水泥基材料热膨胀及热疲劳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基材料是一种非均质的多相复合材料,其中各种组成材料的热膨胀性能存在差异性。环境温度发生变化时,材料内各组分间会产生不均匀热膨胀,并产生界面热应力,导致界面出现微裂纹,严重时甚至引起结构失效。本文着重研究水泥基材料组分热膨胀性能的差异及其热相容性,观察水泥基材料在热循环作用下的热疲劳效应,并在深入研究了硬化水泥石热膨胀性能及其机理的基础上,调节材料各组分热膨胀的协调性。
     试验结果表明,在20~85℃的温度范围内,硬化水泥浆的线膨胀系数是粗集料的二倍多,两者的热膨胀性能存在明显的差异。微观上,多次热循环后,热裂纹出现于界面过渡区,并且沿集料边缘方向扩展,微裂纹宽度随热循环次数增加而增大。宏观上,水泥基材料的抗压强度随热循环次数的增加而逐渐下降。
     硬化水泥石的热膨胀率和热膨胀系数随水灰比的增大而减小。粉煤灰、矿粉、硅灰和偏高岭土等矿物掺和料的加入,均可不同程度的降低硬化水泥石的热膨胀率和热膨胀系数,其降低程度随矿物掺和料掺量的增加而增大。掺加碳纤维或聚丙烯纤维,对水泥石热膨胀的限制作用大致相当。聚合物乳液对硬化水泥石的热膨胀性能的限制作用,因其种类和性质的不同而改变。
     硬化水泥石的热膨胀系数随着水灰比的增大而不断降低,主要是由于水灰比的增大导致水泥石内孔隙增多,较多的孔隙为材料的膨胀提供了较大的缓冲空间。矿物掺和料的掺入可降低水泥浆体Ca(OH)2(CH)含量并改变其孔隙率,从而有效的限制硬化水泥石的热膨胀性能,其中CH含量对水泥石热膨胀性能的影响大于孔隙率的影响。纤维对硬化水泥石热膨胀性能的限制作用,主要是由于纤维具有较低的热膨胀系数,并且纤维与水泥浆体黏结成一体相互约束。聚合物的种类、掺量都会不同程度的降低水泥石的热膨胀率和热膨胀系数,这是由于聚合物在C-S-H凝胶和未水化水泥颗粒表面形成了一层密实的聚合物薄膜,并且增强材料韧性,从而降低水泥石自身的热膨胀系数。
A cement-based composites may be regarded as a highly heterogeneous material system with multiple components that have different thermal expansion properties. The thermal expansion divergence of components are generated in the cement-based composites.When the temperature changes, the thermal induced deterioration into the cement-based materials will happen due to this effect, such as the thermal induced stress and micro-or macro-scale cracking, even the structure damage. In this paper, the thermal expansion divergence of components was measured, and both thermal expansion differences were explored. The microstructure of the cement-based composites was observed after some thermal cycles.With in depth research in the thermal expansion properties and mechanism of the hardened cement paste, thermal expansion incompatibility of components was adjusted.
     It comes to conclusion that, thermal expansion coefficient of hardened cement paste is over two times than that of aggregate, which proved that the thermal expansion divergence of components happens subjected to the temperature change. After thermal cycles, the thermal induced microcrack appeared and propagated along interfacial transition zone between hardened cement paste and aggregate, and the width of microcrack was enlarged with the increase of thermal cycles in microscopic scales. The compressive strength of cement-based materials decreases with the increase of thermal cycles in macroscopic view.
     The thermal dilation rates (TDR) and coefficient of thermal expansion (CTE) of hardened cement pastes (HCP) decreases with the increase of the water-cement ratio. Replacing Portland cement with mineral admixtures (fly ash, ground granulated blastfurnace slag, silica fume and metakaolin) were found to lower the TDR and CTE of HCP, the extent of this lowering effect increases with the increasing replacement proportions of mineral admixtures in the pastes.Carbon fiber and polypropylene fiber were also found to lower the TDR and CTE of HCP, the lowering effect were similar. The polymer latex could also limit thermal expansion properties of HCP, the restriction effect differ from the types and properties of the polymer latex.
