陕西苹果修剪枝作为生物质再生能源利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源紧缺与环境保护的双重压力下,生物质能的开发利用引起了人们的广泛关注。苹果树作为经济树种之一,面积陕西居全国之首,每年的修剪量很大,而这些枝条、树干又往往作为传统的薪材低效率的直接燃烧,造成该资源的利用极不科学合理;或者长期堆放腐朽作为肥料使用,致使枝条内潜在的大量化学能白白损失,同时释放的CO2造成环境的污染。本论文以综合利用苹果修剪枝为出发点,研究了陕西省每年的苹果修剪总量,不同年龄修剪枝的燃烧热值和苹果修剪枝中主要成分木质素和半纤维素的提取及理化性质,结论如下:
     (1)通过对陕西苹果修剪量的抽样调查可知:苹果修剪枝的平均含水量为44.95%,其中,一年生修剪枝的含水量为47.89%,二年生修剪枝的为45.16%,三年及以上生修剪枝为41.40%。用平均生物量法计算出陕西省每年苹果修剪枝的总生物量(干物质)为392.65万t左右。
     (2)用氧弹式量热计对不同年龄的苹果修剪枝进行了燃烧热值的测定,结果表明,三个不同年龄段的修剪枝燃烧热值相差不大,分别为:一年生17284.821 J·g~(-1),二年生17318.703 J·g~(-1),三年及以生17411.245 J·g~(-1),平均为17338.256J·g~(-1)。
     (3)用不同质量分数的NaOH从苹果修剪枝中提取木质素和半纤维素,并利用GC、HPLC、FT-IR和TGA-DTA仪器分析其化学和物理特征。三个年龄段的苹果修剪枝中苯醇提取物的含量均较低,其中一年生为2.69%,二年生为4.93%,三年及以上生为4.38%;无论木质素还是半纤维素,其产率都是在1%NaOH质量分数时最高,然后随着NaOH质量分数的增加,木质素和半纤维素的产率逐渐减少。在三个不同年龄的修剪枝中,二年生枝条半纤维素的总提取率最高,为25.72%,一年生枝条的总产率最低,为18.87%;而木质素的总产率恰恰相反,二年生枝条的最低,为4.34%,一年生枝条的最高,为6.10%,三年及以上生的居中。
     (4)从二年生修剪枝提取的半纤维素的糖组分来看,其半纤维素制备物的主要组成是聚葡萄糖木糖,即聚氧-乙酰基-4-O-甲基葡萄糖醛酸木糖。通过对二年生苹果修剪枝木质素制备物的碱性硝基苯氧化结果分析,在木质素的制备物中香草醛和丁香酸是主要产物,还有大量的香草酸和芳香酸,没食子酸、对香豆酸和阿魏酸含量很低,这说明二年生苹果修剪枝中木质素是G-S-H型木质素。
     (5)通过对木质素制备物分子量的测定,结果表明:其重均分子量和多分散性都无显著差异,分子量在1200~5000之间;多分散性均在1.236~1.692之间。而半纤维素制备物的重均分子量和多分散性差异均比较显著,相对分子质量从103720g·mol~(-1)随着碱液浓度的增加而减小,其值16693g·mol~(-1),多分散系数在3.916~94.291之间,分子量分布范围宽窄不等。
     (6)通过对木质素和半纤维素制备物的FT-IR谱图分析可知,其分子内部含有较多活性基团,具有较高的化学活性,可为开发高应用价值的化学产品提供原料;从其TGA-DTA曲线可知,木质素和半纤维素的最大失重温度均在280℃附近。用X-射线衍射法对其提取后的残渣进行了结晶度的测定,发现其纤维的结晶度不足40%,故认为其纤维不适合作为造纸的原料。
Under the dual pressures of energy shortage and environmental protection, the exploitation and utilization of biomass energy has been paid more extensive attentions during these years. Apple trees, as one of an economic species, Shaanxi’s Cultivation Area ranks first in China, A great amount of branches are pruned annual, but these branches and tree trunks are often being used in the low efficiency of direct combustion, or long-term decadent stack used as a kind of fertilizer, resulting in inadequate use of resources and a large number of potential chemical energy in branch lost in vain. Meantime, CO2 released by combustion destroy the environment. Viewed from comprehensive utilization of apple pruning branches in Shaanxi Province, this paper studied the annual total pruning apples in Shaanxi Province, determined the combustion heat value of different ages pruning branches, extracted lignin and hemicellulose of the main components of Apple pruning branches and analyzed their physico-chemical properties. The following main conclusions can be drawn:
     (1) By using sample survey method to investigate the amount of Apple pruning branches in Shaanxi province, we could see that: The average water content of Apple pruning branches was 44.95 percent, of which water content of one-year-old pruning branches was 47.89 percent, biennial pruning branches was 45.16 percent, and perennial pruning branches was 41.40 percent. The total apple pruning biomass (dry matter) was about 392.65million tons per year calculated by an average biomass method.
