乙烯对苹果细胞壁组分降解效应及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是苹果(M. pumila Mill.)生产与加工大国,并且加工数量呈逐年上升趋势[1]。苹果加工工艺的完善与改进及其残渣的综合利用是关系到苹果加工业生存与可持续发展的关键举措和有力保证。为了寻求新的高效、经济、简便的果汁加工工艺,本试验用乙烯利和加热处理苹果果实以期加速苹果果实细胞壁降解,利于出汁,并对其作用效应和机理进行了研究。
     首先以晚熟的‘秦冠’苹果果实为试材,研究了不同处理方式:乙烯利溶液(10 mg·L~(-1),100 mg·L~(-1),500 mg·L~(-1),1000 mg·L~(-1))浸泡处理10min,低浓度乙烯利处理配合加热(100 mg·L~(-1)乙烯利溶液浸泡后自然风干,分别在30℃,45℃,60℃水浴中加热30min)双重处理下果实细胞壁组分降解的规律,从而选出两类处理方式下对苹果果实细胞壁组分降解的优化工艺条件;再用优化工艺处理“秦冠”和“富士”苹果,分析不同种类苹果经处理后细胞壁组分降解效应的差异,阐明乙烯对苹果果实细胞壁组分降解的效应和机理;最后通过两种优化工艺条件下苹果果实品质及出汁率的变化,揭示外源乙烯利处理以及低浓度乙烯利配合加热双重处理作为苹果加工预处理手段的可行性,结果得出:
     1.‘秦冠’苹果果实经乙烯利溶液处理后,随乙烯利浓度由10 mg·L~(-1)增至1000 mg·L~(-1),果胶甲酯酶(PME)和多聚半乳糖醛酸酶(PG)的活性先逐渐增强而后下降;纤维素酶(CS)活性先得到促进,而后被抑制;木聚糖(Xyl)却没有受到明显影响。加热增进了乙烯的作用,60℃下,PME、PG、CS、Xyl活性分别增加到对照的1.5、2.7、1.1、1.5倍。PG活性的显著增加也同时引起了果实可溶性糖的显著升高,其它酶活性变化与可溶性糖含量之间未显示直接相关。综合各处理结果,选取500mg·L~(-1)的乙烯利处理(Eth-tr)和100mg·L~(-1)的乙烯利配合60℃加热处理(Eth-he-tr)为优选处理。
     2.两种优选处理对不同品种苹果果实细胞壁酶的影响有所不同,其中500mg·L~(-1)的乙烯利对‘富士’苹果影响较大,使‘富士’苹果的PME、CS活性高峰分别提前6天和3天出现,并使PG活性在前十五天均明显高于对照(CK);100 mg·L~(-1)乙烯利配合60℃辅助加热对‘秦冠’苹果影响较大,使‘秦冠’苹果的Xyl活性在前15天持续高于CK,而使PME、PG、CS活性在前12天明显高于CK;同时两种优选处理对原生质膜酶LOX产生一定影响,在两个品种一致表现为乙烯利处理后LOX活性升高。加热辅助处理反而对LOX活性产生抑制作用。
     3.两种优选处理对不同品种苹果果实细胞壁多糖的降解影响不同。处理12天后,500mg·L~(-1)乙烯利处理对‘富士’苹果细胞壁多糖影响较大,使果胶类多糖、半纤维素类果糖和细胞壁残渣多糖含量分别下降到CK的80.1%、70.4%和75.7%,而100 mg·L~(-1)乙烯利配合60℃辅助加热对‘秦冠’苹果细胞壁多糖影响较大,使果胶类多糖、半纤维素类果糖和细胞壁残渣多糖(CWM-residue polysaccharide)含量非别下降到CK的83.8%、92.0%和82.5%。同时经两种优选处理后苹果果实可溶性糖含量在贮存前期(0~9d)明显增加。
     4.乙烯利处理及加热辅助处理对苹果果实的电学指标产生了不同影响。乙烯利处理后果实电学指标Z、ε,σ和LP在不同时间段随频率变化的线形基本与对照(CK)相同,与果实外观品质未发生明显改变的结果一致;乙烯利和加热双重处理后Z的线形在果实贮存后期脱离了CK的变化规律,而且随贮存时间延长脱离越明显,与加热辅助处理使果实发生品质劣变有关一致,显示了Z作为果实品质无损检测指标的可行性。
     5. 500mg·L~(-1)乙烯利处理后9天到12天,‘富士’和‘秦冠’苹果的出汁率分别较对照(富士75.5%~78.0%、秦冠75.5%~78.0%)高2.3~4.0、1.3~4.7个百分点,是一种简便适用的提高出汁出的果实加工预处理方法;用100mg·L~(-1)乙烯利浸泡后后再经30min加热处理后,可以在第9天使‘富士’和‘秦冠’苹果出汁率分别较对照高3.2~7.5、7.5个百分点,但是对苹果果肉品质有一定影响,果实处理后发生表层轻微褐变,所以需经过后续检验其是否会产生对果汁品质的不良影响后才能确定其可行性。
Our country is powerful in the production and processing of apple fruit, moreover, a increasing trend presents in the processing industry year by year.The improvement of processing techniques in apple fruit and the integral utilization of pomace has become an important measurement as well as a guarantee for the survival and sustainable development in apple processing industry. In order to search for more efficient, economical and convenient processing techniques of apple juice, treating apple fruit with ethrel and heating were performed to promote the degradation of cell wall and enhance juice yield . Effects and mechanism of the treatments were studied.
