髓腔内途径输注脐带血造血干/祖细胞能有效提高其于异种移植NOD/SCID小鼠体内的植活能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脐带血(UCB)因其来源丰富且制备便利,已成为可供临床移植用造血干/祖细胞(HS/PCs)的重要替代来源。UCB及UCB移植(UCBT)正日益受到国内外学者的高度重视,迄今全球逾4,000例患者接受UCBT。累积的临床研究结果显示,与动员外周血干细胞移植(mPBSCT)及骨髓移植(BMT)受者比较,高达10%~20%UCBT受者未植活,且植活者外周血中性粒细胞及血小板水平恢复明显延迟,二者显著增加了UCBT后移植相关死亡率(TRM)。新近的研究报道证实导致上述负面疗效的主要因素为UCBT受者低CD34~+细胞输注剂量。
     UCB HS/PCs体外SDF-/CXCR-4介导的迁移能力低下,若采用高效的髓腔内途径(iBMI)输注UCB HS/PCs(iBMT-UCBT)可能有助于提高其于异种移植NOD/SCID小鼠体内植活能力。将不同数量UCB HS/PCs经iBMT方式移植入亚致死剂量照射NOD/SCID小鼠体内,移植后8周人造血细胞于受鼠体内植活良好,包括输注部位右侧胫骨(R-tibia),非输注部位右侧股骨(R-femur)、左侧胫骨(L-tibia)、左侧股骨(L-femur)、脾脏及外周血。剂量依赖实验证实将同一来源1×10~4 CD34~+细胞分别经常规静脉输注法(iVI)及iBMI途径移植于照射NOD/SCID小鼠体内,移植后8周人造血细胞于iBMI-UCBT受鼠植活度优于iVI-UCBT受鼠;输注HS/PCs数量降至1×10~3 CD34~+细胞时,移植后8周人造血细胞仅于iBMI-UCBT受鼠体内植活。动态移植实验显示将适宜数量HS/PCs(0.5×10~4 CD34~+细胞)分别经iVI及iBMI途径移植入照射NOD/SCID小鼠体内,移植后3周及8周iBMI-UCBT受鼠体内人造血细胞植活度较iVI-UCBT受鼠分别高达3~20倍。碳青花(Dil-CM)标记实验及流式细胞术(FACS)分析研究进一步分别证实CD34~+细胞及CD34~+AC133~+CD38~-细胞经iBMI方式输注于R-tibia后可迅速分布于iBMI-UCBT受鼠全身各部位造血微环境。体内归巢研究结果颇有意义,移植后60小时CFSE标记的UCB CD34~+细胞于iBMI-UCBT受鼠的骨髓种植
Umbilical cord blood (UCB) has been proved to be an alternative source of hematopoietic stem/progenitor cells (HS/PCs) for patients without matched sibling donors due to their main practical advantages of relatively ease of procurement and available for immediate use. Clinical experience provides further evidence to increase awareness of hematologists worldwide to use UCB transplantation (UCBT) to treat patients with hematological malignancies, more than 4,000 UCBTs have been performed worldwide to date. But compared with bone marrow transplantation (BMT) and mobilized peripheral blood stem cell transplantation (mPBSCT) recipients, UCBT recipients have the severely delayed neutrophil and platelet recoveries due to their slow engraftment leading to high risks of infectious and bleeding complications together with a documented 10 to 15 percent graft failure rate increased dramatically post-UCBT transplantation-related mortality (TRM). Recently, the importance of low graft CD34 cell dose has been clarified in determining poor outcome after unrelated donor UCBTs. Introducing limited number of hematopoietic stem/progenitor cells (HS/PCs) from UCB directly into bone marrow microenvironment by efficient use of intra-bone marrow injection (iBMI) strategy might produce desirable human cell engraftment in xenotransplanted NOD/SCID mouse model. Superior
    8-week-engraftment was observed in injected bone (R-tibia) as well as non-injected bones (including R-femur, L-tibia and L-femur), spleen and peripheral blood in iBMI-UCBT recipients. More superior 8-week-engraftment was observed in
引文
1. Forman SJ, Blume KG, Thomas ED, eds. Bone Marrow Transplantation. Cambridge, MA: Blackwell Scientific Publications; 1994.
