黄土丘陵半干旱区人工刺槐林退化特征及改造效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土流失严重与气候干旱是黄土丘陵半干旱区当前面临的两大生态问题。由于自然因素和人为因素的共同作用,黄土丘陵半干旱区部分人工植被如刺槐、小叶杨等存在退化现象,这一问题已经引起了人们的注意。为了正确认识该区人工植被退化的机理,采用野外试验与室内分析相结合的方法,在陕西安塞选取人工刺槐林,研究23、26、28、32、33、44、50林龄人工刺槐林生长状况及重新造侧柏林、皆伐后自然萌生、混交等不同更新方式下刺槐的生长情况,分析了刺槐林的退化特征,并对不同改造更新方式的效果进行分析,以期为该地区刺槐人工林的天然化培育提供依据。
     所取得的主要结论如下:
     1.通过刺槐纯林和混交林对生物量、冠幅、土壤物理特性、生物多样性的影响比较发现,黄土丘陵半干旱区刺槐纯林易发生退化。所调查不同林龄刺槐纯林均发生不同程度的退化。随林龄的增长,刺槐纯林退化程度加剧。生物量、径级、冠幅随林龄的增长而增加,林分密度降低,冠径比减小。蓄积量为26.07~84.79 m3/hm~2,林分密度为200~1417株/hm~2,径级为2~32cm。退化人工刺槐林平均冠幅为2.43~3.83 m,除33龄(W0°)外,其他纯林冠径比均大于1.2。不同林龄的退化刺槐林对土壤容重、孔隙度、有机质、饱和导水率的改善作用明显,不同林龄间差异十分显著。0~60cm土层内有机质含量为1.80g/kg~15.81 g/kg,平均值仅6.01g/kg。饱和导水率为0.30 mm/min~8.63 mm/min,平均饱和导水率50龄刺槐林最大为4.83 mm/min,33龄(W0°)最小为1.53 mm/min。土壤总孔隙度的变化范围为53.66%~59.90%。对黄土丘陵半干旱区不同林龄人工刺槐林的林分密度、蓄积量、比根长、土壤物理特性及生物多样性的分析认为,退化刺槐林的改造更新林龄在30年左右。
     2.退化刺槐林判断指标:
     a.退化人工刺槐林林相参差不齐,存在大量枯木;树体上枯枝多,萌生枝条多,萌生枝条存活率低,树冠冠形差;树体黑色,附生大量黄褐色地衣;
     b.刺槐胸径与树冠投影面积的相关性分析表明,若正相关系数在0.7以上,则没有发生退化,呈负相关或正相关性在0.7以下则发生退化。
     c.利用冠径比来进行判断。冠径比是两个垂直方向树冠投影直径的比值,冠径比可以描述两个垂直方向上刺槐冠幅的变化,两个垂直方向差异越大,冠径比就越大或越小。退化人工刺槐林的冠径比大于1.2或小于0.8,正常刺槐冠径比在0.8~1.2之间。
     d.人工刺槐林内,刺槐的自然死亡或人为破坏造成人工刺槐林发生退化,退化的刺槐林内林内郁闭度较低,草本生物多样性增加。
     3.不同改造更新方式下,林分密度、生物量都不相同,以混交林密度最合理,蓄积量最大。不同改造更新方式林分密度为1056株/hm~2~4667株/hm~2,乔木蓄积量为17.68m3/hm~2~50.73m3/hm~2。不同改造更新方式对土壤物理特性、生物多样性、冠幅的影响不同。其中以混交方式的作用最为明显,其次为皆伐萌生,重新造林效果最差。0~60cm土层总孔隙度在49.24%~62.58%范围变化,混交林大于萌生刺槐林和重新造林。土壤饱和导水率范围为0.73 mm/min~6.75 mm/min。土壤有机质在0.98g/kg~15.28g/kg之间。
     4.黄土高原地区在明确改造更新目的的情况下,对退化刺槐林改造更新时应遵循以下原则:
     a.急需改造更新且资金不足的退化人工刺槐林,可采用间伐加封育的措施进行适当的人工抚育。
     b.不提倡在退化刺槐林地上皆伐后进行重新造林,原因是重新造林成本过高,且易造成新的退化植被,并由于树种选择不当造成生态、经济效益不高。
     c.黄土高原地区降水量在200~500mm的地区可对退化人工刺槐林进行间伐或与灌木混交,灌木应以豆科经济灌木为主。
     d.不论采取何种改造更新措施,都必须加强抚育管理,以减少人为因素对刺槐林的影响。
Serious soil and water loss and arid climate were the two ecological problems faced by semi-arid loess hilly region. Because of the common effects of natural factors and human factors, there is degradation phenomenon in some artificial vegetation, such as locust, simon poplar, which has aroused the public attention. In order to correctly understand the degradation mechanism of artificial vegetation in this area, artificial locust forest which was located in Anshai of Shaanxi province was studied by using field test and laboratory analysis. The growth condition of artificial locust forest with 23, 26, 28, 32, 33, 44 and 50 forest ages and that with different regeneration modes (reforesting arborvitae forest, natural sprouting after clear cutting and mixed mode) were researched. what’s more, the degradation characteristics of locust forest and the effect of different reconstruction modes were analyzed in order to provide basis for natural cultivation of artificial locust forest in semi-arid loess hilly region. The main results were as follows:
     1.By comparing the effects of pure locust forest and mixed forest on biomass, crown width, soil physical properties and biodiversity, it was found that pure locust forest in semi-arid loess hilly region was easy to degrade. Pure locust forest with different forest age had degradation at different degree. The degradation degree, biomass,diameterclass, crown width increased with the increase of forest age, while the forest density and crown diameter ratio decreased. Volume amount was 26.07~84.79 m~3/hm~2, forest density was 200~1417 plant/hm~2, and diameter class was 2~32cm.The average crown width of degraded artificial locust forest was 2.43~3.83 m, the crown diameter ratios of other pure forests were all more than 1.2 except for the forest which was 33 forest ages. Degraded locust forest with different forest age had significant improving effect on soil bulk density, porosity, organic matter and saturated hydraulic conductivity. And the difference among forests with different forest age was significant. The organic matter content in 0~60cm soil depth was 1.80g/kg~15.81 g/kg, and the average was only 6.01g/kg. Saturated hydraulic conductivity was 0.30 mm/min~8.63 mm/min. For the average saturated hydraulic conductivity, the maximum in locust forest with 50 forest ages was 4.83 mm/min,the minimum in locust forest with 33 ages was 1.53 mm/min。