     The CTE of HCP decreases with the increase of the water-cement ratio for the higher water-cement ratio lead to the more pore in HCP, which supply buffer space for the dilation of materials. The restriction of the mineral admixtures to the thermal expansion properties of HCP are mainly due to the change of the porosity and the amount of portlandite (CH) in the pastes, among which, CH content is more important than porosity as a factor affecting the CTE of the cement paste. It is revealed that the fibers could lower the TDR and CTE of HCP because of the lower CTE of fibers, furthermore the fibers and cement paste are binding together. The types and amount of the polymer latex could lower the TDR and CTE in different extent, this is because the polymer film is formed by polymer latex on the surface of the C-S-H gel and unhydrated cement particles, so the CTE of HCP is lowered and the toughness of HCP is reinforced.
引文
[1]朱伯芳,王同生,丁宝瑛.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976:142-145.
    [2]于淑秋.近50年我国日平均气温的气候变化[J].应用气象学报,2005,16(6):787-793.
    [3]新疆气象[web].www.xjgx.gov.cn.
    [4]马新伟,钮长仁.混凝土硬化早期热膨胀的量化方法研究[J].低温建筑技术,2005,(2):8-9.
    [5]姚武,郑欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007,35(1):77-81.
    [6]ErlandM.Schulson, IanP.Swainson, Thomas M.Holden.Internal stress within hardened cement paste induced through thermal mismatch Calcium hydroxide versus calcium silicate hydrate[J].Cement And Concrete Research,2001,31:1785-1791.
    [7]关振铎,张太中,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:119-131.
    [8]熊兆贤.材料物理导论[M].北京:科学出版社,200:159-62.
    [9]Y.S.杜洛金.固体热物理性质导论——理论和测量[M].北京:中国计量出版社,1987:280-319.
    [10]Barnes P. Structure and Performance of Cements[M].Applied Science Publishers LTD,1983: 290-301.
    [11]Sidney Mindess J, Francis Y, David Darwin. Concrete[M].Prentice-Hall INC,2003:77-91.
    [12]吴兆琦.硅灰对C3S水化的影响[J].硅酸盐学报,1985,13(1):135-143.
    [13]Massazza F, Diamon M. Chemistry of Hydration of Cements and Cementitious Systems. Proccedings of 9th International Congress on the Chemistry of Cement. [C].New Delhi.1992: 169.
    [14]Grudemo A. Discussion of the Structre of Cement Hydration Compounds. Proceeding of the Third International Symposium on the Chemistry of Cement [C].London.1952:247.
    [15]Taylor H F W. Nanostructre of C-S-H:Current Status[J].Adv Cem Bas Mater,1993,1: 38-46.
    [16]Wieker W, Hurbert C, Heidemann D.Recent Research of Solid-State NMR. Investigations and Their Possibilities of Use in Cement Chemistry[C].Sweden.1997.
    [17]Grutzeck M W, Larosa T J, Kwan S.Characteristice of C-S-H gels. Proceeding of the 10th ICCC[C],Sweden, Gothenburg.1997.
    [18]Stade H, Wiecker W, On the structure of ill-crystallized calcium hydrogen silicates. I. Formation andproperties on an ill-crystallized calcium hydrogen disilicate phase (in German) [J].Z. Anorg.Allg.Chem.1980,466:55-70.
    [19]Viehland D, Li JF, Yirlet J. Mesostructure of Calcium Silicate Hydrate(C-S-H) Gels in Portland Cement Paste:Short-range Ordering, Nanocrystallinity, and Local Compositional Order[J].Am Ceram Soc,1996,79(7):1581-1590.
    [20]Parrott L J, Kantro M G.A development of the molybdate complexing method for the analysis of silicate mixtures[J].Cem.Concr.Res.,1979,(9):483-488.
    [21]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990.
    [22]杨南如.C-S-H凝胶结构模型研究新进展[J].南京化工大学学报,1998,20(2):78-85.
    [23]Schneider J, Cincotto M A, Panepucci H.29Si and 27Al High-resolution NMR Characterization of Calcium Silicate Hydrate Phases in Activated Blast-Furnace Slag Pastes[J].Cem.Concr.Res.,2001,31(7):993-1000.
    [24]Tsuji M, Komarneni S.et al.27Al and 29Si MAS NMR, Cation Exchange, and Water Sorption Studies[J].Am.Ceram.Soc,1991,74(2):274-279.
    [25]Kawaguchi T, Nakane S.Investigation on Determining Thermal Stress in Massive Concrete Structures[J].ACI Materials Journal,1996,93(1):23-31.