     (2) The calorific value of Apple pruning branches of different age groups have been determined by Oxygen bomb calorimeter. The results show that there was a small difference among the three different ages of pruning branches, the calorific value of branches were as follows: one-year-old was 17284.821J·g~(-1), biennial was 17318.703J·g~(-1), perennial was 17411.245J·g~(-1). And the average calorific value was 17338.256J·g~(-1).
     (3)This study extracted lignin and hemicellulose from apple pruning branches with different mass fraction of NaOH, and analyzed their chemical and physical characteristics using the GC, HPLC, FT-IR and TGA-DTA. Benzene-alcohol extraction of Apple pruning branches of the three age groups were relatively low, with one-year-old was minimum, 2.69 percent, biennial was highest, 4.93 percent, perennial was in the middle with 4.38 percent. No matter lignin and hemicellulose, their yields were highest when the mass fraction was 1 percent NaOH and with the mass fraction of NaOH increased, the yield of lignin and hemicellulose decreased. In three different ages, total hemicellulose extraction rate of biennial Apple pruning branches was highest, 25.72 percent, one-year-old branches was the lowest, 18.87 percent. And the total yield of lignin was on the contrary, biennial branches was lowest, 4.34 percent and one-year-old branches was highest, 6.10 percent, perennial was in the middle.
     (4)Viewed from the sugar components of hemicellulose of the biennial pruning, the major component of the hemi-cellulose material Preparation was polydextrose xylose, which was polyoxyethylene - acetyl - 4-O-methyl glucuronic acid xylose. Through analyzing results of alkaline nitrobenzene oxidation of lignin Preparation of biennial Apple pruning branches, vanillin and syringic acid were the main products in the lignin Preparation and there were a large number of homovanillic acid, aromatic acid, gallic acid. P-coumaric acid and ferulic acid content were very low, which indicated lignin in biennial Apple pruning branches was GSH-type lignin.
     (5) Molecular weight of lignin Preparation was measured, and its weight average molecular weight and polydispersity have no significant differences. Molecular weight was between 1200 and 5000. Polydispersity was between 1.236 and 1.692. and the weight average molecular weight and polydispersity of hemi-cellulose material Preparation had significant differences, relative molecular mass decreased from 103720g·mol~(-1) to 16693g·mol~(-1) with the increase of alkali concentration. Polydispersity coefficient was between 3.916 and 94.291 and the range of molecular weight distribution is unequal.
     (6)By analyzing FT-IR spectra of lignin and hemicellulose preparation, we could see that its internal elements contained more active groups with high chemical activity and could be applied for the development of high value chemical products materials. The TGA-DTA curves showed that the biggest weight-loss temperature of lignin and hemicellulose were around 280℃. Determination of the crystallinity of residue after extraction Using X-ray diffraction found that crystallinity of fibers was less than 40%, so that its fibers were not suitable for papermaking as a raw material.
引文
[1]李俊,许兴.桉树生物质能源的价值研究[J].企业技术开发,2008,27(9):96-98.
    [2]苗世龙.中国林业生物质能源的现状及发展方向[J].科技情报开发与经济,2007,17 (32):150-151.
    [3]谭洪.生物质热裂解机理试验研究[D].浙江大学优秀博士学位论文,2005.
    [4]世界能源理事会编.新的可再生能源–未来发展指南[M].北京:海洋出版社,1998.
    [5]方升佐.关于加速发展我国生物质能源的思考[J].北京林业管理干部学院学报,2005,2:30-34.
