胜利油田稠油热采地震监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胜利油田蕴藏着极为丰富的稠油资源,目前主要依靠注过热蒸汽的手段提高稠油采收率,用地震方法监测注蒸汽热前缘推进范围,对于油田开发工作有着极为重要的指导意义。
     为研究含稠油岩芯的地震波速度与温度、压力等因素的关系,对取自胜利油田的几种稠油岩芯进行了实验,实验结果如下:
     (1)在室温T=25℃、围压P=10Mpa时:①砂样岩芯的稠油含量H与纵波速度Vp间呈抛物线关系;②含100%稠油砂样岩芯的Vp随温度T的升高而单调递减,成近似线性关系;③当P=30Mpa时,则Vp与T呈双曲线关系。
     (2)温度对含稠油砂样的归一化纵波初动振幅的影响主要表现在中、低温阶段;砂样的归一化剪切模量G/Gmax随T升高而线性递减。
     (3)在T恒定时,原状油砂样的Vp与P呈近似线性递增;且低温时围压效应比高温时显著。
     稠油热采地质模型及其它相关的注汽前后的地球物理参数模型的变化也表明:
     (1)注汽后的地震剖面反射下拖现象与注汽厚度和速度降低有密切关系;
     (2)随着注汽量的增加,稠油层融化幅度增大,速度也进一步下降,反射振幅呈明显增强趋势;
     (3)注汽区的反射波主频明显降低,也可以作为识别注蒸汽稠油变化的手段;
     对蒸汽吞吐井S2—21—21井的高分辩三维地震的监测结果表明:
     (1)注汽后的地震反射剖面的同相轴强度有明显增大的现象;
     (2)注汽后的地震反射剖面的同相轴有明显下拖现象;
     (3)从能量谱分析,注汽后速度下降了350m/s;
     (4)从注汽前后地震反射剖面差值图上可以分析出注汽的影响范围为180m左右;
     (5)从人机联作工作站的放大处理剖面分析,下拖幅度的最大值为3.4ms,
    
    成都理工大学博士学位论文
    横向延伸范围为18Om左右;
     (6)注汽井附近的地震反射的变化不太明显,是由于历经三次采油,稠油
    基本采完,剩余沥青砂岩的地震反射不如饱和沥青砂岩受热后的变化显著;
     对蒸汽驱内的注汽井,CZO一9一13井的高分辨资料的采集,处理和分析结
    果表明:
     (1)注汽一年后的热前缘影响范围为230m左右,其中向东北方向延伸了
    110m;西南方向延伸了120m;
     (2)注汽两年九个月后的蒸汽延伸范围为540m,其中向东北方向延伸了
    310m,向西向方向延伸了240m,井周围SOm左右范围的变化不明显;
     (3)层速度的降低范围大致为635m,其中东北方向变化约360m,西南方
    向约275m,速度值降低幅度大17%以下;
     (4)频率降低的范围为590m左右,其中东北方向370m,西南方向220m,
    主频降低幅度在6Hz以下;
     (5)对注汽后的振幅分析表明:注汽后的强反射增强,增幅值在20%以上,
    弱反射强度降低,降幅在25%以下;
     (6)对比井下观测的温度、压力、稠油饱和度、蒸汽饱和度以及生产动态
    表明地震监测手段十分可靠,蒸汽变化大致推算范围为55Om士40m。
     稠油热采地震监测技术的成功,为物探技术向开发服务领域转变拓展了一条
    新路,对于提高稠油采收率,降低能耗都具有重要意义。
There are a vast amount of heavy-oil in Shengli oil-field , injecting overheated-steam were used to enhance heavy-oil recovery at present . Monitoring thermal pilot by seismic methods had benefited oil-field development a great deal.
    Different kinds of heavy oil cores from Shengli oil-field were respectively tested to determine the relations between seismic wave velocities and temperature or pressure etc. The researches lead to the conclusion:
    (1) When ambient temperature is 25℃,and country Pressure is 10Mpa,
     There is a parabolic relation between heavy oil content in sand core and P-wave velocity Vp
     Vp in 100% heavy-oil saturated sand core monotonously decreases with temperature rise, which shows an approximate linear relation.