     Firstly, late-mature variety‘Qinguan’apple fruit was employed to investigate the regularity of cell wall composition degradation under the influence of different treatments as: soaking for 10 min with ethrel solutions(10mg?L-1,100 mg?L-1,500mg?L-1,1000mg?L-1), soaking in low concentration (100 mg?L-1)ethrel then heating with waterbath (30℃、45℃and 60℃for 30 min respectively), so that the best conditions for the two processes to promote the degradation of the cell wall compositions of apple fruit were screened. Second,‘Fuji’and‘Qinguan’apples were treated each under the two sets of best conditions,then the difference of the degradation effects of cell wall components of the two kind of treated apple fruit were analyzed to elucidated the degradation effects and mechanism of apple fruit affected by ethrel; Finally, the feasibility of taking exogenous ethrel treatment and low concentration treatment of ethrel combining with heating as pretreatment ways in apple processing was illustrated according to the results of the apple fruit quality changes and the juicy yield. All results present as following:
     1.After "Qingguan" apple fruits were treated with different concentrations of ethrel, some physiological changes occurred. The activity of pectin methylesterase(PME)and polygalacturonase(PG)first increased gradually and then declined with ethrel changed from 10mg·L~(-1) to 1000mg·L~(-1);The activity of Cellulose (CS) was promoted first and then inhibited; 500mg·L~(-1) ethrel showed most obvious role. Xylan (Xyl) had not been significantly affected. Heating had increased the role of ethrel, the activity of PME、PG、CS、Xyl had increased ,respectively were 1.5、2.7、1.1、1.5 folders of the comparison samples in the temperature of 60℃.The significant increase of PG activity caused the increase of soluble sugar content from fruit significantly, the changes in other enzymatic activity did not show a direct correlation to the soluble sugar content. 500mg·L~(-1) ethrel (Eth-tr) and 100 mg?L-1 ethrel soaking then heating at 60℃(Eth-he-tr) were screened the two selected treatment.
     2.The two selected treatments affected the cell wall enzymes in different ways on the two varities of apple. Eth-tr had stronger effect on‘Fuji’apple,whick made the activities peak of PME and CS from‘Fuji’appl come 6d and 3d earlier than control, respectively, and the activity of PG increased obviously than control till 15th day. Eth-he-tr had stronger effect on‘Qinguan’apples,whick made the activity of Xyl increase obviously than control till 15th day, and the activities of PME、PG and CS be stronger than control till 12th day. The protoplastic membrane enzyme LOX was also affected as its activity rised in some degree in Eth-he-tr ethrel treated fruit, whereas the activity of LOX was inhibited instead in the Eth-he-tr treatment.
     3.The treatments of ethrel and assistant heating affected the degradation of cell wall polysaccharides in different ways on the two varities of apple.The cell wall polysaccharides of‘Fuji’apple was affected more stronger by Eth-tr of 500mg·L~(-1) ethrel after 12d later, the contents of pectin polysaccharides,hemicellulose polysaccharides and cell wall material residue(CWM-residue) polysaccharides decreased to 80.1%、70.4% and 75.7% that of control, whereas, Eth-he-tr affected more stronger on the cell wall polysaccharides of‘Qinguan’apple, the contents of pectin polysaccharides, hemicellulose polysaccharides and CWM-residue polysaccharides decreased to 83.8%、92.0% and 82.5% that of control. At the same time, the content of soluble sugar increased obviously at prior period(0~9d).
