闪烁仪法准确测算森林生态系统显热通量的湍流理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水热交换是地气间相互作用最为直接和显著的物理过程,一直是气象学、气候学、水文学、生态学等相关学科共同关注的重点和难点研究内容。显热通量(Sensible HeatFlux)是地表湍流运动和能量交换的驱动因子,准确测算区域显热通量显得尤为重要。但迄今为止,在植被分布非均一和地形起伏的复杂下垫面条件下,即便是公里尺度的通量观测技术及数据代表性的研究工作仍有许多问题需要解决。大孔径闪烁仪法(LargeAperture Scintillometers Methods)在公里尺度水热通量的测算研究中,具有广阔的应用前景。但目前大孔径闪烁仪法只能直接观测到大气折射指数的结构参数(the StructureParameter of the Refractive Index of Air,C_n~2),测算显热通量需要进一步计算温度结构参数(the Structure Parameter of Temperature,C_T~2),并根据大气湍流相似理论(Monin-Obukhov Similarity Theory,MOST),建立C_T~2的MOST普适函数结合,气象数据才能得到最终结果。由于MOST要求地表相对平坦均一,该方法应用于山地森林等复杂或非均一植被显热通量的测算时,应当首先研究实际观测区域湍流运动特征,但至今为止,尚无详尽的研究文献报道。
     本研究以华北南部低丘山地栓皮栎-侧柏-刺槐混交林为研究对象,在研究实际观测区域湍流运动特征的基础上,判别湍流关键参数是否适合MOST适用条件,再建立适合于实际观测区域的温度结构参数的普适函数,并进行验证,旨在为该方法有效测算山地森林生态系统水热通量提供理论依据,以期促进公里尺度水热通量研究的发展,最终为深入研究了解森林生态系统在能量平衡和调节气候变化中的作用提供工作基础。主要结果如下:
     (1)湍流强度和风速的相关性很强。当U<3m/s时,湍流强度最大,并随着风速的增大明显减小。一年生长季中两个典型时段(2011年3月15日至4月15日,叶片萌芽生长期;2011年7月15日至8月15日,叶片生长完全期)的平均湍流强度分别为I_u=0.326,I_v=0.306, I_w=0.189和I_u=0.324, I_v=0.296, I_w=0.173。
     (2)各主要气象要素在山地人工林生态系统复杂下垫面条件下基本满足MOST适用条件。无因次风速方差在不稳定和稳定条件下均符合1/3次幂相似规律,垂直方向比水平方向上的拟合效果好,近中性层结下由σ_u/u_*=A, σ_v/u_*=B, σ_w/u_*=C式计算得到A、B和C的平均值在春季观测期为2.55、2.06和1.30,在夏季观测期为2.61、2.45和1.21,以上观测结果均与类似经典的陆面实验结果接近;同时无量纲湍流动能(Turbulent KineticEnergy,TKE)在不稳定和稳定条件下均符合1/3次幂相似规律;无因次温度方差在春季观测时期不同稳定度条件下均符合2/3次幂相似规律,在夏季观测时期不同稳定度条件下分别符合2/3次和1/3次幂相似规律。湍流谱结构基本符合-5/3规律,实际观测区森林冠层上方大气湍流是非各向同性的。
     (3)本研究建立的适合本研究区域实际条件的温度结构参数的普适函数准确性较高。研究MOST适用性发现,当热力因子较小时,大气处于非稳定状态,实测值离散程度最大;当热力作用较大时,大气处于稳定状态,离散程度小,说明了近中性条件下机械湍流对LAS观测中的MOST适用性有一定影响,而在对流不稳定时影响较小或可忽略。热力湍流越强,MOST适用性越好,反之则越差。湍流结构的实际情况可作为MOST适用性的判断方法,计算得到的普适函数为,
     f_(T_JiYuan)=4.91(16.51ζ)~(2/3)_z/L <0;f_(T_JiYuan)=6.43(1+2.20ζ~(2/3))z/L>0;
     LAS实际观测与湍流谱方法计算得到的温度结构参数的一致性较好,大部分情况下相关系数都达到了0.9以上。
     (4)大气层结稳定时更要注意观测信息的空间代表性分析;在风向近似垂直于光径路线时,LAS观测得到的通量信息最全面完整。在大气层结稳定条件下,因湍流活动较弱,观测数据的源区面积相对较大;非稳定层结时,湍流活动旺盛,源区面积较小。大气层结稳定时最小的通量源区面积比不稳定时最大的源区面积大14.7%。
     (5)湍流理论分析对于提高LAS观测森林生态系统显热通量的准确性具有重要意义。确定了迭代法为该复杂下垫面条件下LAS测算显热通量的计算方法。分析重叠区域印痕权重比值大小以及各风向源区后,建立了适合本观测区域的基于单点通量观测数据扩展到公里观测尺度上的方程为H_(ec)={0.77f_1/(0.77f_1+0.57f_2)}H_(ec1)+{0.572f_2/(0.77f_1+0.57f_2)}H_(ec2)在重叠源区,对由建立的普适函数(FT_JiYuan)计算得到的显热通量(计算值)与涡度相关法观测得到的显热通量(实测值)进行相关性分析,结果表明:二者线性相关系数可达0.90。如采用其他5种广泛应用的普适函数计算显热通量,其计算值与实测值的相关系数为0.27-0.63,说明建立的温度结构参数普适函数具有较高的准确性。
The exchange of hydrothermal from land to atmosphere interactions is the most direct andsignificant physical processes, which has been considered to be the important and difficultresearch in the Meteorology, climatology, hydrology, ecology and other related disciplines. Thesensible heat flux (H) is the the driving factors of surface turbulent motion and energyexchange, therefore, it is particularly important to accurately measure regional scale sensibleheat flux. However, due to vegetation above the underlying surface, the flatness of the surface,hydrothermal regime, and weather conditions, it is difficult to solve the problem of technologyof flux measurement and space representation of the data in the kilometer scale.Thelarge-aperture scintillometer (LAS) has greater prospect in measuring a region of severalkilometers and