     When the pressure is 30 Mpa, the relation between Vp and temperature is characterized by a hyperbolic curve.
    (2) The influence of temperature upon the normalized initial
    
    
    
    amplitude of P-wave in heavy-oil sand core can be seen at mid and low temperature.
    The normalized shear modulus G/Gmax of sand core declines linearly with the increase of temperature .
    (3) When temperature is constant, VP shows an approximate linear increase with country pressure ; and country pressure effect is more obvious at low temperatures than at high temperatures .
    The thief-zone model of heavy oil thermal recovery and the associated geophysical parameter model by computers proved this solution :
    (1) There is a closely relation between heated heavy-oil seismic reflection and the amount of steam rejected and velocities decline .
    (2) The amplitude obviously increased with the amount of steam injected rised.
    (3) The main frequency decreased after saturated heavy-oil were heated.
    Monitoring of throughput-well in high resolution seismic measures conducted this results : (1)The amplitude of seismic event were strengthened after
    post-injection .
    (2) Pushdown of seismic event were evident on heated zone .
    (3) On energy spectrum map P-wave declined 350m/s after
    
    heavy-oil heated . (4) The length of thermal fronts was 180m around the
    throughput-well on the section difference figure . (5)There were 3.4ms time-delay in vertically and 180m expanded
    range in latterly on amplifier amplitude graph processed by
    interactive station . (6) The seismic reflection near survery well were weak , due to the
    information were the reflection of unsaturated-sand not thus of
    saturated heavy-oil.
    High resolution acquisition, processing and interpretation were applied to steam-drive well come to this conclusion .
    (1) Thermal fronts domain were 230m after 12 months , among them were 110m in the northeast , and in the southwest were the residual.
    (2) After 18 months , the length of thermal pilot were 310m in the northeast and in the southwest were 240m .
    (3) From steam drive well to both directions , the radiation zone of interval velocity decline were 635m , it's 275m in the northeast, and the remainder were in the southwest . Interval velocity dropped 17 percent.
    (4) The variation zones of frequency were about 590m . It's 370m in the northeast, and the remainder were in the southwest . The
    
    dropped ranges of principal frequency were 6Hz .
    (5) The more strength of amplitude in pre-injection , the more strength in post-injection , rate of increase were 20 percent ; conversely ,the more weak of amplitude in pre-injection , the more weak in post-injection ; rate of reduce were 25 percent.
    (6) Compare the seismic information with temperature, pressure, degree of saturation of heavy-oik degree of saturation of steam and the situation of production well, we could see the techniques of seismic monitoring were extremely reliabity , the thermal fronts were 550m ± 40m about.
    The success of heavy-oil thermal recovery by seismic methods open a new way for geophysical techniques which used to oil development . It's very important for enhanced oil recovery and declined consumption energy .
引文
1. Amos Nur. Four-dimensional seismology and (true) direct detection of hydrocarbons: The petophysical basis. Geophysics 1989, 54 (9).