     4. Eth-tr and Eth-he-tr showed different effects on the electricity indexes. The curve shape of the electricity indexes of Z、ε,σand LP from Eth-tr fruit at different day interval were almost the same as control, showing the same result as appearance quality of fruits between control and treatments; The curve shape of Z from Eth-he-tr fruit showed difference from control at later stage, even the difference became more and more obvious with day proceeding, correlated with the decline of appearance quality,indicating that Z is a suitable index for non-damage check of apple fruit .
     5.The rates of juice yield of‘Fuji’and‘Qinguan’apples were 2.3~4.0 and 1.3~4.7 percentage points higher than control respectively in Eth-tr fruit 9~12 days after,which could be screened the pretreating way for promoting juice yield of apple fruit; Eth-he-tr could rised the rate of juice yield for 3.2~7.5 and 7.5 percentage points higher than control respectively , too, 9~12 days after, but the quality of the apple was affected definitely indicating by the occurring of slight browning, thus whether it was a feasible pretreating way or not will be be decided by the result of futher juice check.
引文
[1]石勇,何平,陈茂彬.果渣的开发利用研究[J].饲料工业,2007,(28)1:23-27.
    [2] www.agri.gov.cn.《苹果优势区域发展规划》国家农业部.
    [3]翟衡,赵政阳,王志强,等.世界苹果产业发展趋势分析[J].果树学报,2005,22(1):44-50.
    [4] Tonutti P, Bonghi C, Ramina A.Fruit firmness and ethylene biosynthesis in three cultivars of peach.[J].J.Hort.Sci,1996,71(1):141-147.
    [5]金昌海,水野雅史,索标,等.不同品种苹果采后后熟软化过程中细胞壁多糖的降解[J].植物生理与分子生物学学报,2006, 32 (6): 617-626.
    [6]余小林,徐步前,梁佳伟.热处理技术改善果蔬贮藏品质的研究[J].果树科学,1999(16):37-41.
    [7]王阳光,陆胜明,茅林春.热处理对冷藏桃果实的贮藏效果和生理作用[J]福建果树,2001,117(3):1-4.
    [8] MAO L inchun, ZHANG Shanglong.Effect of heat condition ing and intermittent warming on chilling injury and pectolytic enzymes in peaches Journal of Zhejiang University (Agric1 & L ife Sci1)2001,27 (1) : 83-87.
    [9]陈留勇,孔秋莲,孟宪军.热激处理对黄桃保鲜效果的影响[J].保鲜与加工,2003,3(4):21-23.
    [10] Knee M,Bartely IM.Rencent Advanced Biochemistry of Fruit and Vegetable.London:Academic Press,1981.
    [11] Lamport D T A. The primary cell wall: a new model. In: Yong RA,Rowell RM(eds),cellulose:structure,Modification and Hydrolysis. New York: John Wiley &Sons,1986,77-90.
    [12] Brady C J,Pearson J A.Interections between the amount and molecular forms of polyalacturonase ,calcium and firmness in tomoto fruit.J Amer Soc Hort Sci,1985,110(2):254-258.
    [13] Copper J B,ct al.Structure,Fuction and Biosynthesis of Plant Cell Wall.Bultimore:Barnichi Garcia Waverly Press,1984.
    [14] Weckler D E.Structural characterization of pectic polymers during ripening and storage of apple(galactans,arabinans,arabinogalactan ).DAI-C,58/04,P1990,1997.
    [15]夏春森,王兰英.“红星”苹果在贮藏中果肉发棉生理过程的研究园艺学报,1991,8(2):29-36.
    [16]周培根,罗祖友,吴邦良.桃成熟期间果实软化与果胶及有关酶的关系.南京农业大学学报,1991,14(2):33-37.
    [17] Kramer M,Sanders R.Postharvest evoluation of transgenic tomotoes with reduced level of polygalacturonase,processing firmness and disease resistance.Post Biol Tech,1992,1(2):411-419.
    [18]梁小娥,王三宝,赵迎丽,等.枣采后果肉软化的生化和细胞超微结构变化.园艺学报,1998,25(4):333-337.
    [19]陆胜明.青梅果实采后软化的生理生化基础及其调控研究.浙江大学博士学位论文,2000,21.
    [20] Fishman ML,Cross KC,GillesPia DT,et al.Macromoleculars compinents of tomoto fruit pectin.Arch Biochem Biophys,1989,274:179-191.
    [21] Fishman ML,Levy B, GillesPia DT.Change in the physiol-chemcal propertics of peach fruit pectin during on-tree ripening and storage. J Amer Soc Hort Sci,1993,118(3):343-349.