heterogeneous surface-sensible heat fluxes. The parameter that directlyobtained by LAS is the structure parameter of the refractive index of air (C_n~2) based on changesin light intensity fluctuation. The structure parameter of temperature (C_T~2) is calculated firstly,and then we must select the appropriate universal function for the temperature structureparameter (f_T) according to Monin-Obukhov Similarity Theory (MOST). The data of C_T~2,, f_T of C_T~2and zero-plane displacement (z0), surface roughness (d), wind velocity (v), air temperature(T) and any other meteorological data have been used to calculate sensible heat flux withiterative method. MOST could be applied only on homogeneous flat underlying surfaces. Theturbulent motion characteristics of the observed area should be researched to understand firstlywhen we would be ready to calculate sensible heat flux, because that MOST could be appliedonly on homogeneous flat underlying surfaces. But so far, there is no detailed studies reportedin literature.
     The cork oak, cedar-black and locust was the object in the Hilly North of China. Thequality control theoretical system of the km scale sensible heat flux data was established to verify data quality control and to improve the sensible heat flux estimates of the need foraccuracy. The main conclusions are as follows:
     (1) There is a strong correlation between turbulence intensity and wind velocity. Theturbulence intensity is the biggest when wind velocity is not more than3m/s.The turbulentintensity of the three wind directions are: I_u=0.326, I_v=0.306, I_w=0.189andI_u=0.324, I_v=0.296, I_w=0.173respectively in two typical time at growing season.
     (2) The dimensionless standard deviations of turbulent velocity components anddimensionless turbulent kinetic energy (TKE) can be well described by "1/3" power lawrelationships under stable, neutral, and unstable conditions. Land use and land cover changesmainly impact dimensionless standard deviations of horizontal componentuctuations, but theyhave very little effect on those of the vertical component. The dimensionless standarddeviations of wind components and dimensionless; the trend of the vertical wind component isthe opposite. Dimensionless standard deviation of temperature declined with increasing z/Lwith an approximate "-1/3" slope in unstable stratication and "-2/3" slope in stable stratication.Results show that the meteorological elementsMountain in the plantation ecosystem complexsurface conditions obey the Monin-Obukhov similarity theory.
     The turbulence spectra followed the–5/3power law, and turbulence above the forestcanopy was locally non-isotropic.
     (3) The best MOST universal function were given byf T_JiYuan=4.91(16.51ζ)~(2/3)(ζ≡z/L) under unstable conditions andf T_JiYuan=6.43(1+2.20ζ~(2/3))under stableconditions.
     Under unstable conditions and the heat factor (k w'T 'g/T,TT)is less than0.0008, Themeasured value of the degree of dispersion is big; under unstable conditions and TT is greaterthan0.0012, the degree of dispersion is small. The heat factor had significant effect on theapplication of MOST.
