环氧树脂的无机纳米微粒改性、功能化和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂是一种重要的热固性树脂,以其优异的力学、粘结和绝缘等性能被广泛应用于电子、机械、建筑、轻工等领域。本文对各种纳米材料对环氧树脂的改性,新型液晶环氧树脂、有机硅环氧树脂、阻燃环氧树脂和二茂铁基环氧树脂的合成以及环氧树脂在粉末涂料、胶粘剂、生物分子固定等领域的应用等环氧树脂领域的研究热点进行了综述;开展了无机纳米微粒改性环氧树脂的制备和新型功能环氧树脂的合成研究;探索了所得环氧树脂在粉末涂料、修饰电极、自组装等领域的应用;探讨了其无机纳米微粒改性、电化学过程和自组装等的机理,取得了以下主要研究成果:
     本文建立了1种通过原位及包裹聚合法制备无机纳米微粒改性双酚A型环氧树脂的新工艺,制得了系列无机纳米微粒改性环氧树脂;该工艺由于在单体聚合前加入无机纳米微粒,此时单体可以渗透到无机纳米微粒之间,在聚合过程中环氧树脂在无机纳米微粒之间及周围生成,把已分散的无机纳米微粒包裹其中,所以能够制得无机纳米微粒分散均匀的改性环氧树脂;通过对比实验发现用本工艺制得的无机纳米微粒改性环氧树脂中无机纳米微粒的分散性明显好于通过溶液共混法或熔融共混法制得的同类样品;由于分散良好的无机纳米微粒与环氧树脂分子之间具有相互作用,用原位及包裹聚合法制得的无机纳米微粒改性环氧树脂与未改性环氧树脂相比,nano-CaCO_3含量为15.0 wt%的改性环氧树脂的软化点提高了15℃、nano-CaCO_3的含量为10.0 wt%的固化的改性环氧树脂的断裂伸长率提高了近3倍,拉伸模量在nano-CaCO_3的含量为5.0 wt%时达到最大值,提高了18%;经过中试及工业化试验,实现了无机纳米微粒改性双酚A型环氧树脂的工业化生产;所得无机纳米微粒改性双酚A型环氧树脂可用作粉末涂料的原料。
     采用通过原位及包裹聚合法制得的无机纳米微粒改性双酚A型环氧树脂为主要原料制得了无机纳米微粒改性环氧粉末涂料;完成了中试和扩试研究,建立了千吨级年生产能力的无机纳米微粒改性环氧粉末涂料示范生产线;所得无机纳米微粒改性环氧粉末涂料的储存稳定性达到1级、耐中性盐雾性能达到1级、反向抗冲击性能超过50 Kg.cm、断裂伸长率达到2.9%、边角覆盖率达到75%、耐阴极剥离性能为6.8 mm,主要性能指标和同类未改性环氧粉末涂料相比有了显著提高。
     合成了2种不同结构的二茂铁基环氧树脂,通过~1H NMR和FT-IR对所得产物的结构进行了表征;用循环伏安(CV)法研究了所得二茂铁基环氧树脂溶液和膜的电化学行为,峰电流和扫描速率之间的关系表明其电极反应受扩散控制,符合Fick定律;根据Ozawa理论对二茂铁基环氧树脂1,1’-二茂铁二甲酸二缩水甘油酯/双氰胺体系的非等温固化过程进行了研究,发现该固化体系的反应活化能约为531 KJ/mol;二茂铁基环氧树脂在固体火箭推进剂的燃速催化剂和修饰电极等方面表现出了很好的应用前景。
     合成了带含环氧基侧链和十八烷基侧链的聚(马来酸二缩水甘油酯-co-甲基丙烯酸十八酯)[P(DGMA-co-SMA)],用~1H NMR对所得的共聚物进行了表征;研究了其在选择性溶剂中的自组装行为,发现P(DGMA-co-SMA)/THF/EtOH体系可以通过自组装形成囊泡形自组装体和支化的管状自组装体,P(DGMA-co-SMA)/THF/H_2O体系最初自组装形成球形自组装体,随着陈化时间的延长,球形自组装体逐渐融合成长条形自组装体和线形自组装体;探讨了自组装过程的机理,建立了可能的自组装过程模型。
     合成了1种新的二茂铁基树枝状分子4-Fc,用~1H NMR和FT-IR对所得产物的结构进行了表征;用循环伏安法研究了4-Fc在不同溶剂中的电化学行为,发现溶剂的极性和溶剂形成氢键的能力会对其溶液电化学行为产生很大影响,4-Fc和溶剂氢键作用的存在使其电化学行为变得比较复杂;通过CV和UV法研究发现4-Fc对H_2PO_4~-有较好的识别作用;探讨了该体系离子识别的机理。
Epoxy resin is an important thermoset. It is widely use in the fields of electron, machine, architecture and so on for its outstanding mechanical, adhesive and insulative properties. In this paper, progress in nano-modification of epoxy resin, synthesis of functional epoxy resin and applications of epoxy resin was reviewed. Inorganic nanoparticle modified epoxy resins and novel functional epoxy resins were prepared and characterized. Applications of the resultant epoxy resins in powder coating, electrode modification and self-assembly were investigated and the mechanisms were discussed.
    A novel method to prepare inorganic nanoparticle modified bisphenol A epoxy resin through in situ and inclusion polymerization was investigated. In this method, nanoparticles were added and dispersed in the system before polymerization, so the monomers could penetrate into the space among the nanoparticles. Epoxy resin grown both between and around the nanoparticles during polymerization, and nanoparticle modified epoxy resin with uniform dispersed nanoparticles in the matrix was obtained as a result. Compared with the samples prepared by blending or solution blending, the dispersion of nanoparticles in the samples prepared through in situ and inclusion polymerization was better as observed by TEM. As for the nanoparticle modified epoxy resin prepared through in situ and inclusion polymerization, the softening point was increased by 15 ℃ when 15.0 wt% of nano-CaCO_3 was loaded, the stretch strain of the cured sample with 10.0 wt% of nano-CaCO_3 was increased by nearly 3 times and the elastic modulus reached its maximum value when the nano-CaCO_3 content was 5.0 wt% owing to the interactions between the well dispersed nanoparticles and the epoxy resin chains. The industrial production of nanoparticle modified epoxy resin was realized after pilot plant experiments. The obtained nanoparticle modified bisphenol A epoxy resin can be applied in powder coating.
    Inorganic nanoparticle modified epoxy powder coatings were prepared using the nanoparticle modified epoxy resin obtained through in situ and inclusion polymerization as main component. The industrial production of nanoparticle modified epoxy powder coating was realized after pilot plant experiments. The storage stability and neutral salt spray corrosion resistance of the obtained nanoparticle modified epoxy powder coating were rating 1. The impact resistance was better than 50 Kg.cm. The tensile strain was 2.9 %. The angle coverage was 75 % and the cathodic disbondment resistance was 6.8 mm.
    Two ferrocene-based epoxy resins with different structures were prepared and characterized.
    The electrochemical behaviors of their films and solutions were investigated by cyclic voltammetry (CV) measurement. The relationship between the CV peak current values and the scan rate indicated that the charge transport through the films obeyed Fick's Law and the electrode processes of the films were controlled by diffusion. The curing behavior of GEFDC/ dicyandiamide system was investigated by nonisothermal measurement according to Ozawa's approach. The ferrocene-based epoxy resins have promising applications in the fields such as burn-rate catalyst for composite solid propellants and electrode modification.
    A novel polymer of Poly(diglycidyl maleate-co-stearyl methacrylate) [P(DGMA-co-SMA)] was synthesized and its structure was characterized by ~1H NMR. Its self-assembly behavior was studied in different solvents. It was found that vesicles and tubule-liked aggregates can be obtained through self-assembly of P(DGMA-co-SMA)/THF/EtOH system. And spheral aggregates were obtained in P(DGMA-co-SMA)/THF/H_2O system while the spheral aggregates were converted into rod-liked aggregates and line-liked aggregates after aged for different time. The mechanism of the self-assembly behavior was discussed.
    A dendritic ferrocene derivative (4-Fc) was synthesized and its structure was characterized by ~1H NMR and FT-IR. Its electrochemical behaviors ware investigated by CV measurement. The recognition of H_2PO_4~- by 4-Fc was investigated by CV and UV measurements. The mechanism of the ion recognition was discussed.
引文
[1] 王德中.环氧树脂生产与应用.化学工业出版社,2001.
    [2] Kar S., Banthia A. K.. Synthesis and evaluation of liquid amine-terminated polybutadiene rubber and its role in epoxy toughening. J. Appl. Polym. Sci., 2005, 96, 2446-2453.
    [3] White J. E., Silvis H. C.g, Winkler M. S., Glass T. W., Kirkpatrick D. E.. Poly(hydroxyl-aminoethers): a new family of epoxy-based thermoplastics. Adv. Mater., 2000, 12, 1791-1800.
    [4] Dutta N., Karak N., Dolui S. K. Alkyd-epoxy blends as multipurpose coatings, J. Appl. Polym. Sci., 2006, 100, 516-521.
    [5] Kumar S. A., Balakrishnan T., Alagar M., Denchev Z. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog. Org. Coat., 2006, 55, 207-217.
    [6] Srividhya M., Lakshmi M. S., Reddy B. S. R. Chemistry of siloxane amide as a new curing agent for epoxy resins: material characterization and properties. Macromol. Chem. Phys., 2005, 206, 2501-2511.