    [6]胡建忠.中国生物质能源的开发前景及适用植物探讨[J].西部林业科学,2008,37(4):96-101
    [7]中国农业部/美国能源部项目专家组.中国生物质资源可获得性评价[M].北京:中国环境科学出版利,1998.
    [8]章芸,陈秋波,邓燔.我国生物质能源开发的研究和分析[J].现代农业科技,2007,12:172-174.
    [9]黄蕾.发展生物质能源的利弊分析[J].宏观经济管理,2008,3:32-34.
    [10]韩冬,常艳波,李春梅.发展生物质能源保护农业生态环境[J].理论探讨,2009,228(2):47-48.
    [11]刘宁,张忠法.国外生物质能源产业扶持政策[J].世界林业研究,2009,22(1):77-80.
    [12]刘国华,舒洪岚.我国林木生物质燃料的发展现状与对策[J].世界林业研究,2006,19(3):53-56.
    [13]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出社,2005:426.
    [14] YAN C, YANG W, JOHN T R , et al. A novel biomass air gasification process for producing tar-free higher heating valuefuel gas [J]. Fuel Processing Technology, 2006, 87: 343-353.
    [15] MCLENDON T R , LUI A P , PINEAULT RL , et al. High pressure CO2gasification of coal and biomass in a fluidized bed[J ] .Biomass and Bio-energy, 2004, 26:377-388.
    [16]刘继芬.德国农村沼气利用状况[J].世界农业,2005,1:36-38.
    [17] Weigang Lin, Wenli Song.Power production from biomass in Denmark[J].Journal of Fuel Chemistry and Technology,2005(33):650-655.
    [18]董玉平,王理鹏,邓波,等.国内外生物质能源开发利用技术[J].山东大学学报(工学版).2007,37(3): 64-69.
    [19]赵先国,常杰,吕鹏梅,等.生物质流化床富氧气化实验研究[J].燃料化学学报,2005,33(2):199-204.
    [20]吴正舜,马隆龙,吴创之.下吸式气化炉中生物质气化发电的运行与测试[J].煤炭转化,2003,26(4):79-82.
    [21]蒋剑春,应浩,戴伟娣,等.生物质流态化催化气化技术工程化研究[J].太阳能学报,2004,25(5):678-684.
    [22]吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究[J].西安交通大学学报,2005,39(3):238-242.
    [23]赵增立,李海滨,吴创之,等.生物质等离子体气化研究[J].太阳能学报,2005,26(4):468-472.
    [24]朱锡锋,VENDERBOSCH R H.生物质热解油气化试验研究[J].燃料化学学报,2004,32(4):510-512.
    [25]赖艳华,吕明新,马春元,等.缩口结构对降低生物质两段气化中焦油生成量的影响研究[J].太阳能学报,2004,25(4):547-551.
    [26]刘荣厚.生物质热裂解特性及闪速热裂解试验研究[D].沈阳:沈阳农业大学,1997.
    [27]朱锡锋,郑冀鲁,陆强,等.生物质热解液化装置研制与实验研究[J].中国工程科学,2006,8(10):89-93.
    [28]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001,29(4):319-322.
    [29] YOSHIKAWA K L. Gasification and power generation from solid fuels using high temperature air [A]. Proceeding of High Temperature Air Combustion Symposium[C]. Beijing: Engineering Institute of Chinese Science & Technology Association, 1999:48-68.
    [30] PIAN C C. Biomass fueled MEET gasifier[A].Proceeding of High Temperature Air Combustion Symposium[C].Beijing:The Federation of Engineering Societies of China Association for Science and Technology,1999:69-88.
    [31]张文华,田沈,李军,等.降解生物质气化洗焦废水微生物的选择[J].太阳能学报,2002,24(4):459-461.
    [32]吴正舜,粟薇,吴创之,等.生物质气化过程中焦油裂解的工业应用研究[J].化学工程,2006,34 (10) :67-70.
    [33]郝小红,郭烈锦.超临界生物质催化气化制氢实验系统与方法研究[J].工程热物理学报,2002,23 (2):143-146.
    [34]裴爱霞,郭烈锦,金辉.超临界水中花生壳气化制氢的实验及机理研究[J].西安交通大学学报,2006,40(11):1263-1267.