     The heat factor had significant effect on the application of MOST, The values obtainedfrom eddy covariance fluxes by using f T_JiYuanagreed with the values obtained from rawtime series data by using independent methods. MOST can be applied during the interactionbetween heat turbulence and momentum turbulence.
     TheC2
     T calculated using the LAS method had a high aggrement with the results given bythe turbulence spectral method, indicating that it was feasible to use the LAS method tomeasure turbulence fluxes over the heterogeneous surface. The accuracy of the selectedappropriate universal function for the temperature structure parameter was high.
     (4) The source area was relatively larger under stable stratification conditions as a resultof weaker turbulant activity, and was smaller under unstable stratification conditions withstronger turbulant activity. Even the smallest source area under stable stratification conditionwas14.7%bigger than the largest source area under unstable stratification condition. Therefore,spatial representation analysis of measured information should be emphasized under stablestratification condition. Flux information measured by scintiloscope is the most comprehensiveand intact when wind direction almostly perpendicular to optical pathway.
     (5) The iterative method was determined to caculate sensible heat flux with LAS underthis complex underlying suiface. Considering overlapping area imprint weight and each winddirection source area, the formulation that is suitale for this area to measure flux based on ECflux was expanded to LAS scale,H_(ec)={0.77f_1/(0.77f_1+0.57f_2)}H_(ec1)+{0.572f_2/(0.77f_1+0.57f_2)}H_(ec2);Correlation analysis was carried out between the sensible heat data caculated by the screenedappropriate universal function and by EC. The result showed that they correlated significantlyand the correlation coefficient between HfECand HLaswas0.9. It proved that the appropriateuniversal function screened for temperature structure parameter has higher accuracy.
引文
[1] Amiro B D. Drag Coefficients and Turbulence Spectra within Three Boreal Forest Canopies.Bound-Layer Meteor,1990,52:7~246
    [2] Andreas E L. Estimating Cn2over Snow and Sea Ice from Meteorological Data. J. Opt. Soc. Am,1988,5:481~495
    [3] Beyrich F, Henk D B, Meijninger W M L J, et al. Results from One-Year Continuous Operation of aLarge Aperture Scintillometer over a Heterogeneous Land Surface. Bound-Layer Meteor,2002,105:85~97
    [4] Meijninger W M L, Beyrich F, Lüdi A, et al. Scintillometer-Based Turbulent Fluxes of Sensible andLatent Heat over a Heterogeneous Land Surface–A Contribution to Litfass-2003. Bound.-Layer Meteor,2006,121:89~110
    [5] Randow V C, Kruijt B, Holtslag A A M, et al. Exploring Eddy-Covariance and Large-ApertureScintillometer Measurements in Anamazonian Rain forest. Agricultural and Forest Meteorology,2008,148:680~690
    [6] Hemakumaraa H M, Chandrapalab L, Moenec A F. Evapotranspiration Fluxes over Mixed VegetationAreas Measured from Large Aperture Scintillometer. Agricultural Water ManagementVolume,2003,58(2):109~122
    [7] Clifford S, Ochs G R, Lawrence R S. Saturation of Optical Scintillationby Strong Turbulence. J. Opt. Soc.Amer,1974,64(2):148~154
    [8] Wang T.-I, Ochs, G R, Clifford S F. A saturation-Resistant Optical Scintillometer to Measure Cn2. J. Opt.Soc. Am,1978,68:334~338
    [9] Wyngaard J C, Clifford S F. Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters.J. Atmos. Sci,1978,35:1204~1211
    [10] Ezzahar J and Coauthors: The Use of the Scintillation Technique for Estimating and Monitoring WaterConsumption of Olive Orchards in a Semi-Arid Region. Agriculture Water Management,2007,89,173~184
    [11] Hoedjes J C B, Chehbouni A, Ezzahar, J, et al. Comparison of Large Aperture Scintillometer and EddyCovariance Measurements: Can Thermal Infrared Data be Used to Capture Footprint InducedDifferences. Journal of Hydrometeorology,2007,8:144~159
