ROCK亚型在血管平滑肌细胞迁移和增殖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:血管平滑肌细胞的迁移和增殖在动脉粥样硬化、血管术后再狭窄等心血管疾病中具有重要作用。影响血管平滑肌细胞的迁移和增殖的信号转导通路很多,其中在RhoA/ROCK信号转导通路中,ROCK通过使其下游的蛋白质磷酸化,间接地调控肌动蛋白的聚合和解聚以及与肌球蛋白的相互作用,最终影响细胞的迁移。研究还发现ROCK能通过调节细胞周期蛋白的表达来调控细胞周期的进行,从而影响血管平滑肌细胞的增殖。ROCK有两种亚型包括ROCK1和ROCK2,两者的氨基酸序列具有65%的同源性,其中激酶区的同源性高达92%。因此,一般认为两者在细胞内的功能相同。然而,近年来研究发现ROCK1和ROCK2在某些细胞中具有不同的磷酸化底物和细胞功能。目前,ROCK的两种亚型在血管平滑肌细胞的迁移和增殖的作用是否相同尚不清楚。本研究旨在研究ROCK亚型(ROCK1和ROCK2)在血管平滑肌细胞迁移和增殖中的作用及其分子机制。
     方法:(1)利用RNA干扰原理,通过脂质体转染特异性针对ROCK亚型的人工合成的siRNA,使ROCK1和ROCK2表达分别下调,观察ROCK1和ROCK2对PDGF诱导的血管平滑肌细胞(A7r5)迁移和血清刺激的增殖是否具有相同的作用;(2)使用ROCK的特异抑制剂Y-27632同时抑制ROCK1和ROCK2的激酶活性,观察ROCK对细胞迁移和增殖的影响;(3)用蛋白免疫印迹技术检测蛋白的表达情况;(4)使用Boyden Chamber法观察ROCK1和ROCK2表达下调后对血管平滑肌细胞迁移的影响;(5)使用MTT法检测ROCK激酶表达下调后血管平滑肌细胞的生长曲线,并用流式细胞仪通过PI染色法分析经血清饥饿法同步化的细胞中各细胞周期时相的变化。
     结果:(1)ROCK1和ROCK2在血管平滑肌细胞中的蛋白表达水平不同,ROCK2的表达水平是ROCK1的8倍;(2)做细胞迁移实验时,通过转染siRNA使ROCK1和ROCK2的表达分别下调83.4%和94.7%;(3)ROCK1表达下调后,抑制了血管平滑肌细胞的迁移,而ROCK2表达下调后对细胞的迁移无明显影响,ROCK活性被Y-27632抑制后也抑制了细胞的迁移;(4)ROCK1表达下调导致LIMK的磷酸化水平降低,ROCK2表达下调后对LIMK磷酸化水平无明显影响,Y-27632抑制ROCK活性后LIMK的磷酸化水平也降低;(5)ROCK1表达下调后导致MLC磷酸化水平增加,ROCK2表达下调后对MLC磷酸化水平无明显影响,Y-27632抑制ROCK活性也可使MLC磷酸化水平也增加;(6)转染siRNA后,ROCK1和ROCK2两组之间细胞的生长无明显差别,而且细胞周期G1/S期的转化也无明显变化,而Y-27632抑制ROCK活性后G1/S期的转化受到抑制。
     结论:(1)在ROCK的两种亚型中,ROCK1在血管平滑肌细胞的迁移中起了主导作用,ROCK2对血管平滑肌细胞的迁移的调节作用不明显;(2)ROCK1通过下调LIMK的磷酸化,上调MLC的磷酸化途径调控血管平滑肌细胞的迁移;(3)ROCK1和ROCK2对血管平滑肌细胞的增殖具有相同的作用。
Objectives:The migration and proliferation of vascular smooth muscle cells(VSMCs) play important roles in cardiovascular diseases such as ather- osclerosis, vascular restenosis. There are many signaling pathways in which impact the VSMCs migration and proliferation. In the RhoA/ROCK pathway, ROCK indirectly regulates actin polymerization and actomyosin contracti- lity through its downstream protein phosphorylation. Consequently, ROCK affects cell migration. The previous study found that ROCK can also control the progression of the cell cycle by regulating the expression of cell cycle proteins, thus affecting VSMCs proliferation. There are two ROCK informs including ROCK1 and ROCK2, that share overall 65% homology in amino acid level, in which the kinase domain homology approached as high as 92%. Therefore, it is generally believed that they have same functions in the cells. However, recent study found that ROCK1 and ROCK2 in some cells have different substrates or cell functions. At present, it is not clear that whether they have the same effects of the ROCK informs on VSMCs migration and proliferation. This study is aimed to examine the effects of ROCK1 and ROCK2 on VSMCs migration and proliferation, as well as their molecular mechanisms.