    [35]郝小红,郭烈锦,吕友军,等.生物质超临界水气化制氢反应动力学分析[J].西安交通大学学报,2005,39(7):682-684.
    [36]樊峰鸣,张百良,李保谦,等.大粒径生物质成型燃料物理特性的研究[J].农业环境科学学报,2005,24(2):398-402.
    [37]余有芳,盛奎川,HASSAN G.生物质成型燃料的热解燃烧特性试验研究[J].浙江大学学报(农业与生命科学版),2005,3l(5):663-667.
    [38] LANZETTA M, BLASI C D. Pyrolysis kinetics of wheat and corn straw[J] . Journal of Analytical and Applied Pyrolysis,1998, 44 :181-192.
    [39] SHINYA Y, TOMOKO O , KATSUYA K, et al. Process for liquefying cellulose-containing biomass [P] . US Patent :4 935567, 1990-06-19.
    [40]刘孝碧,曲敬序,李栋,等.玉米秸在亚-超临界乙醇-水中液化的初步研究[J].农业工程学报,2006,22(5):130-134.
    [41]熊树生,楚书华,杨振中.活塞式内燃机燃用沼气的研究[J].太阳能学报,2003,24(5):688-692.
    [42]涂国平,贾仁安,朱文灿,等.沼气生态工程对土壤改良效应分析[J].水土保持通报,2006,26(5):15-18.
    [43]贺士元.河北植物志(第一卷)[J].河北科学技术出版社,1986,9:632.
    [44] DORNBURG V, TERMEER G, FAA IJ A P C. Economic and greenhouse gas emission analysis of bio-energy production using multi-product crops-case studies for the netherlands and poland[J]. Biomass & Bio-energy, 2005, 28 (5): 454- 474.
    [45]袁振宏.生物质能源开发应用现状与前景[C].中国林业生物质能源发展研讨会论文集.北京:国家林业局,2006.
    [46]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [47]屈振江,郑小华,栗珂.陕西渭北塬区苹果气候生态适应性研究[J].陕西农业科学,2008,(2):28-31
    [48]东盟-中日韩(中国陕西).果品企业家圆桌会议昨隆重召开,华商报,2004-09-29.
    [49]让陕西苹果走向世界—写在东盟-中日韩果品企业家圆桌会开幕之际[N].陕西日报,2004-09-29.
    [50] http://www.sn.stats.gov.cn/news/qsgb/200941165729.htm
    [51]张雪阳,朱海霞,张会新.陕西苹果产业发展现状与发展思路[J].西北大学学报(哲学社会科学版) ,2005,35(1):36-41.
    [52]马延庆,刘长民,朱海利,等.陕西咸阳渭北旱塬地区优质苹果基地生态气候特征分析[J].干旱地区农业研究,2008,26(1):146-152.
    [53]赵政阳,戴军,王雷存.陕西苹果产业现状及国际竞争力分析[J].西北农业学报,2002,11(4):108-111.
    [54]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [55]张轩波,陈训.比利时杜鹃生物量调查[J].贵州师范大学学报(自然科学版),2006,24(1):14-18.
    [56]何晓,包维楷,辜彬,等.中国高等植物干质量热值特点[J].生态环境,2007,16(3):973-981.
    [57]鲍雅静,李政海,韩兴国等.植物热值及其生物生态学属性[J].生态学杂志,2006,25(9):1095-1103.
    [58]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [59]张景群,康永祥,徐钊.秦岭松科常绿种叶燃烧性排序[J].东北林业大学学报,2001,29(4):1-17.
    [60]徐爱列,周建青,王永宁.枸杞燃烧热测定研究[J].中国中医药信息杂志,2007,14(8):44-45.
    [61]东北师范大学.物理化学实验[M].北京:高等教育出版社,1989.
    [62]张建策,毛力新.燃烧热测定实验的进一步改进[J].化工技术与开发,2005,34(6):43-44.
    [63]雷玲.有机物燃烧热测定方法的改进[J].化学分析计量,2004,13(1):48-50
    [64]杨旭武,陈三平,高胜利.4种氨基酸燃烧热的精密测定[J].西北大学学报(自然科学版),2003,33(2):179-182.
