基于能量管理的高超声速飞行器弹道设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器是一种基于助推-滑翔概念的超声速跨大气层飞行器,是一种非常规弹道、能突破防御系统或航空母舰战斗群防线的精确制导武器。本文针对高超声速飞行器的再入滑翔段的弹道进行了分析和设计,通过引入末端能量管理的概念,在飞行器的再入滑翔段加入形机动,以增加飞行器的机动能力,并对飞行器的弹道进行了仿真与分析。完成的工作如下:
     介绍助推—滑翔式导弹的研究背景、助推—滑翔式导弹的研究对我国军事以及民用方面的重大作用和目前国内外有关部门研究的现状。
     在初始条件下,考虑了简化条件,在假设地球是均质圆球的基础上,建立了高超声速飞行器再入滑翔段质心的动力学方程和运动学方程。利用三自由度仿真对飞行器以最大升阻比飞行时的弹道进行仿真分析。
     借鉴美国航天飞机TAEM段的设计方法,针对高超声速飞行器的再入滑翔段具有高速度、高能量、速度的变化对飞行器能量的影响较大等特性,采用基于能量—射程剖面的能量管理办法,对在高超声速飞行器的再入滑翔段加入形机动进行了初步设计。采用美国通用大气飞行器(Commo-nAeroVehicle, CAV)的气动参数作为参考,对形机动弹道进行了三自由度仿真分析,并与原初始弹道进行了比较,从仿真结果可得,基于能量管理的方法,可以有效的对飞行器实施减速控制,并进行形机动。
Hypersonic glide spacecraft is one type of supersonic stride aerosphere vehicle that based on supersonic volplane trajectory conception, is a type of unconventionality trajectory, breaking through contravallation or aircraft carrier battle group line of defense precision-guided weapon. This paper analysis and design for hypersonic glide vehicle’s reentry glide section trajectory. For the concept of energy management of the extremity, adding the S maneuvering on the vehicle reentry glide section increase the mobility of vehicle. And carry out the simulation and analysis of the trajectory of vehicle.
     First, introducing the background of hypersonic gliding vehicle, and the important role of its research on our military and civilian use and the current status of relevant departments at home and abroad.
     Secondly, the general kinetics equation of the hypersonic gliding vehicle in reentry glide section have been established. And the gentroid dynamic equation and kinematics equations have been also established in half speed frame.
     Thirdly, the use of three-degree-of-freedom simulation can do analysis of the ballistic of a vehicle flying with maximum lift-drag ratio.
     Fourthly, for the analysis TAEM paragraph of the space shuttle, we take into account the similarity of the gliding hypersonic vehicle re-entry of space shuttle glider TAEM paragraph above and vehicle re-entry glider paragraph, and introduce the concept of energy management. As hypersonic glider vehicles in the beginning with high gliding speed, according to the weight of the aircraft unit of energy expression, we can see that the rate of change on the impact of higher energy vehicle, which was established in the mobile TAEM shaped section of the program.
     Fifthly, taking the U.S. General atmospheric vehicle (Common Aero Vehicle, CAV) as a reference of the aerodynamic parameters, we take the simulation of the motor form a three-degree-of-freedom trajectory, and the original compared to the initial trajectory, the simulation results reveal that based on energy management method, we can effectively slow down the implementation of the vehicle control, and motor-shaped.
     Finally, the full text of the work are summarized and explained the insufficiency in this paper and the need for further research.