     Methods:(1)Based on the RNA interference theory, transfection synthetic siRNA targeting specifically ROCK isoforms by liposome, so that the expression of ROCK1 or ROCK2 was down regulated respectively, in order for further observation the effects of ROCK1 and ROCK2 on VSMCs migration and proliferation.(2)Using the specific ROCK inhibitor Y-27632 that inhibits the ROCK1 and ROCK2 kinase activity, to observe the effects of ROCK on VSMCs migration and proliferation.(3)To detect the expression of various downstream proteins of ROCK, Western blotting was used.(4)To observe the effets of ROCK1 and ROCK2 on vascular smooth muscle cell migration, Boyden Chamber assay was used.(5)To detect the effects of ROCK1 and ROCK2 on vascular smooth muscle cell proliferation, MTT assay was used, and flow cytometry was adopted for analysis of cell cycle phase progression by PI staining method after serum starvation to synchroniz cells.
     Results:(1)There were different expression levels between ROCK1 and ROCK2 in VSMCs, the expression of ROCK2 is higher eight times than that of ROCK1.(2)By using siRNA transfection, the expression of ROCK1 and ROCK2 were down regulated by 83.4% and 94.7% respectively as the cell migration experiments.(3)When reduced the expression of ROCK1, the migration of VSMCs was inhibited, but ROCK2 had no significant effect on VSMCs migration at the same condition. Also,ROCK activity blocked by Y-27632 also inhibited the VSMCs migration.(4)ROCK1 downregulation resulted in reduced levels of LIMK1 and LIMK2 phosphorylation, and ROCK2 had no effects on phosphorylation of LIMK1 and LIMK2. In addition, LIMK phosphorylation decreased after ROCK activity inhibition by Y-27632.(5)ROCK1 downregulation led to increased level of MLC phosphorylation, and ROCK2 had no significant effect on the level of MLC phosphorylation ROCK activity inhibition by Y-27632 also increased the level of MLC phosphorylation.(6)When ROCK1 and ROCK2 were down regulated respectively, no significant difference was observed in cell growth, and the cell cycle G1/S phase was also not altered obviously, whereas ROCK activity inhibition by Y-27632 leads to the inhibition of the G1/S phase progress.
     Conclusions:(1)In the two ROCK informs, ROCK1, but not ROCK2, plays a leading role in VSMCs migration.(2)ROCK1 controls the migration of VSMCs via reducing the levels of LIMK phosphorylation and increasing MLC phosphorylation.(3)ROCK1 and ROCK2 have the same effects on the proliferation of VSMCs.
引文
1. Paul Holvoet, Peter Sinnaeve.Angio-Associated Migratory Cell Protein and Smooth Muscle Cell Migration in Development of Restenosis and Atherosclerosis. Journal of the American College of Cardiology.2008, 52(4): 312-314
    2. Pollard, T. D. and Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments.Cell.2003, 112: 453-465.
    3. Ito K, Liu X, Katayama E, Uyeda TQ. Cooperativity between two heads of dictyostelium myosin II in in vitro motility and ATP hydrolysis. Biophys. 1999, 76: 985–92.
    4. Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 2001, 276: 4527–30.
    5. Signal Transduction in Matrix Contraction and the Migration of Vascular Smooth Muscle Cells in Three-Dimensional Matrix Song Lia James Jaehyun Moona Hui Miaob Gang Jinb Benjamin P.C. Chenb Suli Yuanb Yingli Hub Shunichi Usamib Shu Chienb J Vasc Res. 2003, 40: 378–388.
    6. Hak Rim Kim, Cynthia Gallant, Paul C.Leavis, Susan J.Gunst, and Kathleen G.Morgan. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol. 2008, 295: C768–C778.
