toxic effects of oxygen on plant tissues[C]OBERLEY I W.Super Oxide Dismutase(vol Ⅰ).Boca Raton:CRC Press,1982,89:125-129.
    [36]LONG S P,HUMPHRIE S S.Photo inhibition of photosynthesis in nature.Annu Rev[J].Plant Physiology Plant Mobility,
    [37]Carmina Gisbert,Roe Ros,Antonio De Haro,A plant genetically modified that accumulates Pb is especially promising for phytoremediation,Biochemical and Biophysical Research Communications,2003,303(2):440-445.
    [38]AH Qureshi,M Arshad,K Masud,A comparative study of EDTA-gel derived BSCCO and Pb-BSCCO systems by thermoanalytical and X-ray diffraction techniques,Journal of Thermal Analysis and Calorimetry,2005,81(2):363-367.
    [39] A. Thomas Ruley, Nilesh C., Antioxidant defense in a lead accumulating plant, Sesbania drummondii , Plant Physiology and Biochemistry, 2004, 42 (11): 899-906.
    [40] Koeppe D E.Lead : Understanding the minimal toxic of lead in plants .Lepp N W. Effect of heavyMetal Pollution on plants[M] .London New Jersey: App Sci Pub ,1981. 55-57.
    [41] Marmiroli, G Antonioli, E Maestri, N Marmiroli ,Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb,Environmental Pollution, 2005,134(2): 217-227.
    [42] Carmina Gisbert, Roc Ros, Antonio De Haro, A plant genetically modified that accumulates Pb is especially promising for phytoremediation, Biochemical and Biophysical Research Communications, 2003,303(2): 440-445.
    [43] GAO Y,ZHAO S Z,CHENM,et al. Effects of sodiumchloride stress on growthof sweet potato plantlets in vitro and ion content [J]. Agricultural Science &Technology ,2008 ,9 (5): 27-30.
    [1]章文华.植物的抗盐机理和盐害防治[J].植物生理学通讯,1997,33(6):479-482.
    [2]陈年来,马国军,张玉鑫等.甜瓜种子萌发和幼苗生长对NaCI胁迫的响应[J].中国沙漠,2006,26(5):814-819.
    [3]万超文,邵桂花,陈一舞等.盐胁迫下大豆耐盐性与籽粒化学品质的关系[J].中国油料作物学报,2002,24(2):67-72.
    [4]杨秀红,李建民,董学会等.盐胁迫对甘草幼苗生长及其生理指标的影响 [J].华北农学报,2006,21(4):39-42.
    [5]任艳芳,何俊瑜.NaCl胁迫对莴苣幼苗生长和光合性能的影响[J].华北农学报,2008,23(4):149-153.
    [6]王增进,张玉先.大豆盐胁迫研究进展[J].黑龙江八一农垦大学学报,2005,17(6):26-29.
    [7]林植芳,李双顺,林桂珠.过氧化物在衰老叶片和叶绿体中的积累与膜脂过氧的关系[J].植物生理学报,1988,14(1):12-16.
    [8]刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶含量和活谢的影响[J].应用生态学报,2007,18(3):537-541.
    [10]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006(1):66-70.
    [11]张广华,葛会波,李青云等.SOD对草莓叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [12]张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006(2):47-49.
    [13]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000(6):379-387.
    [14]赵世杰,许长成,邹琦等植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [15]朱德民.植物生长与耐盐性[J].科学农业(台),1982,30(3-4):202.
    [16]戴伟民,蔡润,何欢乐等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报,2001,18(1):58-62.
    [17]陈坚,周木虎.盐胁迫对不同苦瓜品种萌发及幼苗生长的影响[J].湘潭师范学院学报:自然科学版,2002,24(4):44-48.
    [18]冯永军,陈为峰,张黄娜,等设施园艺土壤的盐化与治理对策[J].农业工程学报,2001,17(2):111-114.
    [19]张云起,刘世琦,杨凤娟,等耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108.
