榆林地区4种榆属树种苗期抗旱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榆科树种是我国分布最广泛的树种,在榆林地区常见的榆科榆属树种主要有沙地榆(U. pumila var.sabulosa)、旱榆(Ulmus. glaucescens Franch)、白榆(Ulmus. pumila Linn)、春榆(Ulmus.propinqua Koidz)等4种,作为榆林乡土树种,它们在当地世代繁衍,与榆林的气候、土壤环境融为一体,所以特别能够忍耐风沙侵袭、霜寒雪冻等各种自然灾害。但近年来,由于人为破坏和病虫害治理不力,目前榆林地区的榆属树种已处在濒危状态。
     本文利用WP4露点水势仪、Li-6400便携式光合分析系统和CM1000 chlorophyⅡmeter叶绿素测定仪,对上述4种榆属树种苗期抗旱特性进行了研究,结果表明:
     (1)无水分胁迫条件下,4种榆属树种水势日变幅的大小排序为:白榆>春榆>旱榆>沙地榆;在干旱胁迫下,沙地榆叶片相对含水量高,饱和亏最小,保水能力最强,白榆叶水势降低显著,保水能力差,春榆和旱榆居中。
     (2)轻度干旱胁迫在一定程度上能够提高所测4种树种光合能力,但在严重干旱胁迫条件下,水分亏缺抑制了4种榆属树种的光合作用,其中白榆光合生理指标变化最为显著,净光合速率和水分利用效率下降迅速,而沙地榆即使在严重干旱胁迫下仍能够保持较高的光合能力。
     (3)4种榆属树种的光补偿点、光饱和点、CO2补偿点对干旱胁迫反映敏感,白榆在极端干旱胁迫条件下,光补偿点和CO2补偿点分别是无胁迫条件下的2倍和1.6倍,光饱和点是无胁迫条件下的1/7;沙地榆变幅最小,其光补偿点和CO2补偿点分别是无胁迫条件下的1.8倍和1.2倍,光饱和点是无胁迫条件下的1/5。
     (4)干旱胁迫对4种榆属树种的叶绿素荧光参数影响较大,在中度干旱胁迫下白榆和春榆的最大光能转化效率、实际光能转化效率、线性电子传递的量子效率和光化学荧光猝灭明显降低,而沙地榆在严重干旱胁迫下其叶绿素荧光参数才有明显变化。
     (5)轻度的干旱胁迫能够促使4种榆属树种叶绿素相对含量增大,但随着干旱胁迫的加剧,各树种叶绿素相对含量都有降低,在极端干旱胁迫下,白榆比其处理一降幅达16.9%,沙地榆仅降低6.9%,旱榆和春榆降幅分别为12.1%和13.8%。
     (6)干旱胁迫对4种榆属树种叶片重量、苗高和地径等形态学指标的影响程度不同,其对苗高的影响最大,地径次之,对叶片重量影响较小;一定的干旱胁迫可以促使4种榆属苗木的上述3个指标增大,但在严重干旱胁迫下,所测苗木的叶片重量、苗高和地径与其对照比较,下降幅度均显著,其中白榆下降幅度最大,旱榆和春榆次之,沙地榆最小。
     经过对4种榆属苗木的水分胁迫实验研究,我们得出沙地榆苗期抗旱能力最强,而白榆抗旱性相对较差,这为榆林的风沙地区造林提供理论依据。
Ulmaceae tree species is one of the most widely distributing species in China. In Yulin region, the common Ulmaceae species are mainly the following four species: Ulmus. pumila var.sabulosa、Ulmus. glaucescens Franch、Ulmus. pumila Linn and Ulmus.propinqua Koidz. Elm, one of the native tree species, reproduces from generation to generation and integrates with the climate and soil environment in the local. So, elm can endure natural disasters, particularly, sand invasion and frozen injury. But, in recent years, elm has been in the endangered state and became a rare plant in Yulin region, because of destructive influences of man and weak control of diseases and insect pests.
     In this paper, potential WP4 dewpoint instrument, Li-6400 portable photosynthesis system and CM1000 chlorophyⅡmeter were used to study the drought-resistance characteristics of the above-mentioned four species seedling. The results showed that:
     Under non-water stress, diurnal change range of water potential of four elm species was listed in descending order as follow: Ulmus. pumila L.> Ulmus.propinqua Koidz >Ulmus. glaucescens Franch>Ulmus. pumila var.sabulosa. Under the water stress condition, the relative water content of leaves of Ulmus. pumila var.sabulosa was the highest, the saturated deficit of that was the least, and the water retention capacity of that was the strongest. The leaf water potential of Ulmus. pumila Linn decreased significantly; the water retention capacity of that was the weakest, that of Ulmus.propinqua Koidz and Ulmus. glaucescens Franch was intermediate.