引文
1 Erbland P J, Duffield C, HomanD,etal. Technology development roadmap for the space operations vehicle. AIAA Space 2001 Conference and Exposition. Albuquerque, NM, Aug. 28-30, 2001. 2 001-4 604
    2 Stephen L. The space maneuver vehicle: enhancingspace’s utility to thewarfighter. ADA paper, 2001,ADA4-04007
    3 George Richie. The common aero vehicle: space deliverysystem of the future. AIAA SpaceTechnologyConference and Exposition. Albuquerque, 28-30 Sept.1999, 99-4 435
    4 FALCON, Force application and launch from CONUS. Proposer information pamphlet (PIP) for BAA solicitation. 03-35, 2003
    5 Ramon Chase,Ming Tang.The quest for single stage earth-to-orbit:TAV, NASP, DC-X and X-33 accomplishments,deficiencies, and why they did not fly[R]. AIAA-2002-5143
    6 Chase R L, Tang M H. A history of the NASP program form the formulation of the joint program office to the terminationof the HySTP scramjet performance demonstration program[R]. AIAA-95-6031
    7 Phillips Terry,O’Leary Bob.Common aero vehicle(CAV)on orbit[M].2003-09
    8 Force application and launch from CONUS PHASE I[R].BAA Solicita-tion,03-35,2003-07-29
    9 Bomber S. http: //www. astronautix. com /lvs/saenger.htm, 2009
    10 Tsien Spaceplane 1949. http: //www. astronautix. com /craft/tsie1949. htm, 2004
    11 Sanger E, Bredt I. A Rocket drive for long-range bombers, Translation CGD-32,Washington: Technical Information Branch, U. S. Navy Bureau of Aeronautics,1952
    12 Bom.i http: //www. astronautix. com /craft/bom.i htm,2009
    13 Steven R. Strom. TheHistory of the Dyna-Soar. http: //www. aero. org /publications/ crosslink/winter2004/01.htm,l 2009
    14 Cliff Lethbridge. ALPHA DRACO Fact Sheet. http: //www. spaceline. org/rocketsum /draco. htm,l 2003
    15 BoostGlide Re-entry Vehicle. http: //www. astronautix.com /craft/boo hicle. htm, 2000
    16 Lockheed HGV. http: //www. designation-systems. net/dusrm /app4/hg v. htm,l 2003
    17 PhillipsT. A CommonAeroVehicleMode,l Description,and EmploymentGuide. http: //www. dtic.Mil/matris/sbir/sbir041/srch/af03 1a. doc, 2003
    18 Mikoyan MiG 105 Spiral& 50-50. http: //www. deepcold. com /deep cold/spiral_main. htm,l 2001
    19 CarterP H, Pines D J, Rudd L V.Approximate Performance ofPeriodicHypersonic CruiseTrajectories forGlobal Research[A].AIAA International Space Planes and Hypersonic Systems and Technologies Conference[C]. Norfolk, 1998. 1-13
    20贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993. 78-91
    21 Vinh N X,Kuo Z S. Improved Matched Asymptotic Solutions for Three-Dimensional Atmospheric Skip Trajectories.AIAA/AASA strodynamics Conferen-ce. San Diego,CA, 1996. 212-223
    22 McinnesC R. Aero-Assisted Trajectories for Direct Launch Syst-ems. Acta Astronautica, 1994, 32(6): 411-417.Variable Specific Impulse Thrusters Generated by Multi Objective Evolutionary Algorithms and Nonlinear Program-ming. Advances in the Astronautical Sciences, 2005,119( 2) 587-2 598
    23 Hussein Y, Rajiv C. Hypersonic global reach trajectory optimi-zation. AIAA-2004-5167