    [65]胡宝忠,刘娣,周以良,等.白三叶无性系植物种群分株间的资源分配[J].东北林业大学学报,1998.26(2):25-28.
    [66]吕建波,曹青,薛永强.杨木木质素常压分离方法的比较研究[J].林产化学与工业,2008,28(3):66-70.
    [67] WYMAN C E. Potential synergies and challenges in refining cellulosic biomass to fuel, chemicals and power [J]. Biotechnology Progress, 2003,19(2):254-262.
    [68] AYHAN D. Biomass resource facilities and biomass conversion processing for fuels and chemichals[J]. Energy Conversion and Management, 2001,42(11):1357- 1378.
    [69]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [70]付伟,廖祥儒,王俊峰,等.植物体内的木质素[J].生物学通报,2004,39(2):12-14.
    [71]陈慧泉,龚运淮,方舟.天然高分子物质的利用现状和前景(Ⅰ)―纤维素木质素和淀粉.云南化工,1996,1:41-56.
    [72]李十中.生物质工程前沿领域关键技术研究进展[J].科技导报,2005,23(5):9-11.
    [73]张芝兰,陆雍森.木质素混凝剂的性质及其应用研究[J].水处理技术,1997,23(1):38-44.
    [74]吕晓静.木质素的高附加值应用新进展[J].化工进展,2001,(5):10-14,40- 43.
    [75]刘欣,周永红.木质素表面活性剂的应用研究进展[J].生物质化学工程,2008,42(6):42-48.
    [76] Robert Bremy, Laszlo Pasmer, Michael M Micko, et al. The ion - ex - changing lignin derivatives prepared by Mannich reaction with amino acids[J].Holzfforschung, 1988, 42(6):36910.
    [77] Srivastava, Shamia A. Studies on the uptake of lead andzinc lignin obtained from black liquor - a paper industry waste material [J].Environ Technology, 1994, 15: 353.
    [78] Lalvani,S. B.,Wiltowski T.S.,Murphy D, et al. Metal removal fromwater by lignin [J].Environmental Technology, 1997,18:1163.
    [79]王廷平,刘存海.木质素的结构及其应用[J].西南造纸,2006,35(5):13-14,17.
    [80]刘学苏,李广学.木质素的应用进展[J].广州化工,2005,33(4):9-11
    [81]张陶芸,黄正,夏都钿,等.木素农药缓释济的研制与应用[J].中国造纸,1995,3,35-40.
    [82]章易.木质素固沙-解决两大环保难题[J].湖北造纸,2004,1:38-39.
    [83]王海洋,陈克利.木质素的综合利用概况与分析[J].化工时刊,2004,18(4):8-10.
    [84]张盆,胡惠仁,石淑兰.半纤维素的应用[J].天津造纸,2006,2:16-18.
    [85]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,8:40-41.
    [86]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987(2):82-84.
    [87] Wagner H. , Proksch A..Immunstimuliwewend wirkende polysaccharide (heteroglykanse) aushheren pflanzen[J]. Arzneimittel-forschung/drug Research, 1985, 35:1069-1075.
    [88] Proksch A., Wagner H..Structural alanalysis of 4-O-methyl-glucuronoarabinoxylan with immuno -stimulating activity from Echinacea purourea[J]. Phytochemistry,1987,26(7):1989-1993.
    [89] Yamada H., Nagai T., Cyong J. C., et al. Relationship between chemical strcture anti-complementary activity of plant polysaccharides[J]. Carbohydrate Research,1985, 144(1):101-111.
    [90] Herath H.M.T.B., Kumar N.S., Wimalasiri K.M.S..Structural studies of an arabinoxylan isolated from Litsea glutinosa(Lauraceae) [J].Carbohydrate Research, 1990, 198(2):343-351.
    [91] Wimalasiri K.M.S., Kumar N.S..A water soluble polysaccharide from the leaves of litsea gardneri (Lauraceae) [J].Carbohydrate Polymers,1995,26(1):19-23.
    [92] Whistler R.L., Bushway A., Singh P.P.,et al.Noncytotoxic antitumor polysaccharides[J].Advances in carbohydrate chemistry and biochemistry,1976, 32:235-275.