    [12] Kleissl J, Gomez J, Hong S-H, et al. Large Aperture Scintillometer Intercomparison Study.Bound-Layer Meteor,2006,128:133~150
    [13] Meijninger W M L, Green A E, Hartogensis O K, et al.: Determination of Area-Averaged Water VaporFluxes with Large Aperture and Radio Wave Scintillometers over a Heterogeneous Surface-FlevolandField Experiment. Bound-Layer Meteor,2002,105:63~83
    [14] MoirmA S, Obukhov A M. Basie Laws of Turbulent Mixing in the Atmosphere near the Ground.TrAkad Nauk SSSR Geofiz Inst,1954,24(51):63~87
    [15] Dyer A J. A Review of Flux-Profile Relationships. Boundary-Layer Meteor,1974,7:363~372
    [16] Prutell L P, Klebanoff P S, Buekie F T. Urbulent Boundary Layer at Low Reynolds Number.Phys. Fluids,1981,24:802~811
    [17] Kando J and Sato T. The Determination of the Von Kannan Constant. J.Meteor.Soe,1982,60:461~470
    [18] Foken T H.and Skeib G. Profile Measurements in the Atmosperic Near-Surface Layer and the Use ofSultable Universal Funetions for the Determination of the Turbulent Energy Exchange. Boundary-LayerMeteor,1983,25:55~62
    [19] Oneley S P, Horst, T W, Praskovsky A. The TKE Budget from the Flat Experiment.llth Symposium onBoundary Layersand Turbulence. Charlotte, Nc,1995,(31):5~8
    [20] Frenzen P and Vogel C A.The Turtbulent Kinetic Energy Budget in the Atmospheric Surface Layer: AReview and an Experimental Re-examinations in the Filed. Boundary-Layer Meteor,1992,60:49~76
    [21] Webb E K. Profile Relationships the Log-Linear Range, and Extension to Strong Stability.Quart.J.Roy.Meteor.Soe,1970,96:67~90
    [22] Businger J, Wyngaard A J C, Izumi Y, et al. Flux-profile Relationships in the Atmospheric Surface Layer.J.Atmos.Sei,1971,28:181~189
    [23] Pruitt W O, Morgan D L M and Lourenee F J. Monrnentum and Mass Transfers In the Surface.Boundary Layer.Quart.J.Roy.Meteor.Soe,1973,99:370~386
    [24] Garratt J R. Flux Profile Relations above Tall Vegetation. Quart.J.R.Met.Soe, l977,104:199~211
    [25] Parlange M B and Katul G G. Water Shed Seale Stress from Tethersonde Wind Profile Measurementsunder near-Neutral and Unstable Atmospheric Stability. Water Resources Res,1995,31:961~968
    [26] Hogstrom U. Review of Some Basie Characterises of the Atmospheric Surface Layer. Boundary-LayerMeteor,1996,78:215~246
    [27] Dyer A J and Bradley E F. An Altemative Analysis of Flux-Gradient Relationships at the1976ITCE,Boundary-Layer Meteor,1982,22:3~19
    [28] Wyngarrd J C. The Effects of Probe-Induced Fow Distortion on Atmospheric Turbulence Measurements.J.Appl.Meteor,1981,20:784~794
    [29] Hogstrom U. Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer.Boundary-Layer Meteor,1988,42:263~270
    [30] Yanglom A M. Comments on Wind and Temperature Flux-Profile Relationships. Boundary-LayerMeteor,1977,11:89~102
    [31] Raymond P M, Shashi B V, Norman J R. Exchange coefficients under Sensible Heat AdvectionDetermined by Eddy Correlation. Agricultural Meteorology,1979,20:273~280
    [32]王介民,刘晓虎,祁勇强.应用涡旋相关方法对戈壁地区湍流输送特征的初步研究.高原气象,1990,9(2):120-129
    [33] Webb E K, Pearman G I, Leuning R.Correction of Flux Measurements for Density Effects due to Heatand Water Vapour Transfer. J R Met Soc,1980,106:85~100
    [34] Wilczak J M, Oncley S P, Stage S A. Sonic Anemometer Tilt correction algorithms. Boundary-LayerMeteor2001,99:127~150
    [35] Finnigan J J, Clement R, Malhi Y, et al. A Re-Evaluation of Long-Term Flux Measurement Techniques,Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteor,2003,107:1~48
    [36] Foken T, Wichura B. Tools for Quality Assessment of Surface-Based Flux measurements. Agriculturaland Forest Meteorology,1996,78:83~105
    [37] Kohsiek W. Measuring CT2, CQ2and CTQ in the Unstable Surface Layer and Relations to the VerticalFluxes of Heat and Moisture. Boundary-Layer Meteor,1982,24:89~107