    [26]Richardson I G, Groves G W. The Composition and Structure of C-S-H in Hardened Slag Cement Pastes. Proceedings of the 10th ICCC, vol Ⅱ[C].Sweden, Gothenburg:1997.
    [27]Taylor H F W. Proposed Structure for Calcium Silicate Hydrates Gel[J].Am Ceram Soc, 1986,69(6):464-467.
    [28]Young J.Transp F[J].Res.Rec.,1976(9):564.
    [29]Ghorab H Y, Kishar E A, Abou Elfetouh S H. Studies on the Stability of the Calcium Sulphoaluminate Hydrate, Part Ⅱ:Effect of Alite, Lime, and Monocarboaluninate Hydrate[J]. Cem Coner Res.,1998,28(1):53-61.
    [30]Ghorab H Y, Kishar E A, Abou Elfetouh S H. Studies on the Stability of the Calcium Sulfoaluminate Hydrate,PartⅢ:the Monophases[J].Cem Coner Res,1998,28(5):763-771.
    [31]Diamond S.Proceedings of Fifth International Symposium on the Chemistry of Cement PartⅢ[C].Tokyo:1968:33.
    [32]陆平.水泥材料科学导论[M].上海:同济大学出版社,1989:145-156.
    [33]Verbeck G J. "Pore Structure" Significance of Tests and Properties of Concrete and Concrete-making Materials[C].Philadelphia:American Society for Testing and Materials.1978,(169):262-274.
    [34]Taylor H F W. Do cement paste contain substituted C-S-H. Advances in Cement Manufacture and Use[C].New York:Edited by Gartner E. Engineering Foundation.1998.
    [35]Powers T C. Physical properties of cement paste Proceedings of The fourth International Symposium on The Chemistry of Cement[C].Washington,1960.
    [36]廉慧珍,董良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [37]Ramachandran V S,Fedman R F, Beaudoin J J.黄士元,等.译.混凝土科学[M].北京:中国建筑工业出版社,1986.
    [38]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990.
    [39]林志海,覃维祖,张士海,等.混凝土早期应力发展与抗裂性能评价[J].建筑技术,2003,34(1):34-35.
    [40]Meyers SL.,Thermal Expansion Characteristics of Hardened Cement Paste and of Concrete[J].Proc Highway Res Board 1950,30:193-200.
    [41]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005:393-397.
    [42]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004:343-347.
    [43]Liu Deanmo, Yang Quanzu, Troczynski Tom, et al.Structural evolution of sol-gel-derived hydroxyapatite [J].Biomaterials,2002,23:1679.
    [44]丁士卫.水泥石热变形性能试验研究[D].南京:东南大学,2006.
    [45]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:200-201.
    [46]A.M.内维尔,李国泮,马贞勇译.混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [47]周啸尘.温度对混凝土变形影响的机理[J].山东矿业学院学报(自然科学版),1999,18(4):114-116.
    [48]Lars Kraft, Hakan Engqvist, Leif Hermansson.Early-age deformation,drying shrinkage and thermal dilation in a new type of dental restorative material based on calcium aluminate cement[J].Cement and Concrete Research,2004(34):439-446.
    [49]Glisic B,Simon N.Monitoring of Concrete at Very Early Age Using Stiff SOFO Sensor[J]. Cement&Concrete Composites,2000,22(12):115-119.
    [50]玄东兴,水中和,曹蓓蓓,连丽.水泥基材料组分热膨胀差异性研究[J].武汉理工大学学报,2007,29(1):30-32.
    [51]王华生,赵慧如.混凝土技术禁忌手册[M].北京:中国机械工业出版社,2003.
    [52]马新伟,钮长仁.混凝土硬化早期热膨胀的量化方法研究[J].低温建筑技术,2005,(2):8-9.
    [53]Turcry P, Loukili A, Barcelo L, et al. Can the Maturity Concept be Used to Separate the Autogenous Shrinkage and the Thermal Deformation of a Cement Paste at Early Age?[J]. Cement and-Concrete Research,2002,(32):1443-1450.
    [54]Schutter G De. Finite Element Simulation of Thermal Cracking in Massive Hardening Concrete Elements Using Degree of Hydration Based Material Laws[J].Computers and Structures,2002,(80):2035-2042.
    [55]丁士卫,钱春香,陈德鹏.水泥石热变形性能试验[J].东南大学学报(自然科学版),2006,(1):113-117.
    [56]许溶烈.近代混凝土技术[M].陕西科学技术出版社,2002:171-179.