     To some extent, the photosynthetic capacity of four elm species was improved under the light water stress. But water deficit inhibited the photosynthesis of four species under the sever water stress, among which the change of photosynthetic physiological index of Ulmus. pumila Linn was the most significant, net photosynthetic rate and water use efficiency decreased rapidly. However, Ulmus.pumila var.sabulosa could maintain a high photosynthetic capacity even under the sever water stress condition.
     Light Compensation Point (LCP), Light Saturation Point (LSP) and CO2 Compensation Point (CCP) of four Ulmaceae species were sensitive to drought stress. Under the extreme water stress , LCP and CCP of Ulmus. pumila Linn were respectively as 2 times and 1.6 times as that of non-water stress, and LSP was one-seventh as that of non-water stress. The variation of Ulmus. pumila var.sabulosa was smallest, of which LCP and CCP were respectively as 1.8 times and 1.2 times as that of non-water stress, and LSP was one-fifth as that of non-water stress.
     Drought stress had great influences on Chlorophyll fluorescence parameters of four species. Under moderate drought stress, PSⅡlargest solar energy conversion efficiency, the actual conversion efficiency of light energy, linear electron transport in quantum efficiency and photochemical fluorescence quenching coefficient of Ulmus. pumila Linn and Ulmus.propinqua Koidz decreased significantly. However, the chlorophyll fluorescence parameters only changed significantly under severe drought stress.
     Relative content of chlorophyll of four elm species increased under light drought stress; but with the aggravation of drought stress, relative content of chlorophyll of four elm species decreased; under severe drought stress, that of Ulmus. pumila L, Ulmus.propinqua Koidz, Ulmus. glaucescens Franch,and Ulmus. pumila var.sabulosa decreased respectively by 16.9%, 13.8%, 12.1% and 6.9%.
     After the experimental study of water stress on four Ulmaceae seedlings, the results showed that seedlings of U. pumila var.sabulosa had the strongest drought-resistance, but seedlings of Ulmus. pumila L had a relatively weaker drought-resistance, which provide a theoretical basis for afforestation in Yulin sandy area.
     Drought stress had different influences on leaf weight, height and diameter of the seedlings of four species. The impact of its height was the most, followed by diameter, weight of leaves was less affected. A certain degree of drought stress can promote the four indexes above-mentioned.But under severe drought stress, the four indexes above-mentioned had a significant decrease comparing with the control, of which the largest decrease was U. pumila L, followed by Ulmus.propinqua Koidz and Ulmus. glaucescens Franch,Ulmus. pumila var.sabulosa decreased smallest.
引文
[1]单永年,王永高;糙叶树种子油的研究[J];江西林业科技; 1983年06期; 19-23
    [2]米辛益群;从旱榆的生境谈旱榆的开发利用[J];生命世界; 1988年02期; 20-21
    [3]马恩伟.内蒙古植物志(第二卷) [M ].呼和浩特:内蒙古人民出版社, 1990, 112 - 113.
    [4]榆林沙区沙地柏生物量与生境之间的关系研究西北林学院学报曹雪峰陈艳等2006,21(4):18-22
    [5]李方祯,宛涛,伊卫东等.锡盟沙地榆遗传多样性的RAPD研究.中国农业科技导报2008(3):71-76
    [6] Demeke T, Adams R P. The use of PCR2RAPD analysis in plant taxonomy and evolution[A ]. In: Griffin H G and Griffin A M, eds. PCR technology: current innovations[M]. London:CRC Press, 1994, 179 - 191.