    
    2. Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med. 2001; 344:175-181.
    3. Schmitz N, Bacigalupo A, Hasencleaver D, et al. Allogeneic bone marrow transplantation VS filgrastim-mobilized peripheral blood progenitor cell transplantation in patients with early leukemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 1998; 21:995-1003.
    4. Smith TJ, Hillner BE, Schmitz N, et al. Economic analysis of a randomised clinical trial to compare filgrastim-mobilized peripheral blood progenitor cell transplantation and autologous bone marrow transplantation in patientswith Hodgkin's and non-Hodgkin's lymphoma. J Clin Oncol. 1997; 15: 5-10.
    5. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197-204.
    6. Vormoor J, Lapidot T, Pflumio F, et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood. 1994; 83:2489-2497.
    7. Hogan CJ, Shpall E, McNulty O, et al. Engraftment and development of human CD34~+ enriched cells from umbilical cord blood in NOD/LtSz-scid mice. Blood. 1997; 90: 85-96.
    8. Noort WA, Willemze R, Falkenburg JHF. Comparison of repopulating ability of hematopoietic progenitor cells isolated from human umbilical cord blood or bone marrow cells into NOD/scid mice. Bone Marrow Transplant. 1998; 22:S58-S60.
    9. Wang JCY, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood. 1997; 89: 3919-1345.
    10. Rice AM, Wood JA, Milross CG, et al. Prolonged ex vivo culture of cord blood CD34~+ cells facilitates myeloid and megakaryocytic engraftment in the non-obese diabetic severe combined immunodeficient mouse model. Br J Haematol. 2001;114:433-443.
    11. Hogan CJ, Shpall EJ, McNulty O, et al. Engraftment and development of human CD34~+-enriched cells from umbilical cord blood in NOD/LtASz-scid/scid mice. Blood. 1997; 90: 85-96.
    12. Xu RL, Reems JA. Umbilical cord blood progeny cells that retain a CD34+ phenotype after ex vivo expansion have less engraftment than unexpanded CD34+ cells. Transfusion. 2001; 41:213-218.
    13. Ueda T, Yoshino H, Kobayashi K, et al. Hematopoietic repopulating ability of cord blood CD34~+ cells in NOD/Shi-scid mice. Stem cells. 2000;18:204-213.
    14. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical- cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174-1178.
    15. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord blood transplantation from related and unrelated donors. N Engl J Med. 1997; 337:373-381.
    16. Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996; 335: 157-166.
    17. Locatelli F, Rocha V, Chastang C, et al. Factors associated with outcome after cord blood transplantation in children with acute leukemia. Blood. 1999; 93: 3662-3671.
    18. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental blood transplants from unrelated donors. N Engl J Med. 1998; 339: 1565-1577.
    19. Rubinstein P, Taylor PE, Scaradavou A, et al. Unrelated placental blood for bone marrow reconstitution: organization of the placental blood program. Blood Cells. 1994; 20:587-600.
    20. Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002; 100:1611-1618.
    21. Barker JN, Weisdorf DJ, DeFor TE, McGlave PB, Wagner JE. Multiple unit unrelated donor umbilical cord blood transplantation in high risk adults with hematologic malignancies: impact on engraftment and chimerism [abstract]. Blood. 2002;100(suppl 1):41a. Abstract 142.
    22. Ballen KK, Valinski H, Greiner D, et al. Variables to predict engraftment of umbilical cord blood into immunodeficient mice: usefulness of the non-obese diabetic-severe combined immunodeficient assay. Br J Haematol. 2001; 114:211-218.
    23. Bonnet D, Bhatia M, Wang JCY, Kapp U, Dick JE. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/scid mice. Bone Marrow Transplant. 1999; 23:203-209.