    [93] Hashi M., Takeshita T.. Antitumor effect of 4-O-methylglucuronoxylan on solid tumor in mice[J]. Agricultural and biological chemistry,1979, 43(5):961-967.
    [94] Fan Y.R., Feng Z.H.. Effect of carboxymethyi-modified hemicellulose on activity of Tlymphocytes and amount of immunocytes[J].Acta Pharmacologica sinica,1987,8:166.
    [95] Samuelsen A.B., Paulsen B.S., Wold J.K., et al. Isolation and partial characterization of biologically-active polysaccharides from plantago-major[J]. Phytother,Research.1995, 9(3):211-218.
    [96] Dace R., Mcbride E., Brooks K., et al. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides[J].Thrombosis Research,1997,87(1):113-121.
    [97] Juslin M., Paronen P.. Xylan a possible filler and disintegrant for tablet[J].J.Pharm.Pharmacol, 1984,36(4):256-257.
    [98] Theander O., Aman P.. Chemical composition of some Swedish cereal straws[J].Swedish Journal of Agricultural Research,1978,8:189-194.
    [99] Kindel P.K., Liao S.Y., Liske M.R., et al. Arabinoxylan from rye and wheat seed that interact with ice [J].Carbohydrate Research,1989,187(2):173-185.
    [100] Ebringerova A., Heinze T.. Xylan and xylan derivatives-biopolymers with valuable properties[J]. Macromolecular Rapid Communications,2000,21(9):542-556.
    [101]韩玉洁,徐冬,徐忠等.小麦麸皮中低聚木糖底物—半纤维素提取条件的研究[J].食品研究与开发,2006,27(1):44-47.
    [102] Antal M., EbringerovàA., HromàdkovàZ., et al. Structur und papiertechnische Eigenschaften von aminoalkylxylanen[J].Das Papier,1997,51(5):223-226.
    [103] EbringerovàA., Hromàdkovà. Z., KacuràlovàM., et al.Quaternized xylans:synthesis and structural characterization[J].Carbohydrate Polymers,1994,24(4):301-308.
    [104] Antal M., EbringerovàA., Micko M.M..Kationisierte hemicellulosen aus Espenholzmehl und ihrEinsatz in der Papierherstellung[J].Das Papier,1991, 45(5):232-235.
    [105] EbringerovàA., BelicovàA., Ebringer L..Antimicrobial activity of quatermized heteroxylans[J]. Journal of Microbiology and biotechnology.1995,(10):640-643.
    [106] Sun R.C..Hemicellulose-novel materials for industry[A]. 2nd ISETTP.Guangzhou,China,2002,48-55.
    [107] Blakeney A B ,Harris P J ,et al. A simple and rapid preparation of alditol actates for monosaccharide analysis[J].Carbohydrate Research,1983,113(2):291-299.
    [108] Himmelsbach D S, Bartorn II F E. 13C nuclear magnetic resonance of grass lignins [J].Agric Food Chem,1980,28(6):1203-1208.
    [109]杨淑敏,江泽慧,任海青,等.竹材木质素研究现状及其发展趋势[J]木材加工机械,2008,3:29-33.
    [110]王键,王燕.棉秆木质素的光谱分析[J].林产化学与工业,2009,29(1):115-119.
    [111]张美云.从木素结构的变化看荻乙醇制浆机理[J].中国造纸学报,2004,19(2)1:1-15.
    [112]刘忠,齐宏升.麦草酸催化乙醇法制浆过程中木质素结构的变化[J].天津科技大学学报,2008,23(2):10-13.
    [113]陈国符,乌义明.植物纤维化学[M].北京:中国轻工业出版社,1984.
    [114]王树荣,刘倩,郑赟,等.基于热重红外联用分析的生物质热裂解机理研究[J].工程热物理学报,2006,27(2)3:51-353.
    [115] Hult E.L.,Larsson P.T., Iversen T.A..Comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp[J]. Cellulose,2000,7:35 -55.
    [116] Sun J.X., Sun X.F., Sun R.C., et al. Inhomogeneities in the Chemical Structure of Sugarcane Bagasse Lignin[J],Agric. Food Chem,2003, 51, 6719-6725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700