    [7] Bischler H, Boisselier2Dubayle M C. Population genetics and variation in liverworts[J]. Advances in Biology, 1997, 6: 1
    [8] Melville R ,Heybrook H M. The elms of the Himalaya. Kew Bull ,1971 ,26 :5-28
    [9] Elias T S. The genera of the Ulmaceae in the southeastern United States. J Amold Arbor , 1970 ,51 :18-40
    [10] Mittempergher L ,La Porta N. Hybridization studies in the Eurasian species of elm ( Ulmus spp. ) . Silvae Genetica ,1991 ,40 (56) :237-243
    [11] Smalley E B , Guries R P.Breeding elms for resistance to Dutch elm disease. Annual Review of Phytopathology. Annual Reviews Inc ,Palo Alto ,USA. 1993 ,31 :325-352
    [12] Lindstrome O M , Dirr M A. Cold hardiness of six cultivars of Chinese elm. HortScience ,1991 ,26 (3) :290-292
    [13] Townsend A M , Bentz S E , Johnson G R. Variation in response if selected American elm clones to Ophiostoma ulmi . J Environ Hort ,1995 ,13 (3) :126-128
    [14] Townsend A M , Douglas L W,Variation in growth and response to Ophiostoma ulmi among advanced2generation progenies and clones of elms. J Environ Hort ,1996 ,14 (3) :150-154
    [15] Bob C F , Redmond B L , Karnosky D F. On the nature of intra and interspecific incompatibility in Ulmus.Am J Bot 1986 ,73 :465-474
    [16] Machon N , Lefranc M , Bilger I , et al . Isoenzymes as an aid to clarify the taxonomy of French elms. Heredity ,1995 ,74 (1) :39-10
    [17] Kamalay J C , Carey D W. Application of RAPD2PCR markers for identification and genetic analysis of American Elm( Ulmus americana L. ) selections. Journal of Environmental Horticulture ,1995 ,13 (4) :155-159
    [18] Kapaun J A , Cheng Zongming. Plant regeneration from leaf tissues of Siberian elm. HortScience ,1997 ,32 (2) :301-303
    [19] Lineberger R D , Sticklen M B , Pijut P M , et al . Use of protoplant ,cell and shoot tip culture in and elm germplasm improvement program. Acta Horticulture ,1990 ,280 :247-253
    [20] Malgorzata.S studies on insects and mites causing galls on the Ieaves of elm Ulmus laevis Pall.in theMogilski Forest in southern Poland.An zeiger fur Schadling skune. 2002,75,(6):150-151
    [21] Noemi CM.,Enrique JC,Claudio MG,Rolando JL. Limits to tree species invasion in PamPean grassland And forest Plant communities. Oeeologia,2001,128(4):594-602
    [22]续九如等.榆属树种遗传改良研究现状及思考.北京林业大学学报,2000,22(6):95-99
    [23]张敦论,林新福,王铁章,等.白榆.北京:中国林业出版社,1984
    [24]白榆种源研究协作组.白榆种源的地理变异和基因型稳定性.林业科学研究,1989 ,2 (4) :334-343
    [25]蔡玉成,马国骅,王政琦.不同地理种源白榆的某些生理特性.宁夏农林科技,1990 (2) :20-23
    [26]冯显逵,马国骅,宋玉霞.白榆不同地理种源过氧化物酶同工酶的比较研究.宁夏农林科技,1990 (1) :24~26
    [27]顾万春,刘德安,田玉林.白榆种源与家系的选种研究.林业科学.1987 ,23 (4) :415-424
    [28]朱延林,董铁民,茹桃勤.白榆速生、高抗榆蓝叶甲优良无性系65212选育研究.林业科学,1997. 33 (专刊1) :39-46
    [29]解荷锋,范志强,解孝满等.白楠种子园内花粉飞散规律的观测与分析.山东林业科技,1997,(6):14-l6
    [30]张赞平,黎中宝.黑榆系4种榆树的核型研究.河南科学,1996,14(4):434-438
    [31]陈震古,刘小刚,许成林等.激光诱导榆树单倍体植株及无融合生殖的研究.量子电子学报,1996,13(4):391-396
    [32]张玉起,王福祥,常明炜.白榆无性系选择效益的初步研究.吉林林业科技,1994,6:27~28
    [33]刘苹,孙明高,赵海军等.白榆无性系叶片N、P、K含量及与材积生长的相关性.北京林业大学学报,2003,25(6):26-29
    [34]赵量化,叶向东,赵环,落叶纷纷话榆树,造林绿化与治沙,1994,(3):17-18
    [35]鲁敏,姜凤岐.绿化树种对大气SO2、铅复合污染的反应.城市环境与城市生态,2003,16(6):23-25
    [36]何士敏,毕晓梅,潘学岩.大庆石化空气污染区树木叶片内SoD的变化.黑龙江环境通报,2003,27(2):78-80
    [37]王山,包玉莲.白榆育苗技术.内蒙古林业,2003,6
    [38]李长胜,顶凤武,张玉江等.苏打盐碱地造林研究.吉林林学院学报,1994,10(2):113-119
    [39]张敦论,白榆,中国林业出版社,1982
    [40]杨玉贵,高玉艳.榆树快速成形法.北方园艺,1996,3
    [41]贺治坤,,王爱静,刘宏光等.白榆抗虫性及其抗性物质的初步研究.新疆农业科学,1999,6:283-284
    [42]王景胜,梁宏斌,王丽华,王晓梅.东港地区榆树病虫害发生现状及治理对策.辽宁林业科技,2000(2):23-24
    [43]唐桦,邵崇斌,马国弊,刘益宁.榆树上光肩星天牛白然种群的生命表研究.西北林学院学报,1996,11(4):45-49
    [44]屈秋耘,贾艳梅,郭中华等.陕北榆树大量死亡原因探析.西北农业学报,2000,9(2):60-65
    [45]刘慧佳;水分胁迫下白榆幼苗的生理形态反应[D];东北师范大学
    [46]韦小丽,徐锡增,朱守谦.水分胁迫下3个榆科树种幼苗生理生化指标的变化.南京林业大学学报(自然科学版),2005,29(2):47-50
    [47]扬利民等.榆树疏林对维持草地生态区域生物多样性意义的初探.吉林农业大学学报,1996,18:46-49
    [48]中国科学院内蒙古综合考察队编著.内蒙古植被.科学出版社,1985,782-791
    [49] Larcher W(翟志席等译).植物生理生态学(第5版)[M].北京:中国农业出版社,1997.25-36.