The change range of total soil porosity was from 53.66% to 59.90%。Forest density, volume amount, specific root length, soil physical properties and biodiversity of artificial locust forest with different forest age in semi-arid loess hilly region were analyzed which showed that the forest age of degraded locust forest reconstruction was about 30.
     2.judgement indexes of degraded locust forest:
     a. Forest form of degraded artificial locust forest was uneven, and there were lots of withered wood; in the tree body, there were many dead woods and offshoots, the survival rate of offshoot was low, and the crown form was poor; the tree body was black with a lot of filemot lichens.
     b. Correlation analysis between diameter of locust and the projection area of crown showed that: when the positive correlation coefficient was more than 0.7, there was no degradation, and when it was negative correlation or the positive correlation coefficient was lower than 0.7, there was degradation.
     c. Crown diameter ratio was used as judgement index. Crown diameter was the ratio of crown projection diameter in two vertical directions, which could be used to describe the change of locust crown width in the two vertical directions. When the difference in the two vertical directions increased, crown diameter ratio was greater or smaller. The crown diameter ratio of degraded artificial locust forest was greater than 1.2 or smaller than 0.8, and the crown diameter ratio of normal locust was 0.8~1.2.
     d. Natural death of locust or human damage resulted in the degradation of artificial locust forest. In the degraded locust forest, canopy density was lower, and the diversity of herb organisms increased.
     3. Forest density and biomass were different under different reconstruction modes, the density of mixed forest was the most reasonable, and the volume amount was the most. The forest density with different reconstruction mode was 1056 plant/hm~2~4667 plant/hm~2,and the volume amount of arbor was 17.68m3/hm~2~50.73m3/hm~2.The effects of different reconstruction modes on soil physical properties, biodiversity, crown width were different. And the effect of mixed mode was the most significant, followed by clear cutting sprouting and reforestation. Total porosity in 0~60cm soil depth were between 49.24%~62.58%, and total porosity in mixed forest was more compared to sprouting locust forest and reforestation. Soil saturated hydraulic conductivity was 0.73 mm/min~6.75 mm/min, and soil organic matter changed form 0.98g/kg to 15.28g/kg.
     4. Under the condition of determining reconstruction aim, the reconstruction of degraded locust forest in loess plateau region must comply to the following principles:
     a. Suitable artificial tending could be taken in degraded artificial locust forest which urgently needed reconstruction by using intermediate cutting and exclusion measures if there was not enough capital.
     b. Reforestation in degraded locust forest was not advocated after clear cutting. The cost of reforestation was high and easy to cause new degraded vegetation, what’s more, the wrong choice of tree species could result in low ecological and economical benefit.
     c. Degraded artificial locust forest in area with precipitation between 200~500mm could use intermediate cutting or mixed plantation with shrub. And leguminosae economic shrub should be mainly chosen.
     d. Tending management must be enhanced no matter what reconstruction measures were applied in order to reduce the effect of human factor on locust forest.