    [22] Black HD,jeger MJ,Jobn P,et cl.Inhibition of degreening in the peel of bananas ripened at tropicaltempertures.ll.Changes in plastid ultrastructure and chlorophyll protin complexes accompaning ripening in bananas and plantains.Ann Appl Biol,1990,117:147-161.
    [23] Redgwell RJ, MacRae E, Hallett l et al. In vivo and in vitro swelling of cell walls during fruit ripening[J]. Planta, 1997 ,203: 162-173.
    [24] Pesis E, Fuchs Y, Zauberman G. Cellulase activity and fruit softening in avocado [J]. Plant Physiol,1978,61:416-419.
    [25] Ben Arie R, Sonego L, Frenkel C. Changes in the pectic substance of ripening pears [J]. J Amer SocHort Sci, 1979 ,104: 500-505.
    [26]林河通,席玛芳,陈绍军黄花梨果实采后软化生理基础中国农业科学.2003,36(3):349-352.
    [27] Gross K C, Wallner S J. Degradation of cell wall polysaccharides during tomato fruit ripening [J].Plant Physiol, 1979,63:117-120.
    [28] Tong C B S, Gross K C. Glycosyl-linkage composition of tomato fruit cell wall hemicellulosic fractions during ripening [J]. Physiol Plant, 1988,74:365-370.
    [29]陆胜民,席玛芳,金勇丰,张耀洲植物多聚半乳糖醛酸酶的结构与功能一文献综述.园艺学报,1999,26(6):369-375.
    [30] Gross K C,Watada A E, Kang M S .Biochemical changes associated with the ripening of hot pepper [J].Physiol Plant, 1986 ,66: 31-36.
    [31]李明启.果实生理.北京:科学出版社,1989,173-177.
    [32] Lackey GD,Gross KC, Wallner SJ. Loss of tomato cell wall galactan may involve reduced rate of synthesis [J]. Plant Physiol, 1980,66:532-533.
    [33] Ashraf M, Khan N. Studies on the pectinesterase activity and some chemical constituents of some Pakistan mango varieties during storage ripening [J]. Agric Food Chem,1981,29:526-528.
    [34] Gross KC, Wallner SJ. Degradation of cell wall polysaccharides during tomato fruit ripening [J].Plant Physiol, 1979,63:117-120.
    [35] Knee M. Polysaccharide changes in cell walls of ripening apple [J]. Phytochem, 1973,12: 1543-1549.
    [36] Pressey R.β-galactosidases in ripening tomatos [J]. Plant Physiol,1983,71:132-135.
    [37] Hobson G E,et al.Role of cell wall hydrolyses in fruit ripening.Plant Physiol,1991,42:675-703.
    [38]刘愚.果实的成熟及其调节.见:余叔文,汤章城主编.植物生理与分子生物学第二版.北京:科学出版社,1998,610-620.
    [39]生吉萍,罗云波,申琳.PG和LOX对采后悉茄果实软化及细胞超微结构的影响.园艺学报,2000,27(4):276-281.
    [40]周培根,罗祖友,吴邦良.桃成熟期间果实软化与果胶及有关酶的关系[J].南京农业大学学报,1991,14 (2):33-37.
    [41]杨得兴,戴京晶,庞向宇等.猕猴桃衰老过程中PG、果胶质和细胞避超微结构的变化.园艺学报,1993,20(4):341-345.
    [42]骆蒙,方天祺,张治中等.甜瓜成熟期间多聚半乳糖醛酸酶与乙烯的变化和果实软化的关系.植物生理学通讯,1996,32(5):338-341.
    [43]陆胜民,席玙芳,张耀洲.梅果采后软化与细胞壁组分及其降解酶活性的变化.中国农业科学,2003,36(5):595-598.
    [44] Brady CJ.Fruit ripening [J].Annu Rev Plant Physiol Plant Mol Biol, 1987,38:155-178.
    [45]林河通,席焜芳,陈绍军.黄花梨果实采后软化生理基础[J].中国农业科学,2003,36 (3):349-352.
    [46]仓晶,王学东,王军虹等.狗枣猕猴桃果实软化过程阶段性专一酶的研究.果树学报,2001,18(5):284-287.
    [47] McCollum T G, Huber D J, Cantliffe D J. Modification of polyuronides and hemicelluloses during muskmelon fruit softening [J]. Physiologia Plantarum, 1989, 76 (3): 303-308.