    [7] Startsev O. V., Krotov A. S., Startseva L. T. Interlayer shear strength of polymer composite materials during long term climatic ageing. Polym. Degrad. Stabil., 1999, 63, 183-186.
    [8] Lee J. R., Park S. J., Seo M. K., Baik Y. K., Lee S. K. A study on physicochemical properties of epoxy coating system for nuclear power plants. Nucl. Eng. Des., 2006, 236, 931-937.
    [9] Qi L., Lee B. I., Chen S., Samuels W. D., Exarhos G. J. High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater., 2005, 17, 1777-1781.
    [10] Bryning M. B., Islam M. F., Kikkawa J. M, Yodh A. G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv. Mater, 2005, 17, 1186-1191.
    [11] Mathur V. K. Composite materials from local resources. Constr. Build. Mater, 2006, 20, 470-477.
    [12] Veronica P. S., Jose M. M. M. Influence of the curing temperature in the mechanical and thermal properties of nanosilica filled epoxy resin coating. Macromol. Symp., 2006, 233, 137-146.
    [13] Bauer F., Decker U., Ernst H., Findeisen M., Langguth H., Mehnert R., Sauerland V, Hinterwaldner R. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants Part 2. Int. J. Adhes. Adhes., 2006, 26, 567-570.
    [14] Yeganeh H., Lakouraj M. M., Jamshidi S. Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(e-caprolactone) and poly(ethylene glycol). Eur. Polym. J., 2005, 41, 2370-2379.
    [15] Yu B., Moussy Y., Moussya F. Lifetime improvement of glucose biosensor by epoxy-enhanced PVC membrane. Electroanalysis, 2005,17, 1771-1779.
    [16] Mateo C., Torres R., Fernαndez-Lorente G., Ortiz C, Fuentes M., Hidalgo A., Lopez-Gallego F., Abian O., Palomo J. M., Betancor L., Pessela B. C. C., Guisan J. M., Fernαndez-Lafuente R. Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules, 2003, 4, 772-777.
    [17] Fujita A., Kawakita H., Saito K., Sugita K. Production of tripeptide from gelatin using collagenase-immobilized porous hollow-fiber membrane. Biotechnol. Prog., 2003, 19, 1365-1367.
    [18] Sung H. W., Hsu H. L., Hsu C. S. Effects of various chemical sterilization methods on the crosslinking and enzymatic degradation characteristics of an epoxy-fixed biological tissue. J. Biomed. Mater. Res., 1997, 37, 376-383.
    [19] Wang X. S., Kim H. K., Fujita Y., Sudo A., Nishida H., Endo T. Relaxation and reinforcing effects of polyrotaxane in an epoxy resin matrix. Macromolecules, 2006, 39, 1046-1052.
    [20] Pethrick R. A., Hollins E. A., McEwan I., MacKinnon A. J., Hayward D., Cannon L. A., Jenkins S. D., McGrail P. T. Dielectric, mechanical and structural, and water absorption properties of a thermoplastic-modified epoxy resin: poly(ether sulfone)-amine cured epoxy resin. Macromolecules, 1996, 29, 5208-5214.
    [21] Crivello J. V., Walton T. C., Malik R. Fabrication of epoxy matrix composites by electron beam induced cationic polymerization. Chem. Mater,, 1997, 9, 1273-1284.
    [22] Mezzenga R., Boogh L., Manson J. A. E., Pettersson B. Effects of the branching architecture on the reactivity of epoxy-amine groups. Macromolecules, 2000, 33, 4373-4379.
    [23] Grunlan M. A., Lee N. S., Mansfeld F., Kus E., Finlay J. A., Callow J. A., Callow M. E., Weber W. P. Minimally adhesive polymer surfaces prepared from star oligosiloxanes and star oligofluorosiloxanes. J. Polym. Sci.: Part A: Polym. Chem., 2006, 44, 2551-2566.
    [24] Ali M, Hammami A. Experimental modeling of the cure behavior of a formulated blend of DGEBA epoxy and C12-C14 glycidyl ether as a reactive diluent. Polym. Compos., 2005, 26, 593-603.
    [25] Chanda M., Rempel G. L. Chromium(III) removal by epoxy-cross-linked poly(ethylenimine) used as gel-coat on silica. 2. a new kinetic model. Ind. Eng. Chem. Res., 1997, 36, 2190-2196.
    [26] Shanthi C, Rao K, P. Chitosan modified poly(glycidyl methacrylate-butyl acrylate) copolymer grafted bovine pericardial tissue-anticalcification properties. Carbohyd. Polym., 2001, 44, 123-131.
    [27] Park S., Anderson C., Loeber R., Seetharaman M., Jones R., Tretyakova N. Interstrand and intrastrand DNA-DNA cross-linking by 1,2,3,4-diepoxybutane: role of stereochemistry. J. Am. Chem. Soc., 2005, 127, 14355-14365.
    [28] Trentler T. J., Boyd J. E., Colvin V. L. Epoxy resin-photopolymer composites for volume holography. Chem. Mater., 2000, 12, 1431-1438.
    [29] Frohlicha J, Kautza H., Thomanna R., Frey H., Mulhaupt R. Reactive core/shell type hyperbranched blockcopolyethers as new liquid rubbers for epoxy toughening. Polymer, 2004, 45,2155-2164.
    [30] Frigione M., Calo E., Maffezzoli A., Acierno D., Carfagna C, Ambrogi V. Preformed microspherical inclusions for rheological control and physical property modification of epoxy resins. J. Appl. Polym. Sci., 2006, 100, 748-757.
    [31] Rebizant V., Venet A. S., Tournilhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules, 2004, 37, 8017-8027.
    [32] Choi J., Yee A. F., Laine R. M. Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system. Macromolecules, 2004, 37, 3267-3276.
    [33] Yu Y. F., Zhang Z. C, Gan W. J., Wang M. H., Li S. J. Effect of polyethersulfone on the mechanical and rheological properties of polyetherimide-modified epoxy systems. Ind. Eng. Chem. Res., 2003, 42, 3250-3256.
    [34] Shin S. M., Shin D. K., Lee D. C. Toughening of epoxy resins with aromatic polyesters. J. Appl. Polym. Sci., 2000, 78, 2464-2473.
    [35] Frohlich J., Thomann R., Mulhaupt R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules, 2003, 36, 7205-7211.
    [36] Thomas R., Abtaham J., Thomas S. R, Thomas S.. Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends. J. Polym. Sci.: Part B: Polym. Phys., 2004, 42, 2531-2544.
    [37] Huang Z. F., Tan S. T., Wang X. Y. Modification of an o-cresol formaldehyde epoxy resin by the thermotropic liquid crystalline polymer. J. Appl. Polym. Sci., 2005, 97, 1626-1631.
    [38] Tan S. T., Wei C., Wang X. Y., Zhang M. Q., Zeng H. M. Blends of liquid crystalline polyester-polyurethane and epoxy: preparation and properties. J. Appl. Polym. Sci., 2003, 88, 783-787.
    [39] Zhang B. L., Tang G. L., Shi K. Y., You Y. C., Du Z. J., Huang J. F. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer. J. Appl. Polym. Sci., 1999, 71, 177-184.
    [40] 周金向,黄慧萍,李艳玲,龚荣洲.环氧树脂的增韧改性新方法.材料导报,2004,18(11),61-62.
    [41] 张玉龙,高树理,李长德,齐贵亮,王喜梅.纳米改性剂.国防工业出版社,2004,P2.
    [42] Shi Q., Wang L., Yu H. J., Jiang S., Zhao Z. R., Dong X. C. A novel epoxy resin/CaCO_3 nanocomposite and its mechanism of toughness improvement. Macromol. Mater. Eng., 2006, 291, 53-58.
    [43] Liu W., Hoa S. V., Pugh M. Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos. Sci. Techn., 2005, 65, 2364-2373.
    [44] Qi L., Lee B. I., Chen S., Samuels W. D., Exarhos G. J. High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater., 2005, 17, 1777-1781.
    [45] Kim J. K., Hu C., Woo R. S. C., Sham M. L. Moisture barrier characteristics of organoclayepoxy nanocomposites. Compos. Sci. Techn., 2005, 65, 805-813.
    [46] Dean J. M., Lipic P. M., Grubbs R. B., Cook R. F., Bates F. S. Micellar structure and mechanical properties of block copolymer-modified epoxies. J. Polym. Sci.: Part B: Polym. Phys., 2001, 39, 2996-3010.
    [47] 张玉龙,李长德,张银生,唐迪,梁民宪,陈京生,王喜梅,张以河.纳米技术与纳米塑料.中国轻工业出版社,2002,P1.
    [48] Meziani M. J., Liu P., Pathak P., Lin J., Vajandar S. K., Allard L. F., Sun Y. P. Stable suspension of crystalline Fe_3O_4 nanopartieles from in situ hot-fluid annealing. Ind. Eng. Chem. Res., 2006, 45, 1539-1541.
    [49] Liu H., Li Y., Xiao S., Gan H., Jiu T., Li H., Jiang L., Zhu D., Yu D., Xiang B., Chen Y. Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. J. Am. Chem. Soc., 2003, 125, 10794-10795.
    [50] Xu F. F., Bando Y. Formation of two-dimensional nanomaterials of boron carbides. J. Phys. Chem. B, 2004, 108, 7651-7655.
    [51] Balakrishnan S., Start P. R., Raghavan D., Hudson S. D. The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer, 2005, 46, 11255-11262.