引文
[1]侯庆春,黄旭,韩仕峰,等.黄土高原地区小老树成因及其改造途径的研究I:小老树的分布及其生长特点[J].水土保持学报,1991,(01):64~72.
    [2]中国科学院中国植物志编辑委员会.中国植物志(第40卷)[M].北京:科学出版社,1994.
    [3]王世绩,张敦伦.刺槐[M].北京:中国科学技术出版社,1993.
    [4]张鹏,刘继生,金春德,等.刺槐栽培与利用研究概况[J].延边大学农学学报, 2002, 24(02): 223~227.
    [5]张仰渠.陕西森林[M] .北京:中国林业出版社,1986.
    [6]邹年根.刺槐人工林[M].北京:中国林业出版社,1986.
    [7]滕晓华,党永峰.黄土丘陵、沙地杨树低产林改造技术初探[J].内蒙古林业调查设计,26(03):56~58.
    [8]齐长江.刺槐低产林改造技术的研究[J].辽宁林业科技,1991(04):26~27.
    [9]牛保东,杨鹏,杨朝贵.人工刺槐林截伐萌孽能有效加快更新造林[J].陕西林业,2007(03):40.
    [10]谭红岩.刺槐断根人工促进生产技术[J].河北林业,2006(04):40.
    [11]王健,刘作新.油松刺槐混交林土壤生物学特性研究[J].干旱区研究,2004,21(04):348~352.
    [12]郭小平,朱金兆,余新晓,等.论黄土高原地区低效刺槐林改造问题[J].水土保持研究,1998,5(4):77~82.
    [13]张提,卢映书.“小老树”改造技术初探[J].水土保持科技情报,1997,(04):54~55.
    [14] Powers R.F.,Tiarks A.E.,Burger J.A., et al 1996.Sustaining the productivity of planted forests.In:Carter, M.C. ,ed Growing Trees in A Greenre World :Industrial Forestry in the 21st Century;35th LSU forest symposium .Baton Rouge,LA: Louisiana State University agricultural center ,Louisiana agricultural experiment station.97~134.
    [15]侯庆春,黄旭,韩仕峰,等.黄土高原地小老树成因及其改造途径的研究Ⅱ:土壤水分和养分状况及其与小老树生长的关系[J].水土保持学报,1991,(02):66~83.
    [16]王宗汉,汪自喜.雁北地区杨树“低产林”的形成原因与间伐抚育效果的调查报告[J].山西林业科技,1978(02):1~5.
    [17]欧阳君祥,曾思齐.长江中上游低质低效次生栎林的分类与评价[J].林业资源管理,2002,(3):69~74.
    [18]曾思齐,欧阳君祥,佘济云.长江上游低质低效云杉林的分类与评价[J].湖南林业科技,2001,28(4):11~14.
    [19]王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(01):11~15.
    [20]李文华,陈一鹤.刺槐生长量的灰色预测[J].水土保持通报,1995,15(06):64~68.
    [21]马阿滨,薛茂贤,尹淑清,等.低产林的评价及改造效果[J].林业科技,1996,21(03):17~19.
    [22]周立江.低效林评判与改造途径的探讨[J].四川林业科技,2004,25(01):16~21.
    [23]陈廉杰.乌江流域低效林分及其改造技术研究报告[J].贵州林业科技, 1991,19(03):1~21.
    [24]何兴元.应用生态学[M].北京:科学出版社,2004.
    [25]国家林业局森林资源管理司.世界各国森林资源现状、演变趋势及启示.http://www. forestry.gov.cn/distribution/2007/10/29/n_sjly-2007-10-29-283.html,2007年10月30日.
    [26] Keeves A.1966.Some evidence of loss productivity with successive rotations of Pinus radiata in south east of S.Australia Australian Forest,30:51~63.
    [27]河南农学院林业专业65级二班.民权沙区“小老树”的形成与改造问题[J].河南农业大学学报,1965/Z1.
    [28]曹崇焕,邓明全.打破学科框框从生产实际出发选择科研课题[J].林业科学,1965,(4).
    [29]马大华.我省召开低产林改造研讨会[J].山西林业,1996,(06):XXX.