    [48] Kang I K, Chang K H, Byun J K. Changes in activities of cell wall hydrolases during ripening and softening in persimmon fruits[J]. J. Korean. Soc. Hort. Sci., 1998, 39 (1): 155-159.
    [49] Tucker G A.Changes in polygalacturonase isozymes during the‘ripening’of normal and mutant tomoto fruit.Europe Journal of Biochemstry,1980,112:119-124.
    [50] Brady C,MacAlpine,Macglasson,et al.Polygalacturonase in tomoto fruit and the induction of ripening.Australia Journal of Plant Physiology,1982,9:171-178.
    [51] Smith C J S, Watson C F, Morris P C, Bird C R, Seymour G B, et al. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes [J]. Plant Molecular Biology, 1990, 14: 369-379.
    [52] Bird CR,Smith CJS,Ray GA,et al.The tomoto polygalacturonase gene and ripening-specific expression in transgenic plant.Plant Molecular Biology,1988,11:651-662.
    [53]罗云波,生吉萍,陈昆松.园艺产品采后生物技术.见:罗云波,蔡同一主编.园艺产品贮藏加工学(贮藏篇).北京:中国农业大学出版社,2001,42-50.
    [54] Pressey R, Avants J K. Seperation and characterization of endopolygalacturonase and exopolygalacturonases from peach [J]. Plant Physiology, 1973, 52: 252-256.
    [55] DellaPenna D,Lincoln J E,Ficher R L,et al.Transcraptional analysis of polygalacturonase an other ripening associated gene in Rutgers,rin,nor and Nr tomoto fruit.Plant Physiology,1989,90:1372-1377.
    [56] Giovannoni J J, DellaPenna D Bennett A B,et al. Expression of chimeric polygalacturonase gene in transgenic rin(ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening [J]. The Plant Cell, 1989, 1: 53-63.
    [57]叶志彪,李汉霞.两个反义基因在番茄工程植物中的生理抑制效应分析.植物生理学报,1996,22(2):157-160.
    [58]缪颖,毛节绮,叶钢.采前钙处理对水蜜桃果实软化过程中蛋白质代谢的影响.浙江农业大学学报,1992,18(4):35-39.
    [59]卢春彬.PG在番茄果实成熟中的作用及二价金属离子与乙烯对活性的影响.植物学报,1990,32(5):337-347.
    [60] Grierson D.Control of ribonucleic acid and enzyme synthesis during fruit ripening.In:Lieberman F(ed).Postharvest Physiology and Crop Preservation.New York:Plenum,1983:45-60.
    [61] Wolfang S.Control and maniplation of gene expression during tomoto fruit ripening. Plant Molecular Biology,1989,13:303-311.
    [62]罗自生.MA贮藏对桑果细胞壁组分和水解酶活性的影响.果树学报,2003,20(3):214-217.
    [63]石海燕,冯双庆.气调贮藏对‘紫花’芒果PG、纤维素酶及果实硬度的影响.园艺学报,1997,24(4):407-409.
    [64]方建雄,华雪增,刘愚.贮藏温度和气体状况对苹果果胶、多聚半乳糖醛酸酶变化的影响植物.生理学报,1997,17(1):99-104.
    [65] Knee M,Bartely IM.Rencent Advanced Biochemistry of Fruit and Vegetable.London:AcademicPress,1981.
    [66] Tucker G A,Robertson N G,Grierson D.Purification and changes in tomoto pectinesterase isoenzymes.Journal of the Science of Food and Agriculture,1982,33:396-400.
    [67] Barret D M, Gonzalez C. Activity of softening enzymes during cherry maturation[J]. Food Sci.,1994, 59 (3): 574-577.
    [68] Ning B, Kubo Y. Softening characteristics of Chinese pear‘Yali’fruit with special relation to changes in cell wall polysaccharides and their degrading enzymes [J]. Scientific Reports of the Faculty of Agriculture Okayama University, 1997, 86: 71-78.
    [69]王贵禧,韩雅珊,于梁.,猕猴桃软化过程中阶段性专一酶活性变化的研究.植物学报,1995,37(3):198-203.
    [70]王贵禧,韩雅珊称猴桃果实中PG、PME及其抑制因子的研究(综述).中国农业大学学报,1983.3(1):88-94.
    [71] Hilary G,Colin B.Purification of three pectinesterases in ripe peach fruit.Phytochemistry,1994,31(4): 949-959.
    [72]杨光,陈学平,高锡永.柑桔果胶醋酶钝化的研究.食品科学,1991,12(11):1-8.