    [52] Kaynak C., Celikbilek C., Akovali G. Use of silane coupling agents to improve epoxy-rubber interface. Eur Polym. J., 2003, 39, 1125-1132.
    [53] Barcia F. L., Amaral T. P., Soares B. G. Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer, 2003, 44, 5811-5819.
    [54] 柯扬船,皮特·斯壮.聚合物-无机纳米复合材料.化学工业出版社,2003,P398.
    [55] Naous W., Yu X. Y,, Zhang Q, X., Naito K., Kagawa Y. Morphology, tensile properties, and fracture toughness of epoxy/Al_2O_3 nanocomposites. J. Polym. Sci: Part B: Polym. Phys., 2006, 44, 1466-1473.
    [56] Yano S., Ito T., Shinoda K., Ikake H., Hagiwara T., Sawaguchi T., Kurita K., Seno M. Properties and microstructures of epoxy resin/TiO_2 and SiO_2 hybrids. Polym. lnt., 2005, 54, 354-361.
    [57] Rodgers R. M., Mahfuz H., Rangari V. K., Chisholm N., Jeelani S. Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol. Mater Eng., 2005, 290, 423-429.
    [58] Reddy C.S., Das C.K., Narkis M. Propylene-ethylene copolymer nanocomposites: epoxy resin grafted nanosilica as a reinforcing filler. Ploym. Compos., 2005, 26, 806-812.
    [59] Zhang Y., Zhu J. Synthesis and characterization of several one-dimensional nanomaterials. Micron, 2002, 33, 523-534.
    [60] 赵振荣,王立,王剑峰.低维聚合物纳米材料的自组装制备、性能及应用.高分子通报,2006,1,1-9.
    [61] Li N., Huang Y., Du F., He X., Lin X., Gao H., Ma Y., Li F., Chen Y., Eklund P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett., 2006, 6, 1141-1145.
    [62] Zhu W., Wang W., Xu H., Shi J. Fabrication of ordered SnO_2 nanotube arrays via a template route. Mater. Chem. Phys., 2006, 99, 127-130.
    [63] Sander M. S., Gao H. Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. J. Am. Chem. Soc, 2005, 127, 12158-12159.
    [64] Gou L., Murphy C. J. Fine-tuning the shape of gold nanorods. Chem. Mater., 2005, 17, 3668-3672.
    [65] Chang X., Wang L., Yang Y., Yang X., Xu H. Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO_2 nanowires. Mater. Chem. Phys., 2006,99,61-65.
    [66] Chen C, Wang L. Jiang G, Yang Q., Wang J., Yu H., Chen T., Wang C, Chen X. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology, 2006, 17, 466-474.
    [67] Lau S. T., Zheng R. K., Chan H. L. W., Choy C. L. Preparation and characterization of poly(vinylidene fluoride-trifluoroethylene) copolymer nanowires and nanotubes. Mater. Lett., 2006, 60, 2357-2361.
    [68] Asian K., Leonenko Z., Lakowicz J. R., Geddes C. D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B, 2005, 109,3157-3162.
    [69] Barnard A. S., Russo S. P. Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J. Phys. Chem. B, 2003, 107, 7577-7581.
    [70] Bryning M. B., Islam M. F., Kikkawa J. M., Yodh A. G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv. Mater, 2005, 17, 1186-1191.
    [71] Jo C, Lee J. I., Jang Y. Electronic and magnetic properties of ultrathin Fe-Co alloy nanowires. Chem. Mater, 2005, 17, 2667-2671.
    [72] Singh A. K., Kumar V., Note R., Kawazoe Y. Effects of morphology and doping on the electronic and structural properties of hydrogenated silicon nanowires. Nano. Lett., 2006, 6, 920-925.
    [73] Tu Y., Lin Y, Yantasee W., Ren Z. Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis. Electroanalysis, 2005, 17, 79-84.
    [74] Wang Z., Medforth C. J., Shelnutt J. A. Self-metallization of photocatalytic porphyrin nanotubes. J. Am. Chem. Soc, 2004, 126, 16720-16721.
    [75] Becerril H. A., Stoltenberg R. M., Wheeler D. R., Davis R. C., Harb J. N., Woolley A. T. DNA-templated three-branched nanostructures for nanoelectronic devices. J. Am. Chem. Soc, 2005, 127, 2828-2829.
    [76] Kim J. A., Seong D. G., Kang T. J., Youn J. R. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 2006, 44, 1898-1905.
    [77] Moniruzzaman M., Du F., Romero N., Winey K. I. Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer, 2006, 47, 293-298.
    [78] Moisala A., Li Q., Kinloch I. A., Windle A. H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Techn., 2006,66, 1285-1288.
    [79] Gojny F. H., Wichmann M. H.G., Fiedler B., Kinloch I. A., Bauhofer W., Windle A. H., Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47, 2036-2045.
    [80] Motta M., Li Y. L., Kinloch I., Windle A. Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett., 2005, 5, 1529-1533.
    [81] Zhong W. H., Li J., Lukehart C. M., Xu L. R. Graphitic carbon nanofiber (GCNF)/polymer materials. II. GCNF/epoxy monoliths using reactive oxydianiline linker molecules and the effect of nanofiber reinforcement on curing conditions. Polym. Compos., 2005, 26, 128-135.
    [82] Zhu J., Peng H.g, Rodriguea-Macias F., Margrave J. L., Khabashesku V. N., Imam A. M., Lozano K., Barrera E. V. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater., 2004,14, 643-648.
    [83] Zhu J., Kim J., Peng H., Margrave J. L., Khabashesku V. N., Barrera E. V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett., 2003, 3, 1107-1113.
    [84] Frankland S. J. V., Caglar A., Brenner D. W., Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. J. Phys. Chem. B, 2002, 106, 3046-3048.
    [85] Li L., Ma R., Ebina Y., Iyi N., Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater, 2005, 17,4386-4391.
    [86] Zhang L., Chen D., Jiao X. Monoclinic structured BiVO_4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B, 2006, 110,2668-2673.
    [87] Hussain M., Varley R. J., Mathys Z., Cheng Y. B., Simon G. P. Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. J. Appl. Polym. Sci., 2004,91,1233-1253.
    [88] Brown J. M., Curliss D., Vaia R. A. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem. Mater., 2000, 12, 3376-3384.
    [89] Sue H. J., Gam K. T., Bestaoui N., Spurr N., Clearfield A. Epoxy nanocomposites based on the synthetic r-zirconium phosphate layer structure.. Chem. Mater., 2004, 16, 242-249.
    [90] Becker O., Cheng Y. B., Varley R. J., Simon G. P. Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules, 2003, 36, 1616-1625.
    [91] Triantafillidis C. S., LeBaron P. C, Pinnavaia T. J. Homostructured mixed inorganic-organic ion clays: a new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content. Chem. Mater., 2002, 14, 4088-4095.
    [92] Camino G., Tartaglione G., Frache A., Manferti C, Costa G. Thermal and combustion behaviour of layered silicateeepoxy nanocomposites. Polym. Degrad. Stabil, 2005, 90, 354-362.
    [93] Morgan A. B. Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol, 2006, 17, 206-217.
    [94] Wang Z., Pinnavaia T. J. Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater., 1998, 10, 1820-1826.
    [95] Ma J., Yu Z. Z., Zhang Q. X., Xie X. L., Mai Y. W., Luck I. A novel method for preparation of disorderly exfoliated epoxy/clay nanocomposite. Chem. Mater., 2004, 16, 757-759.
    [96] Zhou Y, Pervin F., Biswas M. A., Rangari V. K., Jeelani S. Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Mater. Lett., 2006, 60, 869-873.
    [97] Lu H. J., Liang G. Z., Ma X. Y, Zhang B. Y, Chen X. B. Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym. Int., 2004, 53, 1545-1553.
    [98] Ke Y., Lu J., Yi X., Zhao J., Qi Z. The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J. Appl. Polym. Sci., 2000, 78, 808-815.
    [99] Chen B., Liu J., Chen H., Wu J. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone-clay slurry method. Chem. Mater., 2004, 16, 4864-4866.
    [100] Wang K., Wang L., Wu J., Chen L., He C. Preparation of highly exfoliated epoxy/clay nanocomposites by "slurry compounding": process and mechanisms. Langmuir, 2005, 21, 3613-3618.
    [101] Ritzenthaler S., Court F., David L., Girard-Reydet E., Leibler L., Pascault J. P. ABC triblock copolymers/epoxy-diamine blends. 1. keys to achieve nanostructured thermosets. Macromolecules, 2002, 35, 6245-6254.
    [102] Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc, 1997,119,2749-2750.
    [103] Lipic P. M., Bates F. S., Hillmyer M. A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc., 1998, 120, 8963-8970.
    [104] Rebizant V., Venet A. S., Tournilhac F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules, 2004, 37, 8017-8027.
    [105] Serrano E., Martin M. D., Tercjak A., Pomposo J. A., Mecerreyes D., Mondragon Ⅰ. Nanostructured thermosetting systems from epoxidized styrene butadiene block copolymers. Macrornol. Rapid Commun., 2005, 26, 982-985.
    [106] Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P.. ABC triblock copolymers/epoxy-diamine blends. 2. parameters controlling the morphologies and properties. Macromolecules, 2003, 36, 118-126.
    [107] Dean J. M., Verghese N. E., Pham H. Q., Bates F. S. Nanostructure toughened epoxy resins. Macromolecules, 2003, 36, 9267-9270.
    [108] 沈大理,吴良义.新型环氧树脂、固化剂、复合材料及纳米技术进展.热固性树脂,2001,16(5),37-41.