    [50] Doley D,Unwin G L.Spatial and temporal distribution of photosynthesis and transpiration by single leaves in a rainforest tree[J].Plant physiol,1988,15:317-326.
    [51] Meinzer F,Grantz D.Stomatal and hydraulic conductance in growing sugareane:Stomatal adjustment to water transport capacity[J].Plant,Cell and Environment,1990,13:383-388.
    [52] Harley P C,Sharkey T D.An improved model of C3 Photosynthesis at high C02:Reversed C02 sensinvity explained by lack of glycerate reentry into the chloroplastp[J].Photosynthetic Research,1991,27:169-178.
    [53]王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [54]何炎红,郭连生,田有亮.7种针阔叶树种不同光照强度下叶绿素荧光猝灭特征[J]林业科学2006,42(2):27-31
    [55]高健,吴泽民,彭镇华.滩地杨树光合作用生理生态的研究[J].林业科学研究,2000,13(2):147-152.
    [56]崔晓阳.不同土壤水势条件下水曲柳幼苗的光合作用特征[J].植物生态学报,2004,28(6):794-802
    [57]靳甜甜,刘国华,胡婵娟等.黄土高原常见造林树种光合蒸腾特征生态学报2008(11):5758-5765
    [58]周海光,刘广全,焦醒等.黄土高原水蚀风蚀区林木光合特征的研究[J]西北林学院学报2008,23(5):12-17
    [59]马志波.北京地区6种落叶阔叶树光合特性研究[J].北京林业大学学报,2004,26(3):13-18.
    [60]周海燕.属尔沁沙地主要植物种的生理生态特性[J].应用生态学报,2000,11(4):587-590.
    [61]郑路,冯大千,罗英等.26种园林树种光照及水分生理特性研究[J]新疆农业大学学报2005,28(1):49-52
    [62]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1985:126-152.
    [63]冯金朝,周宜君,李国刚,等.沙漠常绿植物沙冬青气体交换特性的初步研究[J ].中央民族大学学报:自然科学版,2001 ,10(1) :38 - 41
    [64]郭连生,田有亮.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究[J]生态学报1992,12(1):47-52.
    [65]高健,侯成林,吴泽民等.淹水胁迫对1-69/55样蒸腾作用的影响[J]应用生态学报2000,11(4):518-522
    [66]雷泽湘,林鹏.秋茄红树林蒸腾作用季节性的研究[J].湖北农学院学报,1995,11(3):173-179
    [67]胡小文,王彦荣,武艳培.荒漠草原植物抗旱生理生态学研究进展[J]草业学报2004,13(3):9-15
    [68]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [69]李洪建.北京杨水分生理生态特性研究[J].生态学报,2000,20(3):417-422.
    [70]王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [71] Kramer P J,Kozlowski T T.1979.Physiology of woody plants[M].London:Academic Press,443-444
    [72]张正斌,山仑.作物水分利用效率和蒸发蒸腾估算模型的研究进展[J].干旱地区农业研究,1997,15(1):73-78
    [73]刘文兆.作物生产、水分消耗与水分利用效率之间的动态联系[J].自然资源学报,1998,13(1):23-27
    [74]张正斌.作物抗旱节水的生理遗传基础[M].北京:科学出版社,2003,48-50
    [75] Farquhar G D,Richards RA.Isotopic composition of plant carbon correlated with water use efficiency of wheat genotypes[J].Aust J Plant Physiol,1984,11:519-522.