    [20]不同浓度NaCl胁迫对高粱幼苗SOD、POD酶含量的影响73.2005,8:1064-1068.
    [21]张木清,陈如凯.NaCl胁迫对甘蔗生长影响的机理研究[J].甘蔗,1994,1(3):8-12.
    [22]汪宗立,刘晓忠,王志霞.水稻耐盐性的生理研究[J].江苏农业学报,1986,2(3):1-9.
    [23]查仁明.果树耐盐机理研究进展[J].渝西学院学报,1997,2:38-40.
    [24]蒋武生.盐对番茄植株生长和细胞膜透性的影响[J].河南农业科学,1992,3(6):23-25.
    [25]张树清,张夫道,刘秀梅.NaCl对大白菜种子萌发和幼苗生长的影响[J].植物营养与肥料学报,2006,12(1):138-141.
    [26]蒋武生.盐对番茄植株生长和细胞膜透性的影响[J].河南农业科学,1992(6):23-25.
    [27]王宝增,赵可夫.低浓度NaCl对玉米生长的效应[J].植物生理学通讯,2006,42(8):628-632.
    [28]綦翠华,韩宁,王宝山.不同盐处理对盐地碱蓬幼苗肉质化的影响[J].植物学通报,2005,22(2):175-182.
    [29]赵可夫.盐分过多对植物的伤害作用和伤害机理[J].曲阜师院学报,1984(植物抗盐专刊):5-22.
    [30]王俊刚,陈国仓.等水分胁迫对2种生态型芦苇的可溶性蛋白含量SOD、POD、CAT含量的影响[J]西北植物学报,2002,22(3):561-565.
    [31]王建华,刘鸿先,SOD在植物逆境及衰老中的作用[J]植物生理学通讯,1980,(1):1-7.
    [32]任文伟,罗山泉,郑师章.不同种源羊草的SOD、POD的含量及丙二醛含量的比较[J]植物生态学报,1997,21(1):77-82.
    [33]廖祥儒,朱新产.含量氧代谢和植物抗盐性[J]生命的化学,1996,6(16):19-23.
    [34]许详明,叶和春,李国凤.植物抗盐机理的研究进展[J]植物学通报,1999,16(4):332-338.
    [35]赵可夫,邹琦,李德全.盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993,35(7):519-525.
    [36]李彦,张英鹏,孙明,高弼模.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,24(1):258-265.
    [37]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报(自然科学版),2003,27(3):11-14.
    [38]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报.1998,40(1):56-61.
    [39]毛桂莲,张春梅,许兴.NaCl胁迫对枸杞幼苗含量氧的产生和保护酶含量的影响[J].农业科学研究,2005,26(4):21-25.
    [40]Liang Y C,Chen Q,Liu Q,et al.Exogenous silicon(Si)increases antioxidant enzyme activity and reduce lipidperoxidation in roots of salt -stressed barley (Hordeumvulgare L.) [J]. Journal of Plant Physiology, 2003(160): 1157-1164.
    [41] Verma S, Mishra S N. Putrescine alleviation of growth insalt stressed Brassica juncea by inducing antioxidative defensesystem [J]. Journal of Plant Physiology,2005(162): 669-677.
    [42] Bowler C, vanMontagu M, Inze D. Superoxide dismutase and strees tol erance[J]. Ann Rev Plant Physiol Plant Mol Biol, 1992,43: 83-96.
    [43] Ahmed S, Nawata E, HosokawaM. Alterations in photosynthesis andsome antioxidant enzymatic activities ofmungbeansubjected to waterlogging[J]. Plant Sci, 2002,163: 117-123.
    [44] Davenport S B, Gallego SM,BenavidesM P, et al. Behaviour of antioxidant defense system in the adap tixer esponse to salt stress in Helianthus annuus L. cells [J]. Plant Growth Regulation, 2003, 40(1): 81-88.