    2. Anderson R N. 4-D seismic reservoir simulation in South Timbalier 295 turbidite reservoir. The Leading Edge. 1998, 17 (10): 1416~1418
    3. Anderson R. N. et al., 4D seismic helps track drainage, pressure compartmentalization, Ⅰ, Oil & Gas Journal, 1995,Mar. 27, 55~58
    4. Anderson R. N. et al., 4D seismic helps track drainage, pressure compartmentalization, Ⅱ, Oil & Gas Journal, 1995, Apr. 3, 70~74
    5. Anderson R. N. et al., 4D seismic: The fourth dimension in reservoir management, Partl—What is 4-D and how does it improve recovery efficiency?, 1997, World Oil, 218(3):43~49,
    6. Batzle M et al. Reservoir recovery processes and geophysics. The Leading Edge. 1998, 17 (10): 1444~1447
    7. Batzle, M.L. etl, Seismic properties of pore fluids. Geophysics. 1992,57:1385-1407
    8. Biondi B., et al, Reservoir monitoring: A multidisciplinary feasibility study, The Leading Edge, 1998,No.10
    9. Biot, M.A., Theory of elastic waves in a fluid-saturated porous solid, Ⅰ. Low frequency range, J. Acoust. Soc. Am., 1956, 28:168-178; Ⅱ. High frequency range, J. Acoust. Soc. Am., 28, 179~191
    10. Biot, M.A.,, General theory of three-dimensional consolidation, J. Appl. Phys., 1941,12:155~164
    11. Boulanger A., Anderson R.N. et al., 4D seismic: The fourth dimension in reservoir management, Part2—Why 4-D now? The information technology revolution has changed the way wedo business, World Oil, 1997, 218(4):69~76
    12. Britton, M. W. et al, Street Ranch pilot test of fracture-assisted steamflood technology, JPT, 1983, Vol.35:511~522
    13. Brow, Alistair R. Seismic attribute and their classification, The leading edge,1988,15(10):1090
    14. Bunch Andrew W H and Peter W Dromgoole. Lithology and fluid prediction from seismic and well data, Petroleum Geo-science, 1995, (1) 49~57
    15. Castagna, J. R, Batzle,M. L., AND Eastwood, R. L., Relationships between compressional wave and shear wave velocities in clastic silicate rocks, Geophysics, 1985,50,571~581
    
    
    16. Castaldi C,et al. Using Bayesian simulations to predict reservoir thickness under tuning conditions, the leading edge, 1998,17(4):539~544
    17. Clark.V.A., The properties of oil under in-situ conditions and its effect on the seismic properties of rocks, Geophysics, 1992, 75:894-901
    18. CPS/SEG/EAGE 北京’98国际地球物理研讨会,1998
    19. Den Boer, L. D. et al, seismic characterization of thermal flood behavior, 1988, the 4th Intern. Conf. on Heavy Crude and Tar sands
    20. Dilay Andrew, Jhon Eastwood, spectral analysis applied to seismic monitoring of thermal recovery, The leading edge. 1997,16(9): 1247~1252
    21. Domenico, S. N. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, 1976,41 (5): 882~894
    22. Domenico, S. N., Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale, Geophysics, 1974, 39 (6): 759~769
    23. Douglas R. Schmitt. Shallow seismic profiling over heated heavy oils: directions towards time-lapse monitoring. SEG68th Annum Meeting, Technical Program Expand Abstracts. 1998, 4-D2.3, 40~43
    24. Dunlop K Nellb et al. Monitoring oil/water fronts BY direct measurement. JPT may, 1991
    25. Dvorkin, J. and Nur, A., Elasticity of high-porosity sandstones: Theory for two North Sea data sets, Geophysics, 1996, 61(5), 1363~1370
    26. Eastwood, J., Tempreture-dependent propagation of P- and S-waves in Cold Lake oil sands: Comparison of theory and experiment, Geophysics, 1993, 58(6): 863~872
    27. Eberhart-phillips D. et al. Empirical relationship among seismic velocity, effective pressure, porosity and clay content in sandstone. Geophysics, 1989, 54(1): 82~89
    28. Ebrom D et al. 4-C/4-D at Teal South. The Leading Edge. 1998, 17 (10): 1450~1453
    29. Elio Poggiagliolmi et al. Time-lapse seismic repeatability: A case study. SEG68th Annum Meeting, Technical Program ExpandAbstracts.1998, 4-D1.4, 12~15