    [38] Hartogensis, O. K., Henk D B, B J H Wiel V D. Displaced-Beam Small Aperture Scintillometer TestPartⅡ: Cases-99Stable Boundary-Layer Experiment. Bound-Layer Meteor.,2002,105:149~176
    [39] Meijninger W M L, Hartogensis O K, Kohsiek J C B W, et al. Determination of Area-Averaged SensibleHeat Fluxes with a Large Aperture Scintillometer over Heterogeneous Surface-Flevoland FieldExperiment. Bound-Layer Meteor,2002,105:37~62
    [40]贾贞贞,刘绍民,毛德发,等.基于地面观测的遥感监测蒸散量验证方法研究.地球科学进展,2010,25(11):1248~1260
    [41] Kohsiek W,Herben M H A J. Evaporation Derived from Optical and Radio-Wave Scintillation. Appl.Opt,1983,22:2566~2570
    [42] Hill R J, Ochs G R. Surface-Layer Micrometeorology by Optical Scintillation Techniques, in Dig,Topical Meeting Optical Techniques Remote Probing Atmosphere. Lake Tahoe, NV0-12, OpticalSociety of America, Washington, DC Jan.1983
    [43] Andreas E L. Two-Wavelength Method of Measuring Path-Averaged Turbulent Surface Heat Fluxes. J.Atmos. Ocean. Tech,1989,6:280~292
    [44] Andreas E L. Three-wavelength Method of Measuring Path-averaged Turbulent Heat Fluxes. J. Atmos.Ocean. Tech,1990,7:801~814
    [45] Hill R J. Algorithms for Obtaining Atmospheric Surface-layer Fluxes from Scintillation Measurements.J. Atmos. Ocean. Tech,1997,14:456~467
    [46] Ludi A, Beyrich F. Matzler C. Determination of the Turbulent Temperrature-Humidity Correlation fromScintillometric Measurements. Boundary-Layer Meteor,2005,117:525~550
    [47]刘绍民,李小文,施生锦,等.大尺度地表水热通量的观测、分析与应用.地球科学进展,2011,25(11):1113~1127
    [48] Hill R J, Bohlander R. A, Clifford S F, et al. Turbulence-induced Millimeter-wave ScintillationCompared with Micrometeorological Measurements. IEEE Trans, Geosci. Remote Sens,1988a,26:330~342
    [49] Andreas E L. Using Scintillation at Two Wavelengths to Measure Path-Averaged Heat Fluxes in FreeConvection. Boundary-Layer Meteor,1991,54:167~182
    [50] Otto W D, Hill R J, Sarma A D, et al. Results of The Millimeter-Wave Instrument Operated at Sevilleta,New Mexico, NOAA Tech, Memor, ERL ETL-262, NOAA Environmental Research Laboratories,Boulder, CO, USA,1996, pp:47
    [51] Sarma A D, Hill R J. A Millimeter Wave Scintillometer for Flux Measurements NOAA. Tech. MemorERL ETL-259, NOAA Environmental Research Laboratories, Boulder, CO, USA,1996, pp:33
    [52] McMillan R W, Bohlander R A, Baldygo J W J. Millimeter-Wave Atmospheric TurbulenceMeasurements:Instrumentation Selected Results and System Effects. International Journal of Infraredand Millimeter Waves,1997,18:233~257
    [53] Ludi A. Determination of the Structure Constants of Temperature, Humidity and temperature-humidityby Scintillometry at two Wavelengths. IAP Research Report, University of BernBern, Switzerland (inGerman),8pp. Institute of Applied Physics,2002~13
    [54] Evans J G. Long-Path Scintillometry over Complex Terrain to Determine Areal-Averaged Sensible andLatent Heat Fluxes. The University of Reading,2009, pp:105
    [55] Green A E, Astill M S, McAneney K J, et al. Path-Averaged Surface Fluxes Determined from Infraredand Microwave Scintillometers. Agricultural and Forest Meteorology,2001,109:233~247
    [56] Hoedjes J C B, Zuurbier R M, Watt C J. Large Aperture Scintillometer Used over a HomogeneousIrrigated Area, Partly Affected by Regional Advection. Bound.-Layer Meteor.,2002,105:99~117
    [57] Green A E, McAneney K J, Astill M S. Surface-Layer Scintillation Measurement of Day Time Sensibleand Momentum Fluxes. Boundary-layer Meteor,1994,68:357~373
    [58] Henk D B, Van den Hurk B J J M, Kohsiek W. The Scintillation Method Tested over a Dry VineyardArea. Bound-Layer Meteor,1995,76:25~40
    [59] McAneney K J, Green A E, Astill M S. Large-Aperture Scintillometry: the Homogeneous Case.Agricultural and Forest Meteorology,1995,76:149~162