    24. Rice AM, Wood JA, Milross CG, Collins CJ, McCarthy NF, Vowels MR. Conditions that enable human hematopoietic stem cell engraftment in all NOD-scid mice. Transplantation. 2000; 69:927-935.
    25. Cashman JD, Lapidot T, Wang JC, et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood. 1997; 89: 4307-4316.
    26. Gothot A, van der Loo JC, Clapp DW, Srour EF. Cell cycle-related changes in repopulating capacity of human molibized blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood. 1998; 92:2641-2649.
    27. Perz LE, Rinder HM, Wang C, Tracey JB, Maun N, Krause DS. Xenotransplantation of immunodeficient mice with molibized humanblood CD34~+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production. Blood. 2001 ;97: 1635-1643.
    28. Ma F, Wada M, Yoshino H, et al. Development of human lymphohematopoietic stem and progenitor cells defined by expression of CD34 and CD81. Blood. 2000; 97: 3755-3762.
    29. Hogan CJ, Shpall EJ, Keller G. differential long-term and multilineage engraftment potential from subfractions of human CD34~+cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA, 2002, 99:413-418.
    30. Cui J, Wahl RL, Shen T, et al. Bone marrow cell trafficking following intravenous administration. Br J Haematol. 1999;107:895-902.
    31. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294:1933-1936.
    32. Wagers AJ, Allsopp RC, Weissman IL. Changes in integrin expression are associated with altered homing properties of Lin(-/1o)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol. 2002;30:176-185.
    33. Jetmore A, Plett PA, Tong X, et al. Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34(+) cells transplanted into conditioned NOD/SCID recipients. Blood. 2002;99:1585-1593.
    34. van Hennik PB, de Koning AE, Ploemacher RE. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood. 1999;94:3055-3061.
    35. Cashman JD, Eaves CJ. High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SCID mice. Blood. 2000;96:3979-3981.
    36. Yahata T, Ando K, Sato T, et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells intoNOD/SCID mice bone marrow. Blood. 2003; 101: 2905-2913.
    37. Wang J, Kimura T, Asada R, et al. SCID-repopulating cell activity of human cord blood-derived CD34~- cells assured by intra-bone marrow injection. Blood. 2003; 101:2924-2931.
    38. Zheng Y, Watanabe N, Nagamura-Inoue T, et al. Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol. 2003;31:1237-1246.
    39. Voermans C, Kooi ML, Rodenhuis S, et al. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood. 2001;97:799-804.
    40. KushidaT, Inaba M, Hisha H, et al. Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood. 2001; 97: 3292:3299.
    41. Guenechea G, Gan OI, Dorrell C, Dick JE. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol. 2001;2:75-82.
    42. Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood. 2001;97:799-804.
    43. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845-848.
    44. Kollet O, Spiegel A, Peled A, et al. Rapid and efficient homing of human CD34~+ CD38~(-/low) CXCR4~+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m~(null) mice. Blood. 2001;97:3283-3291.
    45. Zheng Y, Watanabe N, Nagamura-Inoue T, et al. Ex vivo manipulation of umbilical cord blood-derived homatopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their in vivo homing potential. Exp Hematol, 2003, 31:1237-1246.
    46. Josefson A. A new method of treatmentintraossal injections. Acta Med Scand.1934;81:550-564.
    47. Tocantins LM, O'Neill JF. Infusion of blood and other fluids into the circulation via the bone marrow. Pro Soc Exp Biol Med. 1940;45:782-783.
    48. Spivey WH. Intraosseous infusions. J Pediatr. 1987;111:639-643.
    49. Morrison M, Samwick AA. Intramedullary (sternal) transfusion of human bone marrow. JAMA. 1940;l 15:1708-1711.
    50. Hagglund H, Ringden O, Agren B, et al. Intraossseous compared to intractable infusion of allogeneic bone marrow. Bone Marrow Transplant. 1998;21:331-335.