    [57]李清海.硬化水泥基材料热膨胀性能的研究[D].北京:中国建筑材料科学研究总院,2007.
    [58]水中和,万惠文.老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅰ)[J].武汉理工大学学报,2002,24(4):21-24.
    [59]Hansen T C. Physical structure of hardened cement paste[J].A Classical Approach Material Structure,1986,19(114):42.
    [60]Srivastava S K. Model for Evaluating and Predicting Thermal Expansivity at High Temperatures for Geophysical Minerals[J].Physica B,2005,355(1/2/3/4):32-36.
    [61]Zolders N.G.Thermal properties of hardened portland cement paste [M].ACISP-25,1972.
    [62]Jan B.Benefits of Slag and Fly Ash[J].Constr Build Mater,1996,10(5):309-314.
    [63]B.B.Sabir, S.Wild, J.Bai. Metakaolin and calcined clays as pozzolans for concrete:a review [J].Cem Concr Compos,2001,23:441-454.
    [64]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究[J].建筑材料学报,2004,7(2):215-220.
    [65]Gao G.Qian C, Zhu C, Ding S.Research on influence factors of coefficient of thermal expansion of concrete.4th International Conference on Structural Engineering and Construction[C].Melbourne:Innovations in Structural Engineering and Construction,2007: 567-572.
    [66]叶铭勋,HootonRD.矿碴、粉煤灰和硅灰对硬化水泥浆体孔隙率的影响[J].硅酸盐学报,1990,18(2):179-183.
    [67]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [68]Lannley W S,Careme G G.Malhotra V M. Structural Concrete Incorporating High Volumes of ASTM Class F fly Ash[J].ACI Malerial Journal,1989,(86):507-514.
    [69]胡家国,古德生等.粉煤灰胶凝性能的探讨[J].金属矿山,2003,(6):48-52.
    [70]Khatib J M, Wild S.Pore size distribution of metakaolin paste[J].Cem Concr Res,1996, 26(10):1545-1553.
    [71]Castellote M, Alonso C, Andrade C, Turrillas X, Campo J. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction[J].Cem Concr Res, 2004,34(9):1633-1644.
    [72]Alarcon-Ruiz L, Platret G.Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste[J].Cem Concr Res,2005,35(3):609-613.
    [73]Handoo SK, Agarwal S,Agarwal SK. Physicochemical, miner-alogical, and morphological characteristics of concrete exposed to elevated temperatures[J].Cem Concr Res 2002,32(7):1009-1018.
    [74]Chang Jun, Cheng Xin, Lu Lingchao, Liu Futian, Zhu Jianping. The influences of two
    admixtures on white and colored Portland cement[J].Cem Concr Res,2001,31:1367-1372.
    [75]Alonso C, Fernandez L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J].Mater Sci,2004,39:3015-3024.
    [76]H. Xu, Y. Zhao, S.C. Vogel, L.L. Deamen, D.D.Hiockmott. Anisotropic thermal expansion and hydrogen bonding behavior of portlandite:A high-temperature neutron diffraction study[J].Solid State Chem.2007,180:1519-1525.
    [77]Henry L. Alder, Edward B.Roessler. Introduction to Probability and Statistics. W. H[C].San Francisco:Freeman and Company,1976:245-262.
    [78]Johnst on C D. Fiber reinforced cements and concretes[C].London:Gordon and Breach Science Press,2001.
    [79]惠尼特J M.纤维增强复合材料实验力学.张弘生译.[M].北京:北京科学出版社,1990
    [80]贺建芸,刘亚康.SF-TPU复合材料线热膨胀性能研究[J].北京化工大学学报,2000,27(4):59-62.
    [81]R.Y.Luo, T. Liu, J.S Li et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J].Carbon,2004,42(14): 2887-2895.
    [82]姚立宁.碳/芳纶纤维混凝土热性能研究[J].暨南大学学报,1999,20(1):486-491.
    [83]申爱琴,李祝龙,王小明.聚合物乳液改性水泥混凝土的微观结构[J].混凝土,2001,(3):40-42.
    [84]Strella S,Erhardt P F. Rate effects in the measurement of polymer transitions by differential scanning calorimetry[J].Journal of Applied Polymer Science,1969,13(7):1373-1380.
    [85]Z.Su, J.M.J.M.Bijen, A.L.A.Fraaij.The interaction of polymer dispersions with Portland cement paste [C].The MRS Symposium Proceedings,1992,289:199-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700