    [30]王长福.先造后抚是搞好低产林经营的重要途径[J].东北林业大学学报,1989,1(705):101~104.
    [31]綦丁山,陈廉杰,罗惠宁,等.乌江流域低效林分改造技术及实施办法[J].贵州林业科技,1991,19(03):61~67.
    [32]李铁民,杨静.低价值林分改造的理论与实践[J].山西林业科技,1999,(04):1~3,7.
    [33]袁立人.对内蒙古地区低产林改造的意见[J].内蒙古林业,1991(09):14~15.
    [34]章家恩,徐琪.生态退化研究的基本内容与框架[J].水土保持通报,1997,17(06):46~53.
    [35]王荷生.植物区系地理[M].北京:科学出版社,1992.
    [36]余健,房莉,单奇华,等.植被退化对土壤性质的影响及防治对策[J].安徽农业科学,2007,35(17):28~29.
    [37]朱震达.中国土地沙质荒漠化[M].北京:科学出版社,1993.
    [38]孙洪祥.干旱区造林[M].北京:中国林业出版社,1991.
    [39]李铁民,杨静.低价值林分改造的理论与实践[J].山西林业科技,1999,(04):1~3,7.
    [40]胡庭兴.低效林恢复与重建[M].北京:华文出版社,2002.
    [41]温远光,和太平,赖家业,等.大明山退化生态系统的植物区系分析[J].广西农业大学学报,1998,17(02):138~146.
    [42]赵平,彭少麟.种、种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,2001,12(01):132~136.
    [43]温远光,李信贤.大明山退化生态系统的垂直结构及动态研究[J].广西农业大学学报,1998,17(02):160~167.
    [44]包维楷,陈庆恒.退化山地植被恢复和重建的基本理论和方法[J].长江流域资源与环境,1998,7(04):370~377.
    [45]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学技术出版社,1995.
    [46]张提,卢映书.“小老树”改造技术初探[J].水土保持科技情报,1997,(04):54~55.
    [47]韩蕊莲,侯庆春.黄土高原人工林小老树成因分析[J].干旱地区农业研究, 1996,14(4):104~108.
    [48]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    [49]许鹏辉,陈云明,吴芳.黄土丘陵半干旱区退化刺槐林不同改造方式效果分析[J].西北林学院学报,2009,24(04):1~5.
    [50]李国猷.北方次生林经营[M].北京:中国林业出版社,1992.
    [51] Wang Keqin,Yang Xiaohui.The optimum thinning intensity and water productivity of black locust forest on Loess Plateau[J].Journal of Beijing Forestry University(English Ed.),1998,7(02):19~27.
    [52]王克勤,王斌瑞.集水造林防止人工植被土壤干化的初步研究[J].林业科学,1998,34(04):14~21.
    [53]余新晓.土壤动力水文学问题的研究及其在防护林体系建设中的应用[J].世界林业研究.1995(03):27~34.
    [54]侯庆春,黄旭,韩仕峰,等.黄土高原地小老树成因及其改造途径的研究Ⅱ:土壤水分和养分状况及其与小老树生长的关系[J].水土保持学报,1991,(02):66~83.
    [55]孙时轩.造林学(第2版)[M].北京:中国林业出版社,2000.
    [56]罗晓华,何成元,刘兴良,等.国内低效林研究综述[J].四川林业科,2004,25(02):31~36.
    [57]张文辉,卢志军,李景侠,等.秦岭北坡栓皮栎种群动态的研究[J].应用生态学报,2003,14(09):1427~1432.
    [58]刘春江.北京地区松栎混交林林学特征的调查研究[J].北京林业科技,1990,(1):16~21.
    [59]兆赖之.育林学[M].北京:中国环境科学出版社,2005.
    [60]沈国舫,翟明普,刘春江,等.北京西山地区油松人工混交林的研究[C].北京:北京林业大学.北京市林业局,1986.
    [61]蒋士凤.刺槐不同更新方法效果比较试验[J].江苏林业科技,2006,33(03):25.
    [62]王进鑫,余清珠,刘增文.刺槐人工林无性更新萌芽与根蘖发生规律的初步研究[J].陕西林业科技,1994,(2),27~31.
    [63]罗文杰,康灵山,王中民.天然次生林抚育间伐试验研究[J].陕西林业科技,1994,(02),22~26.
    [64]王希才.刺槐林的天然更新[J].山西林业科技,1995,(01):30~34.
    [65]彭镇华,董林水,张旭东,等.植被封禁保护是黄土高原植被恢复的重要措施[J].世界林业研究,2006,19(02):61~67.