    [60] Wieringa J. Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometerover Speeding. Boundary-Layer Meteor,1980,82:119~134
    [61] Mason P J. The Formation of A Really-Averaged Roughness Lengths. QuarterlyJournal of RoyalMeteorology Society,1988,114:399~420
    [62]于贵瑞,等编.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006,170~175
    [63] Chehbouni A, Watts C, Lagouarde J P, et al. Estimation of Heat Fluxes and Momentum Fluxes overComplexTerrain using a Large Aperture Scintillometer. Agricultural and Forest Meteorology,2000,105:215~226
    [64] Sun X M, Zhu Z L, Xu J P, et al. Determination of Averaging Period Parameter and its Effects Analysisfor Eddy Covariance Measurements. Science in China (Series D),2005,48(SuppI):33~41
    [65] Vickers D, Mahrt L.Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journalof Atmospheric and Oceanic Technology,1997,14:512~526
    [66] Pilegaard K, Hummelshj P, Jensen N O, et al. Two Years of Continuous CO2Eddy-Flux Measurementsover a Danish Beech Forest. Agricultural and forest meteorology,20011,07:29~41
    [67] Schotanus P, Nieuwstadt F T M, De Bruin H A R. Temperature Measurement with a Sonic Anemometerand its Application to Heat and Moisture Fluxes. Boundary-Layer Meteor,1983,26:81~93
    [68] Moene A F, Meijninger W M L, Hartogensis O K, et al. The Effect of Finite Accuracy in theManufacturing of Large Aperture Scintillometers, Internal Report2005/1, Meteorology and Air QualityGroup, Wageningen University, Wageningen, the Netherlands,200520pp
    [69] Liu H P, Perters G, Foken T. New Equations for Sonic Temperature Variance and Buoyancy Heat Fluxwith an omnidirectional Sonic Anemometer. Boundary-Layer Meteor,2001,100:459~468
    [70]汪瑛,卞林根,湛志刚. CO2湍流通量误差的修正和不确定性研究进展.应用气象学报,2004,15(2):234~244
    [71] Massman W J, Lee X. Eddy Covariance Flux Corrections and Uncertainties in Long Term Studies ofCarbon and Energy Exchanges. Agricultural and Forest Meteorology,2002,113:121~144.
    [72] Frehlich R G and Ochs G R. Effects of Saturation on the Optical Scintillometer. Applied Optics,1990,29:548~553
    [73] Clifford S F, Ochs G R, Lawrence R S. Saturation of Optical Scintillation by Strong Turbulence. Journalof the optical society of American,1974,64:148~154
    [74] Kohsiek W, Meijninger W M L, De Bruin H A R, et al. Saturation of the Large Aperture Scintillometer.Boundary-Layer Meteorology,2006,121:111~126
    [75] Nakaya K, Suzuki C, Kobayashi T, et al. Spatial Averaging Effect on Local Flux Measurement Using aDisplaced-Beam Small Aperture Scintillometer above the Forest Canopy. Agricultural and ForestMeteorology,2007,145:97~109
    [76]卢俐,刘绍民,孙敏章,等.大孔径闪烁仪研究区域地表通量的进展.地球科学进展,2005,20(9):932~938
    [77] Haenel H D, Grunhage L. Footprint Analysis: a Closed Analytical Solution Based on Height-DependentProfiles of Wind Speed and Eddy Viscosity. Boundary-Layer Meteorology,1999:395~409
    [78] Horst T W. Comment on ‘Footprint Analytical Solution Based on Height-Dependent Profiles of WindSpeed and Eddy Viscosity’. Boundary-Layer Meteorology,2001,101:435~447
    [79] Schuepp P H, Leclerc M Y, MacPherson J I, et al. Footprint Prediction of Scalar Fluxes from AnalyticalSolutions of the Diffusion Equation. Boundary-Layer Meteor,1990,50:355~373
    [80] Cai X H, Leclerc M Y. Forward-in-Time and Backward-in-Time Dispersion in the Convective BoundaryLayer: the concentration Footprint. Boundary-Layer Meteorology,2006,123:201~218
    [81] Reynolds A M. A Two-Dimensional Lagrangian Stochastic Dispersion Model for Convective BoundaryLayers with Wind shear. Boundary-Layer Meteor,1998,86:345~352
    [82] Rotach M W, Gryning S E, Tassone C. A two dimensional stochastic dispersion model for daytimeconditions. Quarterly Journal of Royal Meteorological Society,122:367~389
    [83] Schmid H P. Footprint Modeling for Vegetation Atmosphere Exchange Studies: a Review andPerspective. Agricultural and Forest