    [45] Meng H G, Li Z, Liu YJ . Investigation on characteristics of greenhouse soils in Shengyang region [J] . Chin. J. Soil Sci. 2000, 31(2): 70-71.
    [46] NO ITE K D , HAWSON A D, GAAGE D A. Proline accumulation and methylation to p rolinbetaine in citrus: implications for genetic engineering of stress resistance [J ]. J. Amer. Soc. Hort. Sic. 1997, 122: 8-13.
    [47] STOREY R,WA IKER R R. Citrus and salinity[J]. Sci.Hort. 1999, 78: 39-81.
    [48] Scandalios L G. Oxygen stress and superoxide dismutase[J].Plant Physiology, 1993(101): 7-12.
    [49] Fu J , Huang B. Involvement of antioxidants and lipidperoxidation in the adaption of two cool - season grassesto localized drought stress[J] . Environmental and Experimental Botany ,2001 ,45: 105-114.
    [1]赵政阳,张翠花,刘子龙,梁俊,李嘉瑞.公路旁苹果园铅污染的研究.西北农林科技大学学报.2006,34(11):153-156.
    [2]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.
    [3]许嘉琳,鲍子平,杨居荣,刘虹,宋文昌.作物体中铅、福、铜的化学形态研究.应用生态学报.1991,2(3):244-248.
    [4]孙铁布,周启星.污染生态学研究的回顾与展望.应用生态学报,2002,13:221-223.
    [5]韩玉林,黄苏珍.铅与盐胁迫对黄菖蒲生长及生理抗性的影响,2008,36(34):14860-14861.14875.
    [6]韩玉林,黄苏珍.铅与盐胁迫对喜盐鸢尾生长及生理抗性的影响,2008,28(8):1649-1653.
    [7]吴春华,唐建军,陈欣,陈静,杨如意,蒋琦清.模拟铅污染土壤中杂草的菌根形成及对铅的吸收.生态学报,2005,25(6):1325-1330.
    [8]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(4):112-116.
    [9]王林,史衍玺.镉、铅及其复合物污染对辣椒生理生化特性的影响[J].山东农业大学学报(自然版),2005,(1):107-112.
    [10]王启明.铅、镉及其复合胁迫对大豆幼苗生理生化特性的影响[J].河南农业科学,2006,7:34-37.
    [11]王启明.铅、镉以及复合胁迫对玉米幼苗生理生化特性的影响[J].安徽农业科学,2006,34(10):2036-2037.
    [12]杨丹慧.重金属对高等植物光合膜结构和功能的影响[J].植物学通报,1991,8(3):26-29.
    [13]周鸿,曲仲湘,王焕校.铅对几种农作物的影响及迁移积累初探[J].环境科学学报,1983,3(3):222-233.
    [14]杜应琼,何江华,陈俊坚等.铅、镉和铬在叶类蔬菜中的累积及其对生长的影响[J].园艺学报,2003,30(1):51-55.
    [15]任安芝,高玉葆,刘爽等.铬、铅胁迫极其交互作用对小白菜生理生化特性的影响[J].生态学报,1998,14(1):46-50.
    [16]张开明,黄苏珍,原海燕等.水生花卉黄菖蒲Cu~(2+)胁迫抗(耐)性研究[J].江苏农业科学,2006(6):217-219.
    [17]严重玲,洪业汤,付舜珍等.镉、铅胁迫对烟草叶片中活性氧清除系统的影响[J].1997,17(5):488-492.
    [18] Yoon J, Cao X, Zhou Q X, Ma L Q. Accumulation of Pb, Cu, and Zn in native plants growing on acontaminated Florida site. Sci Total Environ 2006,368: 456-464.
    [19] Fargaova A. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis Alba L. Seedlings and theirAccumulation in Roots and Shoots. Biol Plantarum 2001,44(3): 471-473.
    [20] BA KER A J M , BROOKS R R. Terrest rial high plants which hyperaccumulate metalic elements —a review of their distribution, ecologyand phytochemistry[J]. Biorecovery, 1989,1: 81- 126.