    7.翟中和,王喜忠,丁明孝主编.细胞生物学(第1版).北京:高等教育出版社,2000年,319-320.
    8. Dale D. Tang, and Yana Anfinogenova.Physiologic Properties and Regulation of the Actin Cytoskeleton in Vascular Smooth Muscle. Journal of Cardiovascular Pharmacology and Therapeutics.2008,13(2):130-140.
    9. Tang DD, Tan J. Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol. 2003,285:1528-1536.
    10. Tang DD, Tan J. Role of Crk-associated substrate in the regulation of vascular smooth muscle contraction.Hypertension. 2003,42:858-863.
    11. Sheetz MP, Felsenfeld D, Galbraith CG,Choquet D.Cell migration as a five step cycle. Biochem.Soc. Symp.1999, 65:233–43.
    12. Lauffenburger DA, Horwitz AF: Cell migration: A physically integrated molecular process. Cell 1996,84:359-369.
    13. Song Li,Jun-Lin Guan,and Shu Chien.BIOCHEMISTRY AND BIOMECHANICS OF CELLMOTILITY.Annu. Rev. Biomed. Eng. 2005,7:105–50.
    14. Webb, D. J., Donais, K., Whitmore, L. A.,Thomas, S. M., Turner, C. E., Parsons, J. T. and Horwitz, A. F. FAK-Src signaling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell. Biol. 2004,6:154-161.
    15. Cooper JA, Schafer DA. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol.2000,12:97–103.
    16. Ridley AJ. Rho GTPases and cell migration. J. Cell Sci. 2001,114:2713–22.
    17. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell.2003,112:453–65.
    18. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev.Biol. 2004,265:23–32.
    19. Pollard, T. D. and Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell.2003,112, 453-465.
    20. Weaver, A. M., Young, M. E., Lee, W. L. and Cooper, J. A. Integration of signals to the Arp2/3 complex. Curr. Opin. Cell Biol.2003,15:3-30.
    21. Vartiainen, M. K. and Machesky, L. M..The WASP-Arp2/3 pathway: genetic insights.Curr. Opin. Cell Biol.2004,6:74-181.
    22. Ine′s M. Anto′na, Gareth E. Jonesb.WIP: A multifunctional protein involved in actin cytoskeleton regulation.European Journal of Cell Biology.2006,85:295–304.
    23. Watanabe, N. and Higashida, C. Formins: processive cappers of growing actin filaments. Exp. Cell Res. 2004,301:16-22.
    24. Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J. and Gertler, F. B. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu. Rev. Cell. Dev. Biol.2003,19: 541-564.
    25. dos Remedios, C. G., Chhabra, D., Kekic, M.,Dedova, I. V., Tsubakihara, M., Berry, D. A.and Nosworthy, N. J. Actin binding proteins: regulation of cytoskeletal microfilaments.Physiol. Rev. 2003, 83:433-473.
    26. Zigmond, S. H. Beginning and ending an actin filament: control at the barbed end. Curr. Top.Dev. Biol.2004,63:145-188.
    27. Maciver, S. K. and Hussey, P. J. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. (2002).3, reviews3007.
    28. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS,Condeelis JS . Cofilinpromotes actin polymerization and defines the direction of cell motility. Science.2004,304:743–746.
    29. Lorenz M, DesMarais V, Macaluso F, Singer RH, Condeelis J. Measurement of barbed ends, actin polymerization, and motility in live carcinoma cells after growth factor stimulation.Cell Motil Cytoskeleton .2004,57:207–217.
    30. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA,Bernard O, Caroni P Regulation of actin dynamics through phosphorylation of cofilin by LIM- kinase.Nature.1998,393:805–809.
    31. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K,Nishida E, Mizuno K.Cofilin phosphorylation by LIM kinase1 and its role in Rac-mediated actin reorganization.Nature.1998,393:809–812.
    32. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A,Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S.Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science.1999,285:895–898.
    33. Ridley AJ. Rho GTPases and cell migration. J. Cell Sci.2001.114:2713–22.
    34. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev. Biol.2004, 265:23–32.
    35. Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration.Curr. Opin. Cell Biol. 2004,15:590–97.
    36. Sean Lawler.Regulation of actin dynamics: The LIM kinase connection.Current Biology 1999, 9:R800–R802.
    37. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S,Mizuno K.Rho-associated kinase ROCK activates LIMkinase1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem .2000,275:3577–3582.