    [109] Nishat N., Ahmad S., Ahamad T. Synthesis, characterization, and antimicrobial studies of newly developed metal-chelated epoxy resins. J. Appl. Polym. Sci., 2006, 101, 1347-1355.
    [110] Lin C. H., Yang K. Z., Leu T. S., Lin C. H., Sie J. W. Synthesis, characterization, and properties of novel epoxy resins and cyanate esters. J. Polym. Sci.: Part A: Polym. Chem., 2006, 44, 3487-3502.
    [111] Liaw D. J., Huang C. C., Fu C. W. Novel organosoluble polynorbornene bearing a polar, pendant, ester-bridged epoxy group via living ring-opening metathesis polymerization. J. Polym. Sci.: Part A: Polym. Chem., 2006, 44, 4428-4434.
    [112] Lee J. Y., Song Y. W., Kim S. W., Lee H. K. Dielectric and molecular dynamic studies of sub-Tg by thermally stimulated current (TSC) analysis for liquid crystalline epoxy thermosets. Mater. Chem. Phys., 2002, 77, 455-460.
    [113] Punchaipetch P., Ambrogi V., Giamberini M., Brostow W., Carfagna C., D'Souza N. A. Epoxy+liquid crystalline epoxy coreacted networks: Ⅱ. Mechanical properties. Polymer, 2002, 43, 839-848.
    [114] 武龙,沈宁祥.水性环氧树脂研究进展.化学与粘结,2001,6,268-269.
    [115] Ribera G., Mercado L. A., Galia M., Cadiz V. Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. J. Appl. Polym. Sci., 2006, 99, 1367-1373.
    [116] 常鹏善,卢少杰,左瑞霖,王汝敏.高性能液晶环氧树脂的研究.高分子材料科学与工 程,2004,20(1),195-201.
    [117] Lee J. Y., Jang J. The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins. Polymer, 2006, 47, 3036-3042.
    [118] Mijovic J., Chen X., Sy J. W. Dipole dynamics in liquid crystalline epoxies by broad-band dielectric relaxation spectroscopy. Macromolecules, 1999, 32, 5365-5374.
    [119] Punchaipetch P., D'Souza N. A., Brostow W. Mechanical properties of glass fiber composites with an epoxy resin modified by a liquid crystalline epoxy. Polym. Compos., 2002, 23, 564-573.
    [120] Ortiz C., Wagner M., Bhargava N., Ober C. K., Kramer E. J. Deformation of a polydomain, smectic liquid crystalline elastomer. Macromolecules, 1998, 31, 8531-8539.
    [121] Ortiz C., Kim R., Rodighiero E., Ober C. K., Kramer E. J. Deformation of a polydomain, liquid crystalline epoxy-based thermoset. Macromolecules, 1998, 31, 4074-4088.
    [122] Ochi M., Takashima H. Bonding properties of epoxy resin containing mesogenic group. Polymer, 2001, 42, 2379-2385.
    [123] Harada M., Akamatsu N., Ochi M., Tobita M. Investigation of fracture mechanism on liquid crystalline epoxy networks arranged by a magnetic field. J. Polym. Sci.: Part B: Polym. Phys., 2006, 44, 1406-1412.
    [124] Harada M., Ochi M., Tobita M., Kimura T., Ishigaki T., Shimoyama N., Aoki H. Thermomechanical properties of liquid-crystalline epoxy networks arranged by a magnetic field. J. Polym. Sci.: Part B: Polym. Phys., 2004, 42, 758-765.
    [125] Harada M., Ochi M., Tobita M., Kimura T., Ishigaki T., Shimoyama N., Aoki H. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field, J. Polym. Sci.: Part B: Polym. Phys., 2003, 41, 1739-1743.
    [126] Ho T. H., Wang C. S. Synthesis of aralkyl novolac epoxy resins and their modification with polysiloxane thermoplastic polyurethane for semiconductor encapsulation. J. Appl. Polym. Sci., 1999, 74, 1905-1916.
    [127] Sangermano M., Bongiovanni R., Malucelli G., Priola A., Pollicino A., Recca A., Jonsson S. Surface properties of cationic ultraviolet-curable coatings containing a siloxane structure. J. Appl. Polym. Sci., 2004, 93, 584-589.
    [128] Lee S. S., Kim S. C. Physical aging of polydimethylsiloxane-modified epoxy resin. J. Appl. Polym. Sci., 1998, 69, 1291-1300.
    [129] Lee S. S., Kim S. C. Morphology and properties of polydimethylsiloxane-modified epoxy resin. J. Appl. Polym. Sci., 1997, 64, 941-955.
    [130] Abroad S., Ashraf S. M., Sharmin E., Mohomad A., Alam M. Synthesis, formulation, and characterization of siloxane-modified epoxy-based anticorrosive paints. J. Appl. Polym. Sci., 2006,100,4981-4991.
    [131] Feng S., Cui M. Study of polysiloxanes containing epoxy groups I. Synthesis and characterization of polysiloxanes containing 3-(2,3-epoxypropoxy)propyl groups. React. Funct. Polym., 2000, 45, 79-83.
    [132] Si Q. F., Wang X., Fan X. D., Wang S. J. Synthesis and characterization of ultraviolet-curable hyperbranched poly(siloxysilane)s. J. Polym, Sci.: Part A: Polym. Chem., 2005, 43, 1883-1894.
    [133] Ribera G., Mercado L. A., Galia M., Cadiz V. Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. J. Appl. Polym. Sci, 2006, 99, 1367-1373.
    [134] Hergenrother P. M., Thompson C. M., Jr J. G. S., Connell J. W., Hinkley J. A., Lyon R. E., Moulton R. Flame retardant aircraft epoxy resins containing phosphorus. Polymer, 2005, 46, 5012-5024.
    [135] Cai S. X., Lin C. H. Flame-retardant epoxy resins with high glass-transition temperatures from a novel trifunctional curing agent: dopotriol. J. Polym. Sci.: Part A: Polym. Chem., 2005, 43, 2862-2873.
    [136] Iji M., Kiuchi Y., Soyama M. Flame retardancy and heat resistance of phenol-biphenylene-type epoxy resin compound modified with benzoguanamine. Polym. Adv. Technol., 2003, 14, 638-644.
    [137] Levchik S. V., Weil E. D. Thermal decomposition, combustion and flame-retardancy of epoxy resins-a review of the recent literature. Polym. Int., 2004, 53, 1901-1929.
    [138] Levchika S., Piotrowskia A., Weilb E., Yaob Q. New developments in flame retardancy of epoxy resins. Polym. Degrad. Stabil, 2005, 88, 57-62.
    [139] Liu Y. L. Phosphorous-containing epoxy resins from a novel synthesis route. J. Appl. Polym. Sci., 2002, 83, 1697-1701.
    [140] Alcon M. J., Ribera G., Galia M., Cadiz V. Advanced flame-retardant epoxy resins from phosphorus-containing diol. J. Polym. Sci.: Part A: Polym. Chem., 2005, 43, 3510-3515.
    [141] Cheng K. C, Yu S. Y., Chiu W. Y. Thermal properties of side-chain phosphorus-containing epoxide cured with amine. J. Appl. Polym. Sci., 2002, 83,2741-2748.
    [142] Cheng K. C, Yu S. Y, Chiu W. Y. Thermal properties of main-chain phosphorus-containing epoxide cured with amine. J. Appl. Polym. Sci., 2002, 83, 2733-2740.
    [143] Wang X., Zhang Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur. Polym. J., 2004,40, 385-395.
    [144] Liu Y. L. Epoxy Resins from Novel Monomers with a Bis-(9,10-dihydro-9-oxa-10- oxide-10-phosphaphenanthrene-10-yl-) Substituent. J. Polym. Sci.: Part A: Polym. Chem., 2002, 40, 359-368.
    [145] Menke K., Gerber P., Geiβler E., Bunte G., Kentgens H., Schoffl R. Characteristic properties of an end burning grain with smoke reduced ferrocene containing composite propellant. Propell., Explos., Pyrotechn., 1999, 24, 126-133.
    [146] 边占喜,赵庆华.双(烷基二茂铁基)丙烷的合成及其燃速催化性质.应用化学,2004,21(9),923-927.
    [147] Unver A., Dilsiz N., Volkan M., Akovah G. Investigation of acetyl ferrocene migration from hydroxyl-terminated polybutadiene based elastomers by means of ultraviolet-visible and atomic absorption spectroscopic techniques. J. Appl. Polym. Sci., 2005, 96, 1654-1661.
    [148] Subramanian K.. Synthesis and characterization of poly(vinyl ferrocene) grafted hydroxyl-terminated poly(butadiene): a propellant binder with a built-in burn-rate catalyst. J. Polym. Sci.: Part A: Polym. Chem., 1999, 37, 4090-4099.
    [149] 张仁,李建华,翁武军.二茂铁燃速催化剂的发展状况.推进技术,1994,3,62-65.
    [150] Kishore K., Verneker V. R. P., Dharumaraj G. V. Crosslinking reactions of 1,1'-bis(glycidoxy methyl)ferrocene with carboxyl-terminated polybutadiene and its wetting effect. J. Polym. Sci: Polym. Lett. Ed., 1984, 22, 607-610.
    [151] Wright M. E., Laub J., Stafford P. R., Norris W. P. Synthesis of new ferrocene containing diamines and their use in epoxy resins. J. Organometal. Chem., 2001, 637-639, 837-840.