    51. Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD/SCID mice reveals a new class of human stem cells. Nat Med. 2003; 9:959-963.
    52. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem.. 1999;274:21491-21494.
    53. Janowska-Wieczorek A, Marquez LA, Nabholtz JM, et al. Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane. Blood. 1999; 93: 3379-3390.
    54. Lane WJ, Dias S, Hattori K, Heissig B, Choy M, Rabbany SY, Wood J, Moore MA, Rafii S. Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood. 2000;96:4152-4159.
    1. Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells. Science, 2001, 294: 1933-1936.
    2. SrourEF, Jetmore A, WolberFW, et al. Homing, cell cycle kinetics and fate of transplanted hematopoietic stem cells. Leukemia, 2001, 15: 1681-1684
    3. Frimberger AE, Stering AL Quesenberry PJ. An in vitro model of hematopoietic stem cell homing demonstrates rapid homing and maintenance of engraftable stem cells. Blood, 2001, 98: 1012-1018.
    4. Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR-4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B_(2m)~(nu11) mice. Leukemia, 2002, 16: 1992-2003.
    5. Wright DE, Bowman EP, Wagers AJ, et al. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med, 2002, 195: 1145-1154.
    6. Levesque JP, Hendy J, Takamatsu Y, et al. Disruption of the CXCR4/CXCL12 chemotactic interactin during hematopoietic stem cell mobilization induced by G-CSF or cyclophosphamide. J Clin Invest, 2003, 110: 187-196.
    7. Kollet O, Spiegel A, Peled A, et al. Rapid and efficient homing of human CD34~+CD38~(-/low) CXCR4~+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B_(2m)~(null) mice. Blood, 2001, 97: 3203-3291.
    8. Jetmore A, Plett AP, Tong X, et al. Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34~+ cells transplanted into conditioned NOD/SCID recipients. Blood, 2002, 99: 1585-1593.
    9. Plett AP, Frankovitz SM, Orschell-Traycoff CM. In vivo trafficking, cell cycle activity , and engraftment potential of phenotypically defined primitive hematopoietic cells after transplantation into irradiated or nonirradiated recipients. Blood, 2002, 100: 3545-3552.
    10. Askenasy N, Farksa DL. In vivo imaging studies of the effect of recipient conditioning , donor cell phenotype and antigen disparity on homing of hematopoietic cells to the bone marrow. Br J Haematol , 2003, 120: 505-515.
    11. van Hennik PB, de Korling AE, Ploemacher RE. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood, 1999, 94: 3055-3061.
    12. Cashman JD, Eaves CJ. High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SUID mice. Blood, 2000.96: 3979-3981.
    13. Watt FM, Hogan BLM. Out of eden: stem cells and their niches. Science, 2000, 287:1427-1430.
    14. Solanilla A, Grosset C, Duchez P, et al. Flt-3-ligand induces adhesion of hematopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism. Br J Haematol, 2003, 120:782-786.
    15. Janowska-Wieczorek A, Marquez LA, Nabholtz JM, et al . Growth factors and cytokines up-regulate gelatinase expression in bone marrow CD34~+ cells and their transmigration through reconstituted basement membrane. Blood, 1999, 93: 3379-3390.
    16. Lane WJ, Dias S, Hattori K, et al. Stromal-derived factor 1-induced megakargocyte migration and platelet production is dependent on matrix metalloproteinases. Blood, 2000, 96: 4152-4159.
    17. Heissig B, Hattori K, Dias S, et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 2002, 109: 625-637.
    18. Zheng Y, Watanabe N, Nagamura-Inoue T, et al. Ex vivo manipulation of umbilical cord blood-derived homatopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their in vivo homing potential. Exp Hematol, 2003, 31:1237-1246.
    19. Peled A, Petit A, Kollet O, et al. Dependence of human stem cell engraftmentand repopulation of NOD/SCID mice on CXCR-4. Science, 1999, 283: 845-848.