    [73]关军锋.钙与果实生理生化的研究进展.河北农业大学学报,1991,14(4):105-109.
    [74] Wegrzyn T F,MacRae E A.Pectinesteranase,polygalacturonase andβ-galactoidases during softening of ethlene-treated kiwifruit.HortScience,1992,27(8):900-902.
    [75] Huber D J. Strawberry fruit softening: the potential roles of polyuronides and hemicellulose [J]. Food Sci., 1984, 49 (5): 1310-1315.
    [76]王贵禧,韩雅珊,于梁.,猕猴桃总淀粉酶活性与果实软化的关系.园艺学报,1994,21(4):329-333.
    [77] Ryzzon S , Ruperti B , Bonghi C , et al.Activity and biochemical characterization of endoβ-beta-1,4-glucanase and polygalacturonases during development and ripening of peach fruit.In:Atti del Workshop Nazionale.Postraccolta Degli Ortoflorofrutticoli,Vol.5.Italy:Ascea Marina,1998:32-35.
    [78]薛炳烨.肥城桃和草茸果实发育成熟软化生理机理的研究.山东农业大学博士研究生论文,2002.
    [79] Tonutti P, Bonghi C,Vidrih R,et al.Biochemical and molecular aspect of peach fruit ripening.in:Hribar J, Johnson D S,Bohling H(eds.).The Posthar-vest Treatment of Fruit and Vegetables:Quality Criteria.Proceeding of The Workshop.Italy:Bled,Slovenia,1994,101-104.
    [80]茅林春,张上隆.果胶酶和纤维素酶在桃果实成熟和絮败中的作用.园艺学报,2001,28(2):107-111.
    [81]陈昆松,张上隆.β-半乳糖苷酶基因在猕猴桃果实成熟过程的表达.植物生理学报,2000,26(2):117-122.
    [82] Veau E J I, Gross K C. Degradation and solubilization of pectin by beta-galactosidases purified from avocado mesocarp[J]. Physiologia Plantarum, 1993, 87 (3): 279-285.
    [83] Fischer R L, Bennett A B. Role of cell wall hydrolases in fruit ripening[J]. Annu. Rev. Plant Physiol.Plant Mol. Biol., 1991, 42: 675-703.
    [84] Gross KC, Wallner SJ. Degradation of cell wall polysaccharides during tomato fruit ripening [J].Plant Physiol, 1979,63:117-120.
    [85] Redgwell RG,Harker R.Softening of kiwifruit discs:effect of inhibition galactose loss from cellwalls.Phytochemistry,1995,39:1319-1323.
    [86] Ross G F, Wegrzyn T F, MouRae E A, et al. Appleβ-galactosidase activity against cell wall polysaccharides and characterization of a related cDNA clone[J]. Plant Physiology, 1994, 106: 521-528.
    [87]罗自生,席玛芳,金勇丰,张耀洲.贮前热处理减轻柿果实冷害与细胞壁水解酶活性的关系.园艺学报,2001,28(6):554-556.
    [88] Redgwell R J and Fry S C. Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening [J]. Plant Physiology, 1993, 103: 1399-1406.
    [89] Schroder R, Atkinson R G, Langenkmper G, et al. Biochemical and molecular characterization of xyloglucan endotransglycosylase from ripe kiwifruit[J]. Planta., 1998, 204 (2): 242-251.
    [90]陈昆松,李方,张上隆.猕猴桃果实成熟进程中木葡聚糖内糖基转移酶mRNA水平的变化[J].植物学报,1999,41(11):1231-1234.
    [91] Gray J. Picton S. Shabbeer J,et al. Molecular biology of fruit ripening and its manipulation with manipulation with antisense genes [J]. Plant Mol Biol. 1992. 19: 69-87.
    [92] Yang S F. Hoffman N E. Ethylene biosynthesis and its regulation in higher plants [J]. Ann Rev Plant Physiol. !984.35: 155-189.
    [93] Smith C J S. Watson C F.Ray J et al. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatos[J]. Nature.1988.334:724-726.
    [94] Burg S P. Burg E A. Molecular requirements for the biological activity of ethylene[J]. Plant Physiol.1967.42:144-152.
    [95] Guzman P. Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants[J]. Plant Cell.1992.4: 681-687.
    [96] Olson D C. White J A. Edelman L et al. Differential expression of two genes from 1- aminocyclopropane1- aminocyclopropane in tomato fruits[J]. Proc Natl Acad Sci USA. 1991. 88: 5340-5344.