    38. Sumi,T.,Matsumoto,K.and Nakamura,T.Specific activation of LIM kinase 2 via phosphorylatin of threonine 505 by ROCK,a Rho-dependent protein kinase.J.Bio.Chem. 2001,276:70-676.
    39. Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K.LIM kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem .2000,J354:149–159.
    40. Maekawa,M.et al.Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.Science.1999,285:895-898.
    41. Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIMkinase byPak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol.1999, 1:253-259.
    42. Yang N, Higuchi O, Ohashi K, et al: Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393:809-812.
    43. Rebecca W. Scott & Michael F. Olson.LIM kinases: function, regulation and association with human disease. J Mol Med.2007,85:55–568.
    44. Lammers M, Rose R, Scrima A, Wittinghofer A. The regulation of mDia1 by autoinhibition and its release by Rho*GTP. EMBO J. 2005;24(23):4176-4187.
    45. Gupton SL, Eisenmann K, Alberts AS, Waterman-Storer CM. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J Cell Sci. 2007;120(Pt 19):3475-3487.
    46. Specificity of interactions between mDia isoforms and Rho proteins. Lammers M. Meyer S. Kuhlmann D. Wittinghofer A.Journal of Biological Chemistry. 2008,283(50):35236-46.
    47. Yi Xie, E-Jean Tan, Shimei Wee, Edward Manser, Louis Lim and Cheng-Gee Koh.Functional interactions between phosphatase POPX2 and mDia modulate RhoA pathways.,Journal of Cell Science. 2007,121:514-521.
    48. Woolfolk EA, Eguchi S, Ohtsu H, et al. Angiotensin IIinduced activation of p21-activated kinase 1 requires Ca2??and protein kinase C{delta} in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2005;289(5):C1286-C1294.
    49. Dechert MA,Holder JM,Gerthoffer WT.p21-activated kinase 1 participates in tracheal smooth muscle cell migration by signaling to p38 Mapk. Am J Physiol Cell Physiol.2001,281(1):123-132.
    50. Price LS, Leng J, Schwartz MA, BokochGM. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol.Biol. Cell.1998, 9(7):1863–71.
    51. Ren XD, Kiosses WB, Schwartz MA.Regulation of the small GTPbinding protein Rho by cell adhesion and the cytoskeleton. EMBO J.1999,18(3):578–85.
    52.Naoki Watanabe,Takayuki Kato,Akiko Fujita,Toshimasa Ishizaki and Shuh Narumiya.Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. NATURE CELL BIOLOGY.1999,1:136-143.
    53. Burton K, Park JH, Taylor DL. 1999. Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10:3745–69.
    54. Hannigan, M., Mo, Z., Liu, B., Lu, W.,Wu, Y., Smrcka, A. V., Wu, G., Li, L., Liu, M.et al. Directional sensing requires G beta gamma-mediated PAK1 and PIXalpha-dependent activation of Cdc42. Cell.2003,114:215-227.
    55. Go Totsukawa, Yoshihiko Yamakita,Shigeko Yamashiro, David J. Hartshorne, Yasuharu Sasaki,and Fumio Matsumura.Distinct Roles of ROCK (Rho-kinase) and MLCK in Spatial Regulation of MLC Phosphorylation for Assembly of Stress Fibers and Focal Adhesions in 3T3 Fibroblasts. The Journal of Cell Biology. 2000,150( 4): 797–806.
    56. Somlyo AP and Somlyo AV. Signal transduction and regulation in smooth muscle.Nature.1994, 372: 231–236,.
    57. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, and Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation.J Biol Chem.1997,272:12257–12260.
    58. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J,Nakano T, Okawa K, Iwamatsu A, and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho associated kinase (Rho-kinase). Science. 1996, 273:245–248.
    59. Franco,S.J.,Rodgers,M.A.,Perrin,B.J.,Han,J.,Bennin,D.A.,Critchley, D. R. and Huttenlocher, A. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol.2004,6:977-983.
    60. Miguel Vicente-Manzanares, Donna J. Webb and A. Rick Horwitz .Cell migration at a glance.
    61. Hynes RO.Integrins:versatility, modulation and signaling in cell adhesion. Cell. 1992, 69:11–25.
    62. Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol.1993.5(5):819–31.