    24 Terry Phillips. Common aero vehicle (CAV) on orbit.www. dodsbir. net/sitis/view_pd.f asp? id = af031d.doc, 2003
    25 Richie G, Springs C. The Common Aero VehicleSpace delivery system of the future[R]. AIAA-1999-4435
    26 Alfred E J, Jr, AllenH Julian, Stanford N E. A comparative analysis of the performance of long-range hypervelocity vehicles[R]. NACA Research Memorandum,Washington: National advisory committee forAeronautica,l 1955
    27 SavinoR, Mario De Stefano Fumo. Aerothermodynamicstudy ofUHTC-based thermal protection systems[ J].Aerospace Science and Technology, 2005, 9(2):12~16
    28 Armellin R, LavagnaM. Aerogravity Assist Maneuvers Coupled Trajectory and Vehicle Shape Optimization[J].Journal of Spacecraft and Rockets, 2007, 44(5):19~20
    29 Manor D, Lau Y K. Aerothermodynamic Environments and Thermal Protection for a Wave-Rider Second Stage[J]. Journal of Spacecraft and Rockets, 2005, 42(2):26~29
    30 Senent Juan, Ocampo Cesar, Capella Antonio. Low-Thrust Variable-Specific-Impulse Transfers and Guidance to Unstable Periodic Orbits. Journal of Guidance, Control land Dynamics, 2005, 28(2): 280-290
    31 Seywald Hans, Roithmayr Carlos M, Troutman Patrick A. Fuel-Optimal Orbital Transfers for Variable Specific Impulse Powered Spacecraft[J].Advances in the Astronautical Sciences, 2003, 114: 347-364
    32 Seywald Hans,Roithmayr CarlosM, Troutman Patrick A,et al. Fuel-Optimal Transfers between Coplanar CircularOrbitsUsingVariable-Specific-Impulse Engines. Journal of Guidance, Contro,l and Dynamics, 2005, 28 (4):795-800
    33赵汉元.飞行器再入动力学和制导.长沙:国防科技大学出版社,1997:69~76
    34王希季.航天器进入与返回技术.北京:宇航出版社,1991:89~95
    35张明廉主编.飞行控制系统北京:国防工业出版社,1984:23~29
    36赵汉元.航天飞机轨道飞行器末端飞行时的制导方法.国防科技大学资料,1990:32~36
    37秦之瑾,张宗美.俄罗斯的白杨-M洲际弹道导弹.导弹与航天运载技术. 2001,(1):67~76
    38关世义.基于钱学森弹道新概念飞航导弹.飞航导弹, 2003, (1):122~134
    39雍恩米,陈磊,唐国金.助推-滑翔弹道的发展史及基于该弹道的制导武器方案设想.飞航导弹,2006,(3):78~99
    40雍恩米,唐国金,陈磊.助推-滑翔式导弹中段弹道方案的初步分析,国防科技大学学报, 2006, 28(6):12~19
    41李瑜,杨志红,崔乃刚.助推-滑翔导弹弹道优化研究.宇航学报, 2008, 29(1):23~26
    42南英,陈士槽.航天器再入轨迹与控制进展.导弹与航天运载技术,1994;(5):l~10
    43张守信,冯书兴.载人航天器的再入制导控制与仿真计算.中国空间科学技术1995;(2):14~22
    44江驹,吴树范,龚华军.基于模糊逻辑控制的航天器返回段姿态控制.南京理工大学学报,2001,25(l):19~23
    45吴树范,沈勇璋,郭锁凤.飞机总能量控制系统的研究II—非线性控制律综合与仿真航空学报,1994;15(9):1043~1050
    46刘晓恩. 2002年空间系统攻防对抗技术发展动态.中国航天, 2003, (5): 27~28
    47梁兆宪,沈世禄.从国际空间法看空间攻防对抗.装备指挥技术学院学报, 2004, (2): 41~45
    48肖福根.在未来空间攻防战中的天基武器技术.国防技术基础, 2002, (4): 7~9
    49 SHEN Hong-liang, TAO Ju, WEI Li-xin, LIU Chang. Optimal design of autolanding trajectory for spaceshuttle. Flight Dynamics, 2004,22(1):25~33
    50 Lopez,R.Unmanned Vehicles(Pegasus UCAV set to fly thisyear).FLIGHTINTERNATIONAL,2001-08-07~13
    51 Scholz Edwin,Duffey John,Sasso Steven,et al. Overview of SOV concepts and technology needs.AIAA 2003-5120
    52 Hatakeyama S Jason,McIver Keith L,Embler Jonathan D,et al.Operab-ility sensitivities of airbreathing and rocket propulsion for a two-stage-to-orbit space operations vehicle.AIAA 2002-3903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700