    [97] Nakajima N. Nakagawa N. Imaseki H. Molecular size of wound-induced 1- aminocyclopropane-1- carboxylate synthase from Cucurbita maxima Duch. And change of translatable mRNA of the enzyme after wounding[J]. Plant Cell Physiol. 1988. 29: 989-998.
    [98] Theologis A. Zarembinski T I. Oeller P W et al. Modification of fruit ripening by suppressing gene expression[J]. Plant Physiol. 1992. 100: 549-551.
    [99]李雄彪,吴奇.植物细胞壁[M].北京:北京大学出版社,1993,1.
    [100]王永章张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控[J].园艺学报,2000, 27 (6) : 391~395.
    [101] Davies K M. Grierson D. Identification of cDNA clones for tomato(lycopersicon escuientum Mill)mRNA that accumulate during ripening and leaf senescence in response to ethylene[J]. Planta. 1989.179: 73-80.
    [102]王俊宁,饶景萍,宫德强,等.1-MCP对外源乙烯诱导油桃果实软化的影响[J].保鲜与加工,2005 ,1(5):34-36.
    [103] Hiwasa K,Kinugasa Y,Amano S,et al..Ethrel is required for both the initiation and Progression of softening in Pear(pyrus communis L.)fruit[J].Exp Bot,2003,54(383):771-779.
    [104]寇晓虹,朱本忠,罗云波,等.番茄果实中乙烯与多聚半乳糖醛酸酶的关系[J].植物生理与分子生物学学报,2004,30(6):650-675.
    [105]黄森,张院民,王建芳,张继澍.乙烯吸收剂处理对柿果实采后生理效应的影响[J].西北农业学报,2006,15(6):140-143.
    [106] Alexander L,Grierson D.Ethylene biosynthesis and action in tomato:a model for climacteriec fruit.[J] Exp Bot,2002,53(377):2039-2055.
    [107]余小林,徐步前,梁佳伟.热处理技术改善果蔬贮藏品质的研究[J].果树科学,1999(16):37-41.
    [108] Klein J D,Lurie S.Prestorage heat treatment as a means of improving poststorage qua1ity of apples.J.Am.Soc.Hort.Sci,1990,115,255-259.
    [109] Lurie S , Sabehat A.Prestorage temperature manipulations to reduce chilling injury in tomatoes.Posthary.Biol.Technol.1997a,11,57-62.
    [110] Miller W R,MeDonald R E,Hatton T T.Phytotoxieity to grapefruit exposed to hot water immersion treatment.Proc FIorida State Hort.Soc.1998,101,192-195.
    [111] Shellie K C , Mangan R L.Tolerance of red fleshed grapefruit to constant of stepped temperature ,forced air quarantine heat treatment.Postharv.Biol.Technol,1996,7:151-159.
    [112] Klein J D,Conway W S,Whitaker B D.Botrytise cinerea decay in apples is inhibited by postharvest heat and calcium treatments.[J].Am.Soc.Hort.Sci,1997b,122:91-94.
    [113] Lurie S Klein J D.Acquisition of low temperature to lerance in tomatoes by exposure to high temperature stress.[J].Amer Hort.Sci,1991,116:1007-1012.
    [114] Jaeobi K K,Wong L S,Giles J E.Postharvest quality of zucchini(Cucurbita pcpo L.)following high humidity hot air disinfestation treatments and cool storage[J].Postharvest Biology and Technology.1996,74:309-316.
    [115] Tian MS,Islam T.Color,ethylene production respiration and conpositional cllanges in broccoli dipped in hot water.[J].Am.Soc.Hort.Sci.1997,122:112-116.
    [116] Atta Aly,M.A.Effect of high temperature on ethylene biosynthesis by tomato fruit.Postharv.Biol. Teehnol.1992 (2) :19-24.
    [117] Inaba M,Chachin K J .influence and recovery from high temperature stress on harvested mature green tomatoes.HortScience,1988,23:190-192.
    [118]陈留勇,孔秋莲,孟宪军.热激处理对黄桃保鲜效果的影响[J].保鲜与加工,2003,3(4):21-23.
    [119]魏建梅,马锋旺.苹果果实发育期间细胞壁组分变化特性[J].西北植物学报,2009,29(2):0314-0319.
    [120]庄军平,陈维信,吴振先,等.苹果采后软化研究进展[J].中国农学通报,2004,20(4):73-77.
    [121] Bartley I M.Changes in the glucans of ripening apples[J].Phytochemistry,1976,15:625-626.