    [152] 南仁植.粉末涂料与涂装技术.化学工业出版社,2000,1.
    [153] 屈平.我国粉末涂料现状及新技术进展.涂料与应用,2005,35(4),8-10.
    [154] 胡志鹏.透视粉末涂料市场现状.现代涂料与涂装,2005,8(4),14-16.
    [155] Parra D. F., Mercuri L. P., Matos J. R., Brito H. F., Romano R. R. Thermal behavior of the epoxy and polyester powder coatings using thermogravimetry/differential thermal analysis coupled gas chromatography/mass spectrometry (TG/DTA-GC/MS) technique: identification of the degradation products. Thermochim. Acta, 2002, 386, 143-151.
    [156] Yu H. J., Wang L., Shi Q., Jiang S., Jiang G. H. Preparation of epoxy resin/CaCO_3 nanocomposites and performance of resultant powder coatings. J. Appl. Polym. Sci., 2006, 101, 2656-2660.
    [157] Yu H. J., Wang L., Shi Q., Jiang G. H., Zhao Z. R., Dong X. C. Study on nano-CaCO_3 modified epoxy powder coatings. Prog. Org. Coat., 2006, 55, 296-300.
    [158] 郭彬,舒心,刘亚康.纳米TiO_2对聚酯环氧粉末涂料性能的影响.涂料工业,2004,34(11),11-13.
    [159] 庞来兴,杨建文,曾兆华,陈用烈.紫外光固化粉末涂料.高分子通报,2002,2,38-42.
    [160] Bastani S., Moradian S. UV-curable powder coatings containing interpenetrating polymer networks (IPNs). Prog. Org. Coat., 2006, 56, 248-251.
    [161] 马越峰,李宝芳,陈刚,罗英武,李伯耿.光固化粉末涂料涂膜性能研究.热固性树脂,2003,18(3),1-3.
    [162] Tinnemans A., Roescher A. Low-temperature powder coatings: a new UV-curing reaction at moderate temperatures. Prog. Org. Coat., 2000, 40, 191-194.
    [163] 郑亚萍,马瑞,夏印平.粉末涂料用有机硅改性环氧树脂的研究.热固性树脂,2005,20(3),39-41.
    [164] Marchebois H., Savall C., Bernard J., Touzain S. Electrochemical behavior of zinc-rich powder coatings in artificial sea water. Electrochim. Acta, 2004, 49, 2945-2954.
    [165] Basu S. K., Scriven L. E., Francis L. F., McCormick A. V., Reichert V. R. Wrinkling of epoxy powder coatings. J. Appl. Polym. Sci., 2005, 98, 116-129.
    [166] 陆惠英,俞赞琪.韧弹性环氧粉末涂料的研制及应用.绝缘材料,2001,3,10-12.
    [167] Prolongo S. G., del Rosario G., Urena A. Comparative study on the adhesive properties of different epoxy resins. Int. J. Adhes. Adhes., 2006, 26, 125-132.
    [168] Feng C. W., Keong C. W., Hsueh Y. P., Wang Y. Y., Suea H. J. Modeling of long-termcreep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes., 2005, 25, 427-436.
    [169] Bauer F., Decker U., Ernst H., Findeisen M., Langguth H., Mehnert R., Sauerland V., Hinterwaldner R. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants Part 2. Int. J. Adhes. Adhes., 2006, 26, 567-570.
    [170] Hedia H. S., Allie L., Ganguli S., Aglan H. The influence of nanoadhesives on the tensile properties and Mode-Ⅰ fracture toughness of bonded joints. Eng. Fract. Mech., 2006, 73, 1826-1832.
    [171] Ochi M., Hori D., Watanabe Y., Takashima H., Harada M. Bonding properties of epoxy resins containing two mesogenic groups. J. Appl. Polym. Sci., 2004, 92, 3721-3729.
    [172] Falk B., Crivello J. V. Synthesis of epoxy-functional microspheres by cationic suspension photopolymerization. Chem. Mater., 2004, 16, 5033-5041.
    [173] Mateo C., Torres R., Fernandez-Lorente G., Ortiz C., Fuentes M., Hidalgo A., Lopez-Gallego F., Abian O., Palomo J. M., Betancor L., Pessela B. C. C., Guisan J. M., Fernαndez-Lafuente R. Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules, 2003, 4, 772-777.
    [174] Shanthi C., K. Rao P. Chitosan modified poly(glycidyl methacrylate-butyl acrylate) copolymer grafted bovine pericardial tissue—anticalcification properties. Carbohyd. Polym., 2001, 44, 123-131.
    [175] Fujita A., Kawakita H., Saito K., Sugita K. Production of tripeptide from gelatin using collagenase-immobilized porous hollow-fiber membrane. Biotechnol. Prog., 2003, 19, 1365-1367.
    [176] Tsukruk V. V., Luzinov I., Julthongpiput D. Sticky molecular surfaces: epoxysilane self-assembled monolayers. Langmuir, 1999, 15, 3029-3032.
    [177] Luzinov I., Julthongpiput D., Liebmann-Vinson A., Cregger T., Foster M. D., Tsukruk V. V. Epoxy-terminated self-assembled monolayers: molecular glues for polymer layers. Langmuir, 2000, 16, 504-516.
    [178] Abad J. M., Velez M., Santamaria C., Guisan J. M., Matheus P. R., Vazquez L., Gazaryan I., Gorton L., Gibson T., Fernandez V. M. Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J. Am. Chem. Soc., 2002, 124, 12845-12853.
    [179] Nishiyama S., Goto A., Saito K., Sugita K., Tamada M., Sugo T., Funami T., Goda Y., Fujimoto S. Concentration of 17β-estradiol using an immunoaffinity porous hollow-fiber membrane. Anal. Chem., 2002, 74, 4933-4936.
    [180] Mateo C., Torres R., Fernandez-Lorente G., Ortiz C., Fuentes M., Hidalgo A., Lopez-Gallego F., Abian O., Palomo J. M., Betancor L., Pessela B. C. C., Guisan J. M., Fernandez-Lafuente R. Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules, 2003, 4, 772-777.
    [181] Torres R., Mateo C., Fernandez-Lorente G., Ortiz C., Fuentes M., Palomo J. M., Guisan J. M., Fernandez-Lafuente R. A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: immobilization-stabilization of β-galactosidase from aspergillus oryzae. Biotechnol. Prog., 2003, 19, 1056-1060.
    [182] Trojanowicz M., Opara W. Potentiometric sensitivity of epoxy resins to anions. Talanta, 2002, 56, 213-217.
    [183] Shin J. H., Lee H. L., Cho S. H., Ha J., Nam H., Cha G. S. Characterization of epoxy resin-based anion-responsive polymers: applicability to chloride sensing in physiological samples. Anal. Chem., 2004, 76, 4217-4222.
    [184] 蔡清江,凌均启,陈罕.充填材料对牙齿抗折裂性能影响的实验研究.牙体牙髓牙用病学杂志,2001,11(2),101-104.
    [185] Li C., Risnes S. A comparison of resins for embedding teeth, with special emphasis on adaptation to enamel surface as evaluated by scanning electron microscopy. Arch. Oral Biol., 2004, 49, 77-83.
    [186] 蔡再生,郑成辉,周明训,李云峰.含硅环氧树脂EPSIB整理涤粘混纺织物.印施,2001,4,13-15.
    [1] 王德中.环氧树脂生产与应用.化学工业出版社,2001,P49.
    [2] Hayakawa N., Maeda H., Chigusa S., Okubo H. Partial discharge inception characteristics of LN_2/epoxy composite insulation system under thermal bubble condition. Cryogenics, 2000, 40, 167-171.
    [3] Novak I., Krupa I., Chodak I. Electroconductive adhesives based on epoxy and polyurethane resins filled with silver-coated inorganic fillers. Synthetic. Met., 2004, 144, 13-19.
    [4] Brand J. V. D., Gils S. V., Beentjes P. C. J., Terryn H., Sivel V., Wit J. H. W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog. Org. Coat., 2004, 51, 339-350.
    [5] Tsou A. H., Dellefave D. L. Creep of a glass-flake-reinforced epoxy adhesive for space applications. Polymer, 1996, 37, 5381-5386.
    [6] Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P.. ABC triblock copolymers/epoxy-diamine blends. 2. parameters controlling the morphologies and properties. Macromolecules, 2003, 36, 118-126.
    [7] Balakrishnan S., Raghavan D. Acrylic, elastomeric, particle-dispersed epoxy-clay hybrid nanocomposites: mechanical properties. Macromol. Rapid Commun., 2004, 25, 481-485.
    [8] Choi J., Yee A. F., Laine R. M. Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system. Macromolecules, 2004, 37, 3267-3276.
    [9] Torres A., Lopez-de-Ullibarri I., Abad M. J., Barral L., Cano J., Garci a-Garabal S., Diez F. J., Lopez J., Ramirez C. Study of the Effect of Poly(acrylonitrile-co-butadiene-costyrene) on the Mechanical Properties of an Epoxy System. J. Appl. Polym. Sci., 2004, 92, 461-467.
    [10] Ratna D., Samui A. B., Chakraborty B. C. Flexibility improvement of epoxy resin by chemical modification. Polym. Intern., 2004, 53, 1882-1887.
    [11] Takao I., Wakichi F., Masao T., Masaharu A. Modification of Acid Anhydride-cured Epoxy Resins By N-Phenylmaleimide-Styrene Copolymers and N-Phenylmaleimide-Styrene-p-Hydroxystyrene Terpolymers. Polym. Intern., 1997, 42, 57-66.