    [21] Aguilar J, Dorronsoro C, Fernadez E, Fernadez J, Garcia I, Martin F and Simon M. Remendiation of Pb-contaminated soils in the Guadiamar River basin (SW Spain). Water Air Soil Pollut 2004,151: 323-333.
    [22] HARO R ,BANEULOSMA , QUINTERO F J . Genetec basis of sodium exclusion and sodium tolerance in yeast A model for plant s [J] . Physiologia Plantarum ,1999,89: 868-874.
    [23]MAGGIO A, REDDY M P, JOL Y R J. Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity[J] . Envi ronmental and Experimental Botany ,2000,44: 31-38.
    [24] GL ENNEP, et al . Salt tolerance and crop potential of halophytes[J]. Cri tical Review of Plant Science ,1999,18: 227-255.
    [25] UPadhyay A Rand TriPathi B D. Principle and Processofbi of Cd, Cr, Co, Ni & pb from tropical opencast coalmine effluent water Air Soil pollut 2007, 180(1-4): 213-223.
    
    [26] Fargaova A. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis Alba L. Seedlings and Their Accumulation in Roots and Shoots. Biol. Plantarum 2001,44(3): 471-473.
    [27] BA KER A J M , BROOKS R R. Terrest rial high plant s which hyperaccumulate metalic elements —a review of their distribution, ecologyand phytochemist ry[J]. Biorecovery ,1989,1: 81- 126.
    [28] Aguilar J, Dorronsoro C, Fernadez E, Fernadez J, Garcia I, Martin Fand Simon M. Remendiation of Pb-contaminated soils in the Guadiamar River basin (SW Spain). Water Air Soil Pollut 2004,151: 323-333.
    [1]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科技出版社.1998,362-364.
    [2]吴瑞娟,金卫根,邱峰芳.土壤重金属污染的生物修复.安徽农业科学.2008,36(7):2916-2918.
    [3]何念祖.铅对小麦生长和土壤酶活性的影响.浙江农业大学学报,1990,16(2):195-198.
    [4]杨卓亚,张福锁.土壤—植物体系中的铅土壤学进展.1993:21:1-10.
    [5]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    [6]宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响[J].山地农业生物学报,2004,23(2):134-138.
    [7]涂从,郑春荣,阵怀满.土壤-植物系统重金属与养分元素交互作用[J].中环境科学,1997,17(6):526-529.
    [8]曹莹,韩豫,蒋文春等.铅胁迫对花生生长与铅积累特性的研究[J].中国油 料作物学报,2008(2):198-200.
    [9]杨金燕,杨肖娥,何振立.土壤中铅的来源及生物有效性.土壤通报.2005,36(s):765-72.
    [10]孙铁布,周启星.污染生态学研究的回顾与展望.应用生态学报,2002,13:221-223.
    [11]孙光闻、朱祝军、方学智等.我国蔬菜重金属污染现状及治理措施[J].北方园艺.2006(2):66-67.
    [12]黄昀,刘光德,李其林等.农产品对土壤中重金属的富集能力研究[J].中围农学通报,2004,20(6):285-289.
    [13]孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,12(3):487-491.
    [14]Liang P,Arthur B P.Differential display of eukaryotic messenger RNAby means of the polymerase chain reaction.Science,1992.257:967-971.
    [15]Kabata P A.Pendias H.Trace elements in soil and plants.Boca Raton.FL.:CRC Press.1992.
    [16]Pody P E,Dolan P R.Mulcaby D E Environmental lead:a review [J].Critical Reviews in Environmental Control,1991,20:299-310.
    [17]GALEJ.Plants in saline Environments[M].New York:Springer,1975.
    [18]Uveges J L,Corbett A L,Mat T k.Effects of Pb contamination on the growth of Lythrum salicafia[J].Environmental Pollution,2002,319-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700