    63. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 1995,11:549–99.
    64. Nayal, A., Webb, D. J. and Horwitz, A. F. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 2004,6:94-98.
    65. Zaidel-Bar, R., Cohen, M., Addadi, L. and Geiger, B. Hierarchical assembly of cellmatrix adhesion complexes. Biochem. Soc. Trans. 2004,32:416-420.
    66. Tang D, Mehta D, Gunst SJ. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol. 1999;276(1):C250-C258.
    67. Tang DD, Gunst SJ. Selected contribution: roles of focal adhesion kinase and paxillin in the mechanosensitive regulation of myosin phosphorylation in smooth muscle. J Appl Physiol. 2001,91(3):1452-1459.
    68. Schwartz MA, Shattil SJ. Signaling networks linking integrins and rho family GTPases. Trends Biochem. Sci2000.25(8):388–91.
    69. Schoenwaelder SM, Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol. 1999,11(2):274-286.
    70. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 2003,160(5):753–67.
    71. Ren XD, Kiosses WB, Sieg DJ, Otey CA,Schlaepfer DD, Schwartz MA. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J.Cell Sci. 2000, 113 (20): 36 73–78.
    72. DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 2002,159:881–91.
    73. Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, et al. Rho family GTPases regulate VEGFstimulated endothelial cell motility. Exp. Cell Res.2001, 269:73–87.
    74. Ridley AJ, Hall A. The small GTPbinding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992,70(3):389–99.
    75. Bo Liu, Hiroyuki Itoh, Otway Louie, Kenji Kubota, and K. Craig Kent.The signaling protein Rho is necessary for vascular smooth muscle migration and survival but not for proliferation。Surgery. 2002, 13(2):317-3252.
    76. Kiosses WB, Shattil SJ, Pampori N,Schwartz MA. Rac recruits highaffinity integrinαvβ3 to lamellipodia in endothelial cell migration. Nat. Cell Biol.2001,3:316–20.
    77. Hughes PE, Renshaw MW, Pfaff M,Forsyth J, Keivens VM, et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell.1997,88:521–30.
    1. Astrid Trion, MSc, and Arnoud van der Laarse, Leiden, V.Vascular smooth muscle cells and calcification in Atherosclerosis . The Netherlands .American Heart Journal. 2004, 147(5): 808–814.
    2. Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histology & Histopathology. 2000, 15(2): 557-71.
    3. Paul Holvoet, Peter Sinnaeve, Leuven et al..Angio-associated migratory Cell Protein and Smooth Muscle Cell Migration in Development of Restenosis and Atherosclerosis. Journal of the American College of Cardiology. 2008, 52(4): 312-314.
    4. Willis AI. Pierre-Paul D. Sumpio BE. Gahtan V. Vascular Smooth Muscle Cell Migration: Current Research and Clinical Implications Vascular and Endovascular Surgery, 2004, 38(1): 11-23.
    5. Hedin U. Roy J. Tran PK.Control of smooth muscle cell proliferation in vascular disease. Current Opinion in Lipidology. 2004, 15(5): 559-65.
    6. Song Lia James Jaehyun Moona Hui Miaob Gang Jinb Benjamin P.C. Chenb Suli Yuanb Yingli Hub Shunichi Usamib Shu Chienb. Signal Transduction in Matrix Contraction and the Migration of Vascular Smooth Muscle Cells in Three Dimension- al Matrix. J Vasc Res 2003, 40: 378–388.
    7. Tammy M. Seasholtz, Mousumi Majumdar, Daniel D. Kaplan and Joan Heller Brown. Cell DNA Synthesis and Migration Rho and Rho Kinase Mediate Thrombin Stimulated Vascular Smooth Muscle.Circ. Res. 1999, 84: 1186-1193.
    8. Daniel R. Croft and Michael F Olson. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1,and p27Kip1 Levels by Distinct Mechanisms. MOLECULAR AND CELLULAR BIOLOGY, June 2006, 4612–4627.
    9. Ishizaki T, Maekawa M, Fujisawa K. small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996, 15: 1885–1893.
    10. Matsui T, Amano M, Yamamoto et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996, 15: 2208–2216.
    11. Leung T, Manser E, Tan et al. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes.J Biol Chem. 1995, 270: 29051–29054.