    [66]中国科学院水利部西北水土保持研究所.黄土丘陵沟壑区水土保持型生态农业研究[M].陕西杨凌:天则出版社,1990.
    [67]许明祥.黄土丘陵区生态恢复过程中土壤质量演变及调控[D].陕西杨凌,西北农林科技大学博士学位毕业论文,2003.
    [68]林昌庚.林木蓄积量测算技术中的干形控制问题[J].林业科学,1964,9(04):365~375.
    [69]冯仲科,徐祯祥,王小昆,等.测定立木材积的改进形点法[J].北京林业大学学报,2005,27(05):87~91.
    [70]赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(01):37~39.
    [71]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004.
    [72]国家标准化管理委员会.中华人民共和国国家标准:森林土壤渗透性的测定[M].北京:1988.
    [73]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2005.
    [74]樊巍,高喜荣,赵东,等.太行山退化山地火炬树群落物种多样性与土壤特性变化的研究[J].河南农业大学学报,2008,42(03):299~302.
    [75]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报,1995, 15(03):268~277.
    [76]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    [77] Magurran,A.E.Ecological Diversity and its Measurement[M]. New Jersey:Princeton University Press,1998.
    [78] Hartnett,D.C.and Wilson,W.T. Mycorrhizae influence plant community structure and Diversity in tallgrass prairie[J]. Ecology,1999,80(04):1187~1195.
    [79]陈云明,梁一民,程积民.黄土高原林草植被建设中的地带性特征[J].植物生态学报, 2002,26(03): 339~345.
    [80]程积民,万惠娥.中国黄土高原植被与水土保持[M].北京:中国林业出版社.2002.
    [81]余新晓,陈丽华.晋西黄土地区小老树的防治与改造[J].干旱区资源与环境,1996 10(01):81~86.
    [82]梁芳,郭晋平.林下植物多样性影响因素研究进展[J].山西林业科技,2008,(02):33~35.
    [83]杨连文,曾照霞,赵长江.城市绿化覆盖率统计技术研究—行道树胸径与垂直投影面积的关系[J].河北林业科技,1996,(03):28~30.
    [84] Salter PJ,Goode JE.Crop responses to water at different stage of growth.Research review No.2 Farnham Royal.England:Commonwealth Agricultural Bureaux,1967.
    [85]赵鸿雁,吴钦孝,刘向东,等.人工油松林根系层的水文作用[J].中国水土保持,1994,2(06):21~23,32.
    [86]吴钦孝,丁汉福,刘克俭.黄土丘陵半干旱地区柠条根系的研究[J].水土保持通报,1989,9(03):45~49.
    [87] Eissenstat D M. Costs and benefits of construction roots of small diameter. Journal of Plant Nutrition,1992, 15:763~782.
    [88] Fitter AH. Characters and functions of root systems. In: Waisel Y,Eshel E,Kafkafi U,eds.Plant Roots: TheHiddenHalf.Dekker,NewYork, 1991. 3~25.
    [89] Eissenstat D M. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytologist,1991,118: 63~68.
    [90]韦兰英,上官周平.黄土高原白羊草、沙棘和辽东栎细根比根长特性[J].生态学报,2006,26(12):4164~4170.
    [91]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J].生态学报,2000,20(05):741~747.
    [92]乌云,莎仁图雅,田有亮,等.大青山区油松人工林地土壤物理特性的研究[J].内蒙古农业大学学报(自然科学版),2007,28(04):75~78.
    [18]田大伦,陈书军.樟树人工林土壤水文-物理性质特征分析[J].中南林学院学报2005,25(02):1~6.
    [93]北京林业大学.土壤学[M].北京:中国林业出版社,1993.
    [94]陈立新.东北山地人工林系统人工林生态系统肥力的研究[M].哈尔滨:东北林业大学出版社,2001.
    [95]肖洋,满秀玲,范金凤.公别拉河流域主要森林类型的土壤肥力与涵养水源功能[J].东北林业大学学报,2006,34(01):28~30.
    [96]孙丽静,陈红跃,方卓林,等.佛山市风水林林地表层土壤持水特性研究[J].广东林业科技,23(01):47~52,57.
    [97]单秀枝,魏由庆,严慧峻,等.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报,1998,35(01):1~9.
    [98]毕君,马增旺,许云龙,等.人工侧柏群落结构及生物量[J].东北林业大学学报, 2000, 28(1): 13~15.
    [99]王希群,马履一,林平,等.北京低山油松林、侧柏林、栎林块状镶嵌混交经营模式的研究[J].西北林学院学报2007, 22 (2):164~168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700