    20. Voermans C, Kooi MLK, Rodenhuis S, et al. In vitro migratory capacity of CD34~+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood, 2001, 97: 799-804.
    21. Burger JA, SpooA, Dwnger A, et al. CXCR-4 chemokine receptors (CD 184) and a 4 β1 integrins mediate spontaneous migration of human CD34~+ progenitors and acute myeloid leukemia cells beneath marrow stromal cell (pseuch-emperipolesis) . Br J Haematol, 2003, 122: 579-589.
    22. Hogan CJ, Shpall EJ, Keller G. differential long-term and multilineage engraftment potential from subtractions of human CD34~+cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA, 2002, 99:413-418.
    23. Wang JCY, Doedens M, Kick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood, 1997, 89:3919-3924.
    24. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med, 1998, 339: 1565-1577.
    25. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol, 2000, 28: 1197-1205.
    26. Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood, 2001,97:2962-2971.
    27. Laughlin MJ, Barker JN, Bambach B,et al. Hematopoietic engraftment and survival after unrelated donor umbilical cord blood transplantation in adult recipients. N Engl J Med, 2001, 344: 1815-1822.
    28. Migliaccio AM , Adamson JW, Stevens CE, et al . Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor content is a better predictor than nucleated cell quantity. Blood, 2000, 96: 2717-2722.
    29. Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood, 2002, 10:1611-1618.
    30. Michel G, Rocha V, Chevret S, et al. Unrelated cord blood transplantation for childhood acute myeloid leukemia: a Eurocord group analysis. Blood, 2003 ,102: 4290-4297.
    31. Ooi J, Iseki T, Takahashi S, et al. Unrelated cord blood transp;antation for adult patients with de novo acute myeloid leukemia. Blood, 2004,103: 489-491.
    32. Korbling M , Anderlini P. Peripheral blood stem cell verus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood, 2001,98:2900-2908.
    33. Eichler H, Kern S, Beck C, et al. Engraftment capacity of umbilical cord blood cells processed by either whole blood preparation or filtration. Stem Cells, 2003,21:208-216.
    34. Dorrel C, Gan OI, Pereira DS, et al . Expansion of human cord blood CD34~+CD38~-cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood, 2000, 95: 102-110.
    35. Xu R, Reems JA. Umbilical cord blood progeny cells that retain a CD34~+ phenotype after ex vivo expansion have less engraftment potential than unexpanded CD34~+cells. Transfusion, 2001,41:213-218.
    36. Barker JN, Weisdorf DJ, DeFor TE, et al. Multiple unit unrelated donor umbilical cord blood transplantation in high risk adults with hematological malignancies: impact on engraftment and chimerism[abstract] . Blood, 2002, 100 Suppl1:41a.
    37. Kollet O, Petit I, Kahn J, et al. Human CD34~+ CXCR-4~- sorted cells harbor intracellular CXCR-4, which can be functionally expressed and provide NOD/SCID repopulation. Blood, 2002, 100: 2778-2786.
    38. Plett PA, Frankovitz SM, Wolber FM, et al. Treatment of circulating CD34~+ cells with SDF-1 . or anto-CXCR-4 antibody enhances migration and NOD/SCIDrepopulating potential. Exp Hematol, 2002, 30:1061-1069.
    39. Adams GB, Chabner KT, Foxall RB, et al. heterologous cells cooperate to augment stem cell migration, homing, and engraftment. Blood, 2003, 101: 45-51.
    40. Yahata T, Ando K, Sato T, et al. A highly sentitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood, 2003, 101: 2905-2913.
    41. Wang J, Kimura T, Asada R, et al. SCID-repopulating cell activity of human cord blood-derived CD34~- cells assured by intra-bone marrow injection. Blood, 2003, 101: 2924-2931.
    42. Mazurier F, Doedens M, Gan OI, et al. Rapid myeloerythroid repopulating after intrafemoral transplantation of NOD/SCID mice reveals a new class of human stem cells. Nat Med, 2003, 9:959-963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700