    12. Kensuke Noma, Naotsugu Oyama and James K. Liao.Physiological role of ROCKs in the cardiovascular system.Am J Physiol Cell Physiol. 2006, 290: 661-668.
    13. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S.ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/ threonine kinase in mice. FEBS Lett. 1996, 392: 189–193.
    14. TOSHIMASA ISHIZAKI, MASAYOSHI UEHATA, ICHIRO TAMECHIKA et al.Pharmacological Properties of Y-27632, a Specific Inhibitor of Rho-Associated Kinases. MOLECULAR PHARMACOLOGY. MOL. 2000, 57: 976–983.
    15. Yuepeng Wang, Xiaoyu Rayne Zheng, Nadeene Riddick et al .ROCK Isoform Regulation of Myosin Phosphatase and Contractility in Vascular Smooth Muscle Cells. .Circulation Research. 2009, 104: 531-540.
    16.Jawien A,Bowen-Pope DF,Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 1992, 89: 507–511.
    17. Arber S, Barbayannis FA, Hanser H, et al: Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998; 393: 805-809.
    18. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K Rho-associated kinase ROCK activates LIMkinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 2000, 275: 3577–3582
    19. Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K. LIM kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J. 2001, 354: 149–159
    20. Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem. 2001, 276: 670–676.
    21. Ora Bernard. Lim kinases, regulators of actin dynamics.The International Journal of Biochemistry & Cell Biology. 2007, 39: 1071–1076.
    22. Sumi, T., K. Matsumoto, and T. Nakamura. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 2001, 276: 670–676.
    23. Sumi, T., K. Matsumoto, A. Shibuya, and T. Nakamura. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J. Biol. Chem. 2001, 76: 23092–23096.
    24. Edwards, D.C., L.C. Sanders, G.M. Bokoch, and G.N. Gill. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1999, 1: 253–259.
    25. Sumi, T., K. Matsumoto, and T. Nakamura. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 2001, 276: 670–676.
    26. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and activation of myosin by Rho associated kinase (Rho-kinase). J Biol Chem. 1996, 271: 20246–20249.
    27. Kawano, Y., Y. Fukata, N. Oshiro, M. Amano, T. Nakamura, M. Ito, F. Matsumura,M. Inagaki, and K. Kaibuchi. Phosphorylation of myosin binding subunit (MBS) of myosin phosphatase by rho-kinase in vivo.J. Cell Biol. 1999, 147: 1023–1038.
    28. Disruption of Rho signal transduction upon cell detachment. Xiang-Dong Ren, Ruixue Wang, Qinyuan Li, Lobna A. F. Kahek, Kozo Kaibuchi and Richard A. F. Clark.Journal of Cell Science 2004, 117(6): 3511-3518.
    29. Kamm, K.E., and J.T. Stull. 2001. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 2001, 276: 4527–4530.
    30. Jin, Y., E.K. Blue, S. Dixon, L. Hou, R.B. Wysolmerski, and P.J. Gallagher. Identification of a new form of death-associated protein kinase that promotes cell survival. J. Biol. Chem. 2001, 276: 39667–39678.
    31. Chew, T.L., R.A. Masaracchia, Z.M. Goeckeler, and R.B. Wysolmerski. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J. Muscle Res. Cell Motil. 1998, 19: 839–854.
    32. Murata-Hori, M., F. Suizu, T. Iwasaki, A. Kikuchi, and H. Hosoya. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999, 451: 81–84.
    33. Yamashiro, S., G. Totsukawa, Y. Yamakita, Y. Sasaki, P. Madaule, T. Ishizaki, S.Narumiya, and F. Matsumura. Citron kinase, a Rho-dependent kinase,induces di-phosphorylation of regulatory light chain of myosin II. Mol.Biol. Cell. 2003, 14:1745–1756.
    34. Sumi, T., Matsumoto, K., & Nakamura, T.. Mitosis-dependent phosphorylation and activation of LIM-kinase 1. Biochem. Biophys.Res. Commun. 2002, 290: 1315–1320.
    35. Amano, T., Kaji, N., Ohashi, K.,&Mizuno, K. Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J. Biol.Chem. 2002, 277: 22093–22102.
    36. Croft, D. R., & Olson, M. F. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.Mol. Cell Biol. 2006, 26: 4612–4627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700