    30.Email Janson.提高四维地震的重复性.石油物探译丛,2001,(4):75~85
    31.Farmer P.等.王炳章译.VSP资料的3D层析反演和深度偏移.SEG67:355~356
    32. Fatt,I., Compressibility of sandstones at low to moderate pressure, AAPG Bull., 1958, 42,1924~1957
    33. Gassman, F., Uber die elastizitt porser medien, Naturforschenden, Gesellschaft in Zurich, 1951, 96,1~23.
    34. Geerstma, J., Some aspect s of elastic wave propagation in fluid saturation porous solids, Geophysics, 1961, 26, 169~181
    35. Graul, M., et al, 谢鸣剑译.地震岩性学,石油工业出版社,1987
    36. Greaves R J, Fulp T J, Head P L. Three-dimensional seismic monitoring of an
    
    enhanced oil recovery project. Expanded Abstract of 53th SEG Mtg, 1983, Session: S16.1
    37. Greaves R J, Fulp T J. Three-dimensional seismic monitoring of an enhanced oil recovery process. Geophysics, 1987, (52): 1175~1187
    38. Gregory, A. R. Fluid saturation effects on dynamic elastic properties of sedimentary rock. Geophysics, 1976, 41(5): 895~921
    39. Guerin Gilles, He Wei, Anderson R.N. et al., 4D seismic: The fourth dimension in reservoir management, Part5—Reservoir simulation as a tool to validate and constrain 4-D seismic analysis, World Oil, 1997, 218(9): 75~79
    40. Han, D., Nur, A., and Morgan, D., Effects of porosity and clay on wave velocities in sandstones, Geophysics, 1986, 51:2093~2107
    41. Harris P E et al. Time-lapse processing: A North Sea case sm.dy. SEG68th Annual Meeting, Technical Program ExpandAbstracts.1998, 4-D1.1, 1~4
    42. He W et al. Time-dependent reservoir characterization of the LF sand in the South Eugene Island 330 Filed, Gulf of Mexico. The Leading Edge. 1998, 17 (10): 1434~1438
    43. He Wei, Anderson R. N. et al., 4D seismic: The fourth dimension in reservoir management, Part4—Inversion of 4-D seismic changes and bypassed pay, World Oil, 1997, 218(7):109~115
    44. He Wei et al. 4D seismic: the fourth dimension in reservoir management, Part4: Inversion of 4D seismic change changes to find bypassed pay, World Oil, 1997, 218(7): 109~115
    45. He Wei, Anderson R N. 4D seismic monitoring grows as production tool. Oil & Gas Journal, may 1996
    46. Houston L M et al. Minimal-effort time-lapse seismic monitoring: Exploiting the relationship between acquisition and imaging in time-lapse data. The Leading Edge. 1998, 17 (10): 1440~1443
    47. Huang X et al. Improving production history matching using time-lapse seismic data. The Leading Edge. 1998, No.10
    48. Huang X, Meister L, Workman R. Production history matching with time lapse seismic data. Expanded Abstract of 67th SEG Mtg, 1997, 862~865
    49. Huang Xuri et al. Improvement on the quantitative seismic history matching. SEG68th Annual Meeting, Technical Program Expand Abstracts.1998, 4-D2.2, 36~39
    50.Hughes J K.地震重复性试验是试验地震监测的关键因素.石油物探译丛,2001,(3):80~87
    51. Hunt, E. R. and McCain, W. D., 1997, Fundamentals of log analysis, Part10: Determing rock mechanical property values from log analysis, World Oil,
    