    [12] 曹有名,石胜伟,孙军,于德梅.热致液PET-PHB共聚酯增韧改性环氧树脂.西安交通大学学报,2001,35(2),187-191.
    [13] 张宏元,陶永杰.一种侧链型液晶聚合物与环氧树脂共混改性研究.粘接,2002,23(4),1-4.
    [14] Miyagawa H., Mohanty A., Drzal L. T., Misra M. Effect of clay and alumina-nanowhisker reinforcements on the mechanical properties of nanocomposites from biobased epoxy: a comparative study. Ind. Eng. Chem. Res., 2004, 43, 7001-7009.
    [15] Kotsilkova R. Processing-structure-properties relationships of mechanically and thermally enhanced smectite/epoxy nanocomposites. J. Appl. Polym. Sci., 2005, 97, 2499-2510.
    [16] Lee T. M., Ma C. C. M. Nonaqueous synthesis ofnanositica in epoxy resin matrix and thermal properties of their cured nanocomposites. J. Polym. Sci.: Part A: Polym. Chem., 2006, 44, 757-768.
    [17] Miyagawa H., Rich M. J., Drzal L. T. Amine-cured epoxy/clay nanocomposites. Ⅰ. processing and chemical characterization. J. Polym. Sci.: Part B: Polym. Phys., 2004, 42, 4384-4390.
    [18] Sipahi-Saglam E., Kaynak C., Akovali G., Yetmez M., Akkas N. Studies on Epoxy Modified With Recycled Rubber. Polym. Engin. Sci., 2001, 41(3), 514-521.
    [19] Fabio L. B., Marcio A. A., Bluma G. S. Modification of Epoxy Resin by Isocyanate-Terminated Polybutadiene. J. Appl. Polym, Sci., 2002, 83, 838-849.
    [20] 赵莉.热致液晶聚合物增韧环氧树脂的途径和机理.绝缘材料,2004,3,62-64.
    [21] 刘竞超,张华林,李小兵,傅万里.粒子分散对环氧树脂偿内米SiO_2材料性能的影响.合成树脂及塑料,2002,19(1),30-33.
    [22] Yu H. J., Wang L., Shi Q., Jiang G. H., Zhao Z. R., Dong X. C. Study on nano-CaCO_3 modified epoxy powder coatings. Prog. Org. Coat., 2006, 55, 296-300.
    [23] 双酚A型环氧树脂.临淄永流化工股份有限公司企业标准,1999.
    [24] 刘安昌,张道洪.粉末涂料用环氧树脂的合成研究.化工生产与技术,2000,7(6),14-15.
    [25] Hartwig A., Sebald M., Putz D., Aberle L. Preparation, characterisation and properties of nanocomposites based on epoxy resins-an overview. Macromol. Symp., 2005, 221, 127-135.
    [26] Rosso P., Ye L., Friedrich K., Sprenger S. A toughened epoxy resin by silica nanoparticle reinforcement. J. Appl. Polym. Sci., 2006, 100, 1849-1855.
    [27] Shi Q., Wang L., Yu H. J., Jiang S., Zhao Z. R., Dong X. C. A novel epoxy resin/CaCO_3 nanocomposite and its mechanism of toughness improvement. Macromol. Mater. Eng., 2006, 291, 53-58.
    [28] Li G. Z., Wang L., Toghiani H., Daulton T. L., Koyama K., Pittman C. U., Jr. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules, 2001, 34, 8686-8693.
    [29] Wetzel B., Haupert F., Zhang M. Q. Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol., 2003, 63, 2055-2067.
    [30] Lu H. J., Liang G. Z., Ma X. Y., Zhang B. Y., Chen X. B.Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym. Int., 2004, 53, 1545-1553.
    [31] 贾巧英,马晓燕.纳米材料及其在聚合物中的应用.塑料科技,2001,2,6-10.
    [32] Marissen R. Craze growth mechanics. Polymer, 2000, 41, 1119-1129.
    [33] 李蕾,陈建峰,邹海魁,王国全.纳米碳酸钙作为环氧树脂增韧材料的研究.北京化工大学学报,2005,32(2),1-4.
    [34] 方卫民,陈道新.用PAANa掺杂的纳米CaCO_3和合成及其产品表征.无机化学学报,2001,17(5),685-690.
    [35] 施申蕾,黄莉蕾,张伦,朱京评,付晏彬.Eu:Y_2O_3纳米晶的光谱特征与微结构.中国计量学院学报,2005,16(3),227-232.
    [36] 无锡华达石化装备有限公司.100L树脂反应釜,R100-0205-0.
    [1] 南仁植.粉末涂料与涂装技术.化学工业出版社,2000,1.
    [2] 屈平.我国粉末涂料现状及新技术进展.涂料与应用,2005,35(4),8-10.
    [3] 胡志鹏.透视粉末涂料市场现状.现代涂料与涂装,2005,8(4),14-16.
    [4] Schutz A., Kaiser W. D. Powder coatings for corrosion protection. Macromol. Symp., 2002, 187, 781-787.
    [5] Fellahi S., Chikhi N., Bakar M. Modification of epoxy resin with Kaolin as a toughening agent. J. Appl. Polym. Sci., 2001, 82, 861-878.
    [6] Torres A., Lopez-de-Ullibarri I., Abad M. J., Barrel L., Cano J., Garcia-Garabal S., Diez F. J., Lopez J., Ramirez C. Study of the effect of poly(acrylonitrile-co-butadiene-costyrene) on the mechanical properties of an epoxy system. J. Appl. Polym. Sci., 2004, 92, 461-467.
    [7] Salahuddin N. A. Layered silicate/epoxy nanocomposites: synthesis, characterization and properties. Polym. Adv. Technol., 2004, 15, 251-259.
    [8] Ratna D., Samui A. B., Chakraborty B. C. Flexibility improvement of epoxy resin by chemical modification. Polym. Int., 2004, 53, 1882-1887.
    [9] 周金向,黄慧萍,李艳玲,龚荣洲.环氧树脂的增韧改性新方法.材料导报,2004,18(11),61-62.
    [10] Frohlich J., Thomann R., Mulhaupt R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules, 2003, 36, 7205-7211.
    [11] 马天信,姜波.增韧剂对环氧树脂性能的影响.热固性树脂,2003,18(3),7-9.
    [12] Sue H. J., Gam K. T., Bestaoui N., Spurr N., Clearfield A. Epoxy nanocomposites based on the synthetic r-Zirconium phosphate layer structure. Chem. Mater., 2004, 16, 242-249.
    [13] Wang K., Chen L., Wu J., Toh M. L., He C., Yee A. F. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules, 2005, 38, 788-800.
    [14] Naous W., Yu X. Y., Zhang Q. X., Naito K., Kagawa Y. Morphology, tensile properties, and fracture toughness of epoxy/Al_2O_3 nanocomposites. J. Polym. Sci: Part B: Polym. Phys., 2006, 44, 1466-1473.
    [15] 郭刚,汪斌华,黄婉霞,于杰,曹建军,涂铭旌.纳米TiO_2的紫外光学特性及在粉末涂料抗老化改性中的应用.四川大学学报(工程科学版),2004,36(5),53-56.
    [16] 涂铭旌,汪斌华,熊玉竹,郭刚,曹建军,张波,雷念慈.无机纳米复合材料改性的耐候型聚氨酯粉末涂料及其制备方法.ZL03117985.1,2005.
    [17] 涂铭旌,郭刚,汪斌华,熊玉竹,曹建军,张波,吴健春.无机纳米复合抗菌剂改性的抗菌型环氧粉末涂料及其制备方法.ZL03117984.3,2004.
    [18] Espiard Ph., Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. grafting process onto silica. Polymer, 1995, 36(23), 4391-4395.
    [19] 宋晓岚,王海波,吴雪兰,曲鹏,邱冠周.纳米颗粒分散技术的研究与发展.化工进展,2005,24(1),47-52.
    [20] Yu H. J., Wang L., Shi Q., Jiang G. H., Zhao Z. R., Dong X. C. Study on nano-CaCO_3 modified epoxy powder coatings. Prog. Org. Coat., 2006, 55, 296-300.
    [21] Yu H. J., Wang L., Shi Q., Jiang S., Jiang G. H. Preparation of epoxy resin/CaCO_3 nanocomposites and performance of resultant powder coatings. J. Appl. Polym Sci., 2006, 101, 2656-2660.
    [22] Barmuta P., Cywinski K. Electroseparation and effciency of deposition during electrostatic powder coating. J. Electrostat., 2001, 51-52, 239-244.
    [23] Dastoori K., Makin B., Telford J. Measurements of thickness and adhesive properties of electrostatic powder coatings for standard and modified powder coating guns. J. Electrostat., 2001, 51-52, 545-551.
    [24] Shi Q., Wang L., Yu H. J., Jiang S., Zhao Z. R., Dong X. C. A novel epoxy resin/CaCO_3 nanocomposite and its mechanism of toughness improvement. Macromol. Mater. Eng., 2006, 291, 53-58.
    [25] Weon J. I., Gam K. T., Boo W. J., Sue H. J., Chan C. M. Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite. J. Appl. Polym. Sci., 2006, 99, 3070-3076.
    [26] Kelnar I., Kotek J., Kapralkova L., Munteanu B. S. Polyamide nanocomposites with improved toughness. J. Appl. Polym. Sci., 2005, 96, 288-293.