    [122] Siddiqui S,Bangerth F,The effect of calcium of infiltration on struction changes in cell wall of storged apples[J].Journal of Horticultuirel Science,1996,71:703-708.
    [123] Percy A E,Melton L D,Jameson P E.Xyloglucan and hemicelluloses in the cell wall during apple fruit development and ripening[J].Plant Science,1997,125:31-39.
    [124] Kyoko Hiwasa, Yuichi Kinugasa, Satomi, et al. Ethylene is required for both the initiation and progression of softening in pear fruit [J]. Journal of Experimental Botany, 2003, 54(383):771—779.
    [125]应义斌,韩冬海.农产品无损检测技术[M].北京:化学工业出版社,2005:152-163.
    [126] Kato K.Nondestructive measurement of fruits quality by elec-trical impedance (Part 1)[J].Research Report on Agricultural Machinery,1987(17):51-68.
    [127]胥芳,张立彬,周国君,等.苹果的介电特性与新鲜度的关系研究[J].农业工程学报,1996,12(3):186-190.
    [128]胥芳,张立彬,周国君,等.无损检测桃子电特性的试验研究[J].农业工程学报,1997,13(1):202-205.
    [129]胥芳,计时呜,张立彬,等.水果电特性的无损检测在水果分选中的应用[J].农业机械学报,2002,33(2):53-60.
    [130]柯大观,张立彬,胥芳.基于介电特性的水果无损检测系统研究[J].浙江工业大学学报,2002,30(5):446-450.
    [131] Richard L, Qin L X, Gadal P,et al.Molecular characterization of putative pectin methylesterases cDNA and its expression in Arabidopsis thaliana L.[J].FEBS Lett, 1994, 355: 135-139.
    [132] Huber D J. The role of cell wall hydrolases in fruit softening [J]. Hort Rev, 1983, 5: 169-219.
    [133]杨勇,刘开启,于金凤.绿色木霉菌对丝核菌多聚半乳糖醛酸酶活性的影响[J].仲恺农业技术学院学报,2004,17(3):22-25.
    [134]朱庆竖,郭巨先,杨运英,等.不同贮藏条件下储良龙眼果实纤维素酶活性的变化[J].华中农业大学学报,2007,(26)4,542-545.
    [135]罗自生.贮前热处理减轻柿果实冷害与细胞壁水解酶活性的关系[D].浙江省:浙江大学,2002.54-56.
    [136]解复红,张克勤,李文鹏.木霉No.183菌株木聚糖酶的研究[J].云南大学学报,2003,25(1):81-84.
    [137] Breet C T,Waldron K W.Physiology and Biochemistry of Plant Cell Walls.London: Unwin-Hyman, 1990,6–43.
    [138]张进献,李冬杰,李宏杰.果实软化过程中细胞壁结构和组分及细胞壁酶的变化[J].河北林果研究,2007,22(2):181-186.
    [139]刘熙东,吴振先,韩冬梅,等.龙眼采后果皮细胞壁代谢相关酶活性的变化[J].热带作物学报,2006,27(2):25-28.
    [140]寇莉萍,刘兴华,任亚梅,等.热处理对轻度加工葡萄细胞壁组分及相关酶活性的影响.保鲜研究, 2008,8(1):21-24.
    [141] Buse L E,Lities G G.Ethrel-mediated posttranscriptional regulation in ripening avocado (Persea americana)mesocarp dises[J].Plant Physiol,1993,102(8):417-423.
    [142] Ben-Arie R,Sacks Y,Sonago L.Cell wall metabolism in gibberellin treated Persimmon fruit[J].Plant Growth Regulation,1996,19(1):25-33.
    [143] Willats W G,McCartney L,Mackie W,et al.Pectin:cell biology and prospects for functional analysis[J].Plant MolBiol,2001,47(1–2):9–27.
    [144] Hadfield K A,Bennett A B.Polygalaeturonases:Many genes in search of afunetion[J].Plant Phyisol,1998,117(5):337-343.
    [145] Xue Y B,KuboYzanab A.Effeets of humidity on npening and texture in banana fiuit[J].Japan Soc Hort Sci,1995,64(3):657-664.
    [146] Jen J J,Robison M L. Pectolytic enzymes in sweet bell peppers[J]. Food Sci,1984,49(4):1085-1087.
    [147] Huber D J.Strawbreey fruit softening:the potential roles of polyUronldes and hemicellulose [J].Food Sci,1984,49(5):131-135.
    [148]张超.当前发展苹果应注意的四个问题.西北园艺(果树专刊).2008,(1):5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700