    218(10),123~130
    52. Jack, I.,1998, Time-lapse seismic in reservoir management, SEG Distinguished Instructor Short Course.
    53. James Rickett et al. A cross-equalization processing flow for off-the-shelf 4D seismic data. SEG68th Annual Meeting, Technical Program Expand Abstracts. 1998, 4-D 1.5, 16~19
    54. Jan Porter-Hirsche et al. Repeatability study of land data acquisition and Processing for time-lapse seismic. SEG68th Annual Meeting, Technical Program Expand Abstracts.1998, 4-D1.3, 9~11
    55. Jenkins S D et al. Time-lapse seismic monitoring of the Duri steamflood: A pilot and case study. The Leading Edge. 1997, 16 (9): 1267~1273
    56. Jenkins, S. D. et al, Time-lapse monitoring of the Duri steamflood: Apilot and case study, The leading Edge, 1997, 16(9): 1267~1273
    57. John Eastwood, David Johnston. Processing for robust time-lapse seismic analysis: Gulf of Mexico example Lena Field. SEG68th Annual Meeting, Technical Program Expand Abstracts. 1998, 4-D1.6, 20~23
    58. Johnstad S E et al. Seismic reservoir monitoring over the Oseberg field during the period 1989-1992: First Break, 1995, 13 (5) 169~183
    59. Johnston et al. Time-lapse seismic analysis of Fulmar Field. The Leading Edge. 1998, No.10
    60. Katkomey, Cynthiat, Potential risks when using seismic attributes as predictors of reservoir properties, The leading edge. 1997,16(4):459~469
    61. King G. 4D seismic improves reservoir management decisions Partl. World Oil, 1996, 217 (3): 75~80
    62. King G.4D seismic improves reservoir management decisions Part2. World. Oil, 217 (4): 79~86
    63. Kuster, G. T., Toksz, N. M., Velocity and attenuation of seismic waves in two-phase media, I. theoretical forrnulations, Geophysics, 1974a,39, 587~606
    64. Kuster, G. T., Toksz, N. M., Velocity and attenuation of seismic waves in two-phase media, I. Experimental results, Geophysics, 197b, 39, 607~618
    65. Liu Xinzhou et al. Prediction of permeability reduction in sand from repeated seismic surveys. SEG/EAGE/CPS Beijing'98 International Geophysical Conference and Exposition. 1998:297~305
    66. Lumley D E, et al. Assessing the technical risk of a 4D seismic project. The leading Edge, 1997, 16 (9): 1287~1291
    67. Lumley D E. 4-D seismic monitoring of an active steamflood. Expanded Abstract of 65th SEG Mtg, 1995, 203~206
    
    
    68.Lumley D.E.,庄东海,肖春燕译.4-D地震监测储层流体流动.国外油气勘探.1998,10(6):768~775
    69.Lumley D.E.等.石油开采的地震监控:可行性研究.石油物探译丛.1995,3:35~38
    70. Mavko, G. , Chan, C. and Mukerji, T., Fluid substitution: Estimating changes in Vp without knowing Vs, Geophysics, 1995, 60(6): 1750~1755
    71. Mavko, G.and Mukerji, T., Seismic pore space compressibility and Gassmann's relation, Geophysics, 1995, 60(6): 1743~1749
    72. Meunier J et al. Cere-la-Ronde: A laboratory for time-lapse seismic monitoring in the Paris Basin. The Leading Edge. 1998, 17 (10): 1388~1394
    73.Murphy,W.等.砂体中纵横波速度的模量分解,国外油气勘探,1994,6(1):100~113