    [76]杨建伟,韩蕊莲,魏宇昆,等.不同土壤水分状况对杨树、沙棘水分关系及生长的影响[J ].西北植物学报, 2002, 22 (3) : 579- 586.
    [77]李博.1992.当代生态学导论[M].北京:科学出版社10-23
    [78] Li J-Y (李吉跃) . 1991. Mechanisms of drought tolerance in plants[J]. J Beijing ForUniv (北京林业大学学报) , 13 ( 3) : 92 -100 ( in Chinese)
    [79] Harrison R D , Daniell J W, Cheshire J R. Net photosynthesis and conductance of peach seedlings and cutting in responses to changes in soil water potential [J ] . J . Am. Soc. Hort . Sci . , 1989 , 114 : 986-990
    [80]李吉跃.植物耐旱性及其机理[J].北京林业大学学报, 1991,(03)
    [81]李吉跃.太行山主要造林树种耐旱性的研究(Ⅰ-Ⅲ).北京林业大学学报,1991,13(增1)
    [82] Turner N C.Drought Resistance and Adaptation to Water Deficits in Crop Plant[M].New York:John Wiley Sons,1979:343-372.
    [83]李海平,朱美云,段立清,等.科尔沁沙地榆树疏林草地的调查及评价[J].内蒙古科技与经济,2002,9:62-93.
    [84] Thornley JHM (1976). Mathematical Models in Plant Physiology. Academic Press, London, 86–110.
    [85] Prado CHBA, Moraes JAPV (1997). Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. Photosynthetica,33, 103-112.
    [86]郭连生,田有亮,9种针阔叶幼树的蒸腾速率,叶水势与环境因子关系的研究,生态学报,1992,12(1):47-53
    [87] Jongdee B,Fukai S,Coooer M.Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in race.Field Corps Research,2002,76:153-163
    [88]胡继超,曹卫星,罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报,2004,15(1):41-50
    [89]高鹭,胡春胜,陈素英.喷灌条件下不同灌水处理冬小麦的叶水势特征.土壤, 2005,37(4):410-414
    [90]胡守忠,乔冬梅,史海滨,庞绥义;盐渍化地区SPAC系统不同界面能态研究[J];干旱区资源与环境,2006,20(5):177-183
    [91]佟长福,Guo K-Z (郭克贞),Shi H-B (史海滨),et al.Preliminary study on the effect of environmental ...(农业工程学报),2005,21(12):152-155 (in Chinese)
    [92]康绍忠.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社, 1994: 56-66
    [93]王福森等。几个杨树新品种抗旱能力与生理反应研究。防护林技,2001(1)
    [94]刘友良编著,《植物水分逆境生理》,农业出版社,1992
    [95]许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995, 31, (4): 246-252.
    [96]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17
    [97]孙跃强,贺康宁,张卫强,刘胜,王正宁;土壤水分光辐射对白榆生理因子影响的研究[J];水土保持应用技术; 2007年02期
    [98]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异植物学报1999,41(10):1114-1124
    [99]肖春旺,周广胜.不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响植物生态学报2001,25(4)444-450
    [100]李阳,齐曼·尤努斯,祝燕.水分胁迫对大果沙枣光和特性及生物量分配的影响西北植物学报,2006,26(12):2493-2499
    [101]柯世省,金则新.干旱胁迫和复水对夏腊梅幼苗光合生理特性的影响植物营养与肥料学报2007,13(6):1166-1172
    [102]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响生态学报,2002,22(9):1380-1385
    [103] FARQUHAR GD,SHARKEY Y D. Stom a tal conductance and photosynthesis [J].Annu Rev.Plant Physiol, 1982,33:314-336
    [104]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究西北植物学报,2006,26(5):983-988
    [105]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响应用生态学报2006,17(5):835-838
    [106]王旭军,吴际友,廖得志,等.乐东拟单性木兰光合蒸腾及水分利用效率研究中国农学通报2008 24(10):175-178
    [107] J i XB, Hollocher TC. 1988. Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun, 157: 106-108
    [108] Reuveni J , Gale J , ZeroniM. Differentiating day from nigh t effects of high ambient CO2 on the gas exchange and grow th of Xanthium strumarium L exposed to salinity stress[J ]. Ann Bot, 1997, 79: 191- 196.
    [109]孙书存,陈灵芝.辽东栎幼苗对干旱和去叶的生态反应的初步研究[J].生态学报,2000(5):893-897.
    [110]张永江,侯名语,李存东.叶绿素荧光分析技术及在作物胁迫生理研究中的应用作物逆境生理研究进展282-288
    [111]聂华堂等,水分胁迫下柑桔的生理变化与抗旱性的关系,中国农业科学,1991,24(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700