    [27] Chisholm N., Mahfuz H., Rangari V. K., Ashfaq A., Jeelani S. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos. Struct., 2005, 67, 115-124.
    [1] Grevels F. W., Kuran A., Ozkar S., Zora M. Friedel-Crafts alkylation of ferrocene with Z-cyclooctene and cyclohexene. J. Organomet. Chem., 1999, 587, 122-126.
    [2] 唐松青,丁宏勋.丁羟推进剂的高效燃速催化剂.化学推进剂与高分子材料,2004,2(1),8-11
    [3] 张仁,李建成,翁武军.二茂铁燃速催化剂的发展状况.推进技术,1994,3,62-65.
    [4] 周集义.二茂铁硅烷接枝的丁羟燃速催化剂.化学推进剂与高分子材料,1998,64(4),1-3.
    [5] Menke K., Gerber P., Geiβler E., Bunte G., Kentgens H., Schoffl R. Characteristic properties of an end burning grain with smoke reduced ferrocene containing composite propellant. Propel., Explos., Pyrotechn., 1999, 24, 126-133.
    [6] Unver A., Dilsiz N., Volkan M., Akovah G. Investigation of acetyl ferrocene migration from hydroxyl-terminated polybutadiene based elastomers by means of ultraviolet-visible and atomic absorption spectroscopic techniques. J. Appl. Polym. Sci., 2005, 96, 1654-1661.
    [7] Subramanian K. Synthesis and characterization of poly(vinyl ferrocene) grafted hydroxyl-terminated poly(butadiene): a propellant binder with a built-in burn-rate catalyst. J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 4090-4099.
    [8] Jong S. J., Fang J. M. Synthesis of ferrocenyl alkenes, dienes, and enynes via samarium diiodide promoted tandem addition and dehydration of ferrocenyl carbonyls with halides. J. Org Chem., 2001, 66, 3533-3537.
    [9] Kishore K., Verneker V. R. P., Dharumaraj G. V. Crosslinking reactions of 1,1'-bis(glycidoxy methyl)ferrocene with carboxyl-terminated polybutadiene and its wetting effect. J. Polym. Sci: Polym. Lett. Ed., 1984, 22, 607-610.
    [10] 支永刚,董春蛾,韩杰,郑维忠,张良辅.手性二茂铁聚酰胺催化剂的合成和应用.化学研究与应用,2000,12,410-415.
    [11] 边占喜,赵庆华.双(烷基二茂铁基)丙炕的合成及其燃速催化性质.应用化学,2004,21(9),923-927.
    [12] 王艳学,边占喜,赵庆华,翟林益,于海军,云青.烷基二茂铁的合成及性质.应用化学,2002,19(10),950-953.
    [13] Chen T., Wang L., Jiang G. H., Wang J. J., Dong X. C., Wang X. J., Zhou J. F., Wang C. L., Wang W. Electrochemical behavior of poly(ferrocenyldimethylsitane-b-dimethylsiloxane) films. J. Phys. Chem. B, 2005, 109, 4624-4630.
    [14] Wang X. J., Wang L., Wang J. J. Electrochemical behavior of high-molecular-weight poly(ferrocenylsilane) films in aqueous electrolyte solutions. J. Polym. Sci. Part B: Polym. Phys., 2004, 42, 2245-2253.
    [15] Bard A. J., Faulkner L. R. Electrochemical Methods. John Wiley & Sons: New York, 1980, Chapter 6.
    [16] Turrin C. O., Chiffre J., de Montauzon D., Daran J. C., Caminade A. M., Manoury E., Balavoine G., Majoral J. P. Phosphorus-containing dendrimers with ferrocenyl units at the core, within the branches, and on the periphery. Macromolecules, 2000, 33, 7328-7336.
    [17] Takada K., Diaz D. J., Abruna H. D., Cuadrado I., Casado C., Alonso B., Moran M., Losada J. Redox-active ferrocenyl dendrimers: thermodynamics and kinetics of adsorption, in-situ electrochemical quartz crystal microbalance study of the redox process and tapping mode AFM imaging. J. Am. Chem. Soc., 1997, 119, 10763-10773.
    [18] Cuadrado I., Moran M., Casado C. M., Alonso B., Lobete F., Garcia B., Ibisate M., Losada J. Ferrocenyl-functionalized poly(propylenimine) dendrimers. Organometallics, 1996, 15, 5278-5280.
    [19] 李瑞珍.双氰胺固化环氧树脂的研究.热固性树脂,1991,4,11-13.
    [20] de Medeiros E. S., Agnelli J. A. M., Joseph K., de Carvalho L. H., Mattoso L. H. C. Curing behavior of a novolac-type phenolic resin analyzed by differential scanning calorimetry. J. Appl. Polym. Sci., 2003, 90, 1678-1682.
    [21] Park B. D., Riedl B., Hsu E. W., Shields J. Differentia! scanning calorimetry of phenol-formaldehyde resins cure-accelerated by carbonates. Polymer, 1999, 40, 1689-1699.
    [22] Kenny J. M., Opalicki M. Processing of short fibre/thermosetting matrix composites. Composites Part A, 1996, 27, 229-240.
    [23] Ozawa T. J. Thermal. Anal, 1970, 2, 301-324.
    [1] Brand J. V. D., Gils S. V., Beentjes P. C. J., Terryn H., Sivel V., Wit J. H. W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog. Org. Coat., 2004, 51, 339-350.
    [2] Guillaumin V., Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance. Corros. Sci., 2002, 44, 179-189.
    [3] Novak I., Krupa I., Chodak I. Electroconductive adhesives based on epoxy and polyurethane resins filled with silver-coated inorganic fillers. Synthetic. Met., 2004, 144, 13-19.
    [4] Tsou A. H., Dellefave D. L. Creep of a glass-flake-reinforced epoxy adhesive for space applications. Polymer, 1996, 37(24), 5381-5386.
    [5] Park S. J., Seo M. K., Lee J. R. Effects of irradiation and design basis accident conditions on thermal properties of epoxy coating system for nuclear power plant. Nucl. Eng. Des., 2004, 228, 47-54.
    [6] Chen T., Wang L., Jiang G. H., Wang J. J., Wang X. J., Zhou J. F., Wang J. F., Chen C., Wang W., Gao H. Q. Electrochemical behavior on poly(ferrocenyldimethyl-silane)-b-poly(benzyl ether) linear-dendritic organometallic polymer films.J. Electroanal.Chem., 2006, 586, 122-27.
    [7] Wang J. J., Wang L., Wang W. Q., Chem T. Progress on the study of structure and property of highly branched ferrocene-based polymer. J. Polym. Mater., 2005, 22, 169-180.
    [8] Manners I. Putting metals into polymers. Science, 2001, 294, 1664-1666.
    [9] Labande A., Ruiz J., Astruc D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc., 2002, 124, 1782-1789.
    [10] Wright M. E., Laub J., Stafford P. R., Norris W. P. Synthesis of new ferrocene containing diamines and their use in epoxy resins. J. Organomet. Chem., 2001, 637-639, 837-840.
    [11] 王德中.环氧树脂生产与应用.化学工业出版社,2001,16.
    [12] 支永刚,董春蛾,韩杰,郑维忠,张良辅.手性二茂铁聚酰胺催化剂的合成和应用.化学研究与应用,2000,12,410-415.
    [13] Wang X. J., Wang L., Wang J. J., Chen T. Study on the electrochemical behavior of poly(ferrocenylsilane) films. J Phys. Chem. B, 2004, 108, 5627-5633.
    [14] Chen T., Wang L., Jiang G. H., Wang J. J., Dong X. C., Wang X. J., Zhou J. F., Wang C. L., Wang W. Electrochemical behavior of poly(ferrocenyldimethylsilane-bodimethylsiloxane) films. J. phys. Chem. B, 2005, 109, 4624-4630.
    [15] Bard A. J., Faulkner L. R. Electrochenmical Methods. John Wiley & Sons: New York, 1980, Chapter 6.
    [16] Wang X. J., Wang, L., Wang, J. J. Electrochemical behavior of high-molecular-weight poly(ferrocenylsilane) films in aqueous electrolyte solutions, J. Polym. Sci. Part B Polym. Phys., 2004, 42, 2245-2253.
    [17] Nguyen M. T., Diaz A, F., Dememnt'ev. V. V., Pannell K. H. High Molecular Weight Poly(ferrocenediyl-silanes): Synthesis and Electrochemistry of [-(C_5H_4) Fe (C_5H_4) SiR_2-]_n, R= Me, Et, n-Bu, n-Hex. Chem. Mater., 1993, 5, 1389-1394.
    [18] 王学杰.二茂铁基聚合物的合成和性能研究.浙江大学博士学位论文,2005.
    [1] Huang W., Zhou Y. F., Yan D. Y.. Direct synthesis of amphiphilic block copolymers from glycidyl methacrylate and poly(ethylene glycol) by cationic ring-opening polymerization and supramolecular self-Assembly thereof. J. Polym. Sci. A, 2005, 43, 2038-2047.
    [2] Riegel I. C., Samios D., Petzhold C. L., Eisenberg A. Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N, N-diethylamino) isoprene in selective solvents. Polymer, 2003, 44, 2117-2128.
    [3] Jain S., Bates F. S. On the origins of morphological complexity in block copolymer surfactants. Science, 2003, 300, 460-464.
    [4] Rodriguez-Hernandez J., Lecommandoux S. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc., 2005, 127, 2026-2027.