    74. Nur A M, Zhijing Wang. Seismic and acoustic velocities in reservoir rocks, Volume: Experimental studies, 1988, SEG in progress
    75. Nur A., Zhijing Wang. Seismic and acoustic velocities in reservoir rocks, Vol 1: theory, 1992, SEG in progress,
    76.Nur,A.and Li Fang.枯竭老油田采油地震监测和岩石物性研究,国外油气勘探,1994,6(3):317~325
    77, Nur, A., Four dimensional seismology and (ture) direct detection of hydrocarbons: the petrophysical basis, Geophysics: The leading Edge, 1989, 8(9): 30~36
    78.Nut,A.,等著,许云译.双向介质中波的传播,石油工业出版社,1986
    79. Olav Holberg. Seismic reservoir monitoring: Measurement Strategies and techniques. JPT, Januray, 1998
    80.Paul J.Hicks,Jr.等.冯弘译.油藏模拟在时间推移地震分析中的应用.国外油气勘探.1998,10(5):623~639
    81. Roche S L et al. An onshore time-lapse (4D) multi-component data processing case history. SEG68th Annual Meeting, Technical Program Expand Abstracts.1998, 4-D2.1, 31~35
    82. Sheriff R. E., Reservoir Geophysics, SEG: Investigations in Geophysics, 1992,NO.7
    83. Sonneland L et al. Four dimension seismic on Gullfaks, JPT,1997, (5):497
    84. Sonneland L et al. Seismic reservoir monitoring on Gullfaks, The leading edge. 1997, 16 (9): 1247~1252
    85. Suat Altan. Time-lapse seismic monitoring: repeatability processing tests. JPT, Januray, 1998
    86.T.布尔贝,O.库索,B.甄斯纳著,许云译.孔隙介质声学,石油工业出版社,1994,12
    87. Talley D J et al. Dynamic reservoir characterization of Vacuum Filed. The Leading Edge. 1998, 17 (10): 1396~1402
    
    
    88. Teng Yu-chiung, Anderson R.N. et al., 4D seismic: The fourth dimension in reservoir management, Part6—4-D seismic reservoir simulation, World Oil, 1997, 218(10):113~121
    89. Tennebo PO et al. Seismic with best feasible approximation. SEG68th Annual Meeting, Technical Program Expand Abstracts.1998, 4-D2.6, 52~53
    90. Waite M W et al. Seismic monitoring of the Duri Steamflood: Application to reservoir management. The leading edge. 1997, 16 (9): 1275~1278
    91. Wang, Z., Feasibility of time-lapse seismic reservoir monitoring: The physical basis, The leading Edge, 1997, 16(9): 1327~1329
    92. Wang.Z. and Nur, A., The effect of temperature on the seismic wave velocities in rocks saturated with hydrocarbons, 1986, SPE-15646
    93. Wang Z., et al, Effect of different pore fluids on seismic velocities in rocks: Can J. Expl. Gophys., 1988, 26, 104~112
    94. Wang, z. and Nur, A., Effect of pore fluids on seismic velocities in rocks, 1990, SEG63
    95. Wang, Z. and Nur, A., Wave velocities in hydrocarbon-saturated rocks: Experimental results, Geophysics, 1990, 55, 723-733
    96. Wang, Z. Et al, Effects of CO_2 flooding on wave velocities in rocks with hydrocarbons, SPE Reservoir Engineering, 1984, 4(4):429~436
    97. Wang, Z., Nur, A. and Batzle M. L., Acoustic velocities in petroleum oils, 1988, SPE-18163,571-585
    98.Wang,Z..地震岩石学基本准则.石油物探译丛,2001,(4):1-20
    99. Watts G FT et al.. Reservoir monitoring of the Magnus field though 4D time-lapse seismic analysis: Petroleum Geoscience,1996,(2)361~372