    [5] Breitenkamp K., Emrick T. Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis. J. Am. Chem. Soc., 2003, 125, 12070-12071.
    [6] Du J., Chen Y. Hairy nanospheres by gelation of reactive block copolymer micelles. Macromol. Rapid Commun., 2005, 26, 491-494.
    [7] Wong G. C. L., Tang J. X., Lin A., Li Y., Janmey P. A., Sapnya C. R. Hierarchical self-assembly of F-actin and cationic lipid complexes: stacked three-layer tubule networks. Science, 2000, 288, 2035-2039.
    [8] Sohn B. H., Choi J. M., Yoo S. I., Yun S. H., Zin W. C., Jung J. C., Kanehara M., Hirata T., Teranishi T. Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles. J. Am. Chem. Soc., 2003, 125, 6368-6369.
    [9] Wang H., You W., Jiang P., Yu L., Wang H. H. Supramolecular self-assembly of conjugated diblock copolymers. Chem. Eur. J, 2004, 10, 986-993.
    [10] Lazzari M., M. L6pez-Quintela A. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater, 2003, 15, 1583-1594.
    [11] Pilon L. N., Armes S. P., Findlay P., Rannard S. P. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas: a pragmatic alternative to dendrimers. Langmuir, 2005, 21, 3808-3813.
    [12] Zhang Y., Jiang M., Zhao J., Wang Z., Dou H., Chen D. pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly. Langmuir, 2005, 21, 1531-1538.
    [13] Zhang Q., Remsen E. E., Wooley K. L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J. Am. Chem. Soc., 2000, 122, 3642-3651.
    [14] Hu Y. C, Pan C. Y. Bioaffinitive and nanosized polymeric micelles based on a reactive block copolymer. Macromol. Rapid. Commun., 2005, 26, 968-972.
    [15] Weaver J. V. M., Tang Y, Liu S., Iddon P. D., Grigg R., Billingham N. C, Armes S. P., Hunter R., Rannard S. P. Preparation of shell cross-linked micelles by polyelectrolyte complexation. Angew. Chem. Int. Ed, 2004, 43, 1389-1392.
    [16] Kuang M., Duan H., Wang J., Jiang M. Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent. J. Phys. Chem. B, 2004, 108, 16023-16029.
    [17] Cao L., Manners I., Winnik M. A. Synthesis and self-assembly of the organic-organometallic diblock copolymer poly(isoprene-b-ferrocenylphenylphosphine): shell cross-linking and coordination chemistry of nanospheres with a polyferrocene core. Macromolecules, 2001, 34, 3353-3360.
    [18] Du J., Armes S. P. pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. J. Am. Chem. Soc, 2005, 127, 12800-12801.
    [19] Mateo C, Torres R., Fernαndez-Lorente G, Ortiz C, Fuentes M., Hidalgo A., Lopez-Gallego F., Abian O., Palomo J. M., Betancor L., Pessela B. C. C., Guisan J. M., Fernαndez-Lafuente R. Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules, 2003, 4, 772-777.
    [20] Fujita A., Kawakita H., Saito K., Sugita K. Production of tripeptide from gelatin using collagenase-immobilized porous hollow-fiber membrane. Biotechnol. Prog., 2003, 19, 1365-1367.
    [21] Shanthi C, Rao K. P. Chitosan modified poly(glycidyl methacrylate-butyl acrylate) copolymer grafted bovine pericardial tissue-anticalcification properties. Carbohyd. Polym., 2001,44,123-131.
    [22] Canamero P. F., de la Fuente J. L., Madruga E. L., Fernαndez-Garcia M. Atom transfer radical polymerization of glycidyl methacrylate: a functional monomer. Macromol. Chem. Phys., 2004, 205,2221-2228.
    [23] Stewart T., Lesko P. M., El A'mma A. G. Leather treatment selected amphiphilic copolymers. U.S. Patent, 1994, 5316860.
    [24] Zhou J. F., Wang L., Wang C. L., Chen T., Yu H. J., Yang Q. Synthesis and self-assembly of amphiphilic maleic anhydride-stearyl methacrylate copolymer. Polymer, 2005, 46, 11157-11164.
    [25] Burke S. E., Eisenberg A. Kinetic and mechanistic details of the vesicle-to-rod transition in aggregates of PS_(310)-b-PAA_(52) in dioxane-water mixtures. Polymer, 2001, 42, 9111-9120.
    [26] Burke S. E., Eisenberg A. Effect of sodium dodecyl sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures. Langmuir, 2001, 17, 8341-8347.
    [27] Solomatin S. V., Bronich T. K., Eisenberg A., Kabanov V. A., Kabanov A. V. Colloidal stability of aqueous dispersions of block ionomer complexes: effects of temperature and salt. Langmuir, 2004, 20, 2066-2068.
    [28] Shen Z., Zhao Z. G., Wang G. T. Colloid and Surface Chemistry. Chemical Industry Press: Beijing, 2004, p105.
    [1] Beer P. D., Graydon A. R., Johnson A. O. M., Smith D. K. Neutral ferrocenoyl receptors for the selective recognition and sensing of anionic guests. Inorg. Chem., 1997, 36, 2112-2118.
    [2] Beer P. D., Hayes E. J. Transition metal and organometallic anion complexation agents. Coordin. Chem. Rev., 2003, 240, 167-189.
    [3] Beer P. D., Gale P. A. Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed., 2001, 40, 486-516.
    [4] Beer P. D., Cadman J. Electrochemical and optical sensing of anions by transition metal based receptors. Coordin. Chem. Rev., 2000, 205, 131-155.
    [5] Beer P. D., Gale P. A., Chen G. Z. Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules. Coordin. Chem. Rev., 1999, 185-186,3-36.
    [6] Izatt R. M., Pawlak K., Bradshaw J. S. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev., 1995, 95, 2529-2586.
    [7] Han M. S., Kim D. H. Naked-eye detection of phosphate ions in water at physiological pH: a remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed, 2002, 41, 3809-3811.
    [8] Daniel M. C., Ruiz J., Astruc D. Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H_2PO_4". J. Am. Chem. Soc, 2003, 125, 1150-1151.
    [9] Labande A., Ruiz J., Astruc D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc, 2002, 124, 1782-1789.
    [10] Labande A., Astruc D. Colloids as redox sensors: recognition of H_2PO_4~- and HSO_4~- by amidoferrocenylalkylthiol-gold nanoparticles. Chem. Commun., 2000, 12, 1007-1008.
    [11] Alonso B., Casado C. M., Cuadrado I., Moran M., Kaifer A. E. Effective recognition of H_2PO_4~- by a new series of dendrimers functionalized with ferrocenyl-urea termini. Chem. Commum., 2002, 16, 1778-1779.
    [12] Reynes O., Bucher C, Moutet J. C, Royal G., Saint-Aman E., Ungureanu E. M. Electrochemical sensing of anions by redox-active receptors built on the ferrocenyl cyclam framework. J. Electroanal. Chem., 2005, 580, 291-299.
    [13] Valerio C., Fillaut J. L., Ruiz J., Guittard J., Blais J. C, Astruc D. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc, 1997, 119, 2588-2589.
    [14] Casado C. M., Cuadrado I., Alonso B., Moran M., Losada J. Silicon-based ferrocenyl dendrimers as anion receptors in solution and immobilized onto electrode surfaces. J. Electroanal. Chem., 1999, 463, 87-92.
    [15] Cuadrado I., Moran M., Casado C. M., Alonso B., Lobete F., Garcia B., Ibisate M., Losada J. Ferrocenyl-functionalized poly(propylenimine) dendrimers. Organometallics, 1996, 15, 5278-5280.
    [16] Daniel M. C, Ruiz J., Blais J. C, Daro N., Astruc D. Synthesis of five generations of redox-stable pentamethylamidoferrocenyl dendrimers and comparison of amidoferrocenyl- andpentamethylamidoferrocenyl dendrimers as electrochemical exoreceptors for the selective recognition of H_2PO_4~-, HSO_4~-, and adenosine 5'-triphosphate (ATP) anions: stereoelectronic and hydrophobic roles of cyclopentadienyl permethylation. Chem. Eur. J., 2003, 9,4371-4379.
    [17] Ruiz J., Medel M. J. R., Daniel M. C., Blais J. C., Astruc D. Redox-robust pentamethylamidoferrocenyl metallodendrimers that cleanly and selectively recognize the H_2PO_4~- anion. Chem. Commun., 2003, 4, 464-465.
    [18] Wang X. J., Wang L., Wang J. J. Electrochemical behavior of high-molecular-weight poly(ferrocenylsilane) films in aqueous electrolyte solutions. J. Polym. Sci. Part B: Polym. Phys., 2004, 42, 2245-2253.
    [19] Bard A. J., Faulkner L. R. Electrochenmical Methods; John Wiley & Sons: New York, 1980; Chapter 6.
    [20] 王柏臣,黄玉东,刘丽.溶剂对RTM石英/酚醛复合材料溶液浸润过程影响研究.航空材料学报,2006,26(1),46-50.
    [21] 雷毅,李浩然,朱龙华,韩世钧.DMF-H_2O缔合体系的~1H NMR研究.化学学报,2002,60(10),1747-1753.
    [22] 尹振明,杨文智,何家骐,程津培.邻-二(吡咯-2-甲酰胺基)亚苯的合成、晶体结构及阴离子识别.高等学校化学学报,2004,25(7),1260-1263.
    [23] 江国华.支化聚合物的合成、自组装和应用研究.物江大学博士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700