    100. Weathers L R et al. Wavelet control allows differencing of 3-D from 2-D. The Leading Edge. 1998, 17 (10): 1448~1449
    101.White,J.E.,陈俊生译,1987,地下声波—地震波的应用,石油工业出版社,1983
    102.White等著,王一民译.开发地震学,地震出版社,1992
    103. Wyman, R. E., Petro-geophysics, The interrelationships of petrophysics, geology, and geophysics, AAPG Continuing education-stratigraphic interpretation of seismic data, 1982
    104. Xu Liqing, Anderson R. N. et al., 4D seismic: The fourth dimension in reservoir management, Part3—4-D reservoir monitoring, the business driver, World Oil, 1997, 218(6):133~138
    105. Zhang M. Et al, Comparison of experimemtal velocity measurements with theoretical results in a solid-solid composite material, Geophysics, 1996, 61(5): 1429~1435
    
    
    106.白振瑞.用流动模型预测4D地震技术的适用性.世界石油工业,1999,6(8):18~21
    107.陈小宏,牟永光.四维地震油藏监测技术及其应用.石油地球物理勘探.1998,33(6):707~715
    108.陈小宏.四维地震数据归一化方法及实例处理.石油学报1999.22~26
    109.陈振琦等.浅层稠油注蒸汽开发过程中剩余油分布规律.测井技术.2000,22(增刊):40~43
    110.陈祖传.四维地震在油藏开发与生产中的应用及其发展趋势.西北油气勘探.1999,11(3):40~47
    111.邓怀群.时间推移地震技术,勘探家,1999,4(3):40~44(内容来自以下论文)
    112.邓怀群等.时间推移地震勘探中的互均化技术.天然气工业,2000,20(1):20~23
    113.邓辉,吕成亮.四维地震及其在油藏管理中的应用实例.石油物探译丛.1998,2:38~69
    114.傅长生.储层预测技术研究与进展,石油工业出版社,1998
    115.高林.油藏管理:对地球物理是机遇更是挑战.石油物探译丛.1998,(1):1~10
    116.韩文功等.济阳凹陷岩心弹性和物性参数的试验测量及分析,石油物探,1997,36(1):21~27
    117.黄绪德.油气层的速度问题,石油物探,1997,36(4):1~15
    118.黄绪德.油气层的物理特征,石油物探译丛,1998,No.2,1~16
    119.李庆忠.岩石的纵、横波速度规律,石油地球物理勘探,1992,27(1):1~12
    120.李庆忠.走向精确勘探道路——高分辨率地震勘探系统工程剖析,石油工业出版社,1994
    121.林蓉辉.老油田采收率的地震监测,石油地球物理勘探,1994,29(2):252~257
    122.蔺景龙,吉寿松,云美厚.油田开发应用地球物理,石油工业出版社,1996
    123.刘建军.国外四维地震技术及其应用.石油知识.1998,NO.2
    124.刘企英.利用地震信息进行油气预测,石油工业出版社,1994
    125.刘雯林.时间推移地震,石油油勘探开发科学研究院地球物理所编,开发地震,中国石油学会物探专业委员会短期培训教材,1999。
    126.刘雯林.油气田开发地震技术,石油工业出版社,1996
    127.刘祝萍等.岩石声学参数的实验测量及研究,地球物理学报,1994,37(5):659~666
    128.罗伯逊等 J.D.范伟粹,韩一伟译.地震勘探在油气田开发中的应用.北京:石油工业出版社,1992.70~78
    129.牟永光.储层地球物理学,石油工业出版社,1996
    130.孙建国.时延地震的现状及发展方向.石油物探译丛.1999,2:1~9
    131.王新红,胜利油田稠油热采地震监测技术研究,硕士论文,青岛海洋大学,1996
    
    
    132.王新红等.稠油热采的地震监测试验,石油地球物理勘探,1992,27(2):294~302
    133.王新红等.稠油岩心纵波速度变化规律的实验,石油地球物理勘探,1994,29(5):642~649
    134.王之敬,Amos Nur.用地震方法监测热采油过程,石油地球物理勘探,1989,24(2):144~154
    135.扬勤勇,钟炜.油气田开发中的四维地震技术.石油物探.1999,38(3):50~57
    136.扬勤勇编译.Duri油田蒸汽驱的时延地震监测,石油物探译丛.1999,NO2:87~94
    137.扬云岭.地震直接找油质疑.勘探家.1998,3(1):56~61
    138.于世焕等.C20块蒸汽驱试验区的地震监测方法.石油物探.2000,39(1):1~9
    139.云美厚,曹广华,袁子龙.地震注水监测理论研究,CPS/SEG/EAGA北京’98国际地球物理研讨会暨展览会论文详细摘要,1998:343~346
    140.云美厚,管志宁,张国富,贺玉山.薄层调谐及其对注水地震监测的影响,石油地球物理勘探,2001,36(增刊):157~163
    141.云美厚,易维启,陈卫军、张国富.薄互层油藏注水地震监测理论研究,石油地球物理勘探,1999,34(6):723~732
    142.云美厚,易维启,李清仁等.噪声与注水时移地震监测.石油地球物理勘探,2001,36(增刊):150~156
    143.云美厚,易维启,庄红艳.砂岩中干岩石弹性模量与孔隙度、泥质含量、有效压力和温度的经验关系.石油地球物理勘探,2001,36(3):308~314
    144.云美厚,易维启.孔隙流体地震特性的计算,石油物探,2001,40(2):13~20
    145.云美厚,油藏注水强化开采地震监测技术研究与应用,博士论文,中国地质大学,2001
    146.云美厚,张国富,张国才,易维启.温度与压力对注水地震监测的影响,石油地球物理勘探,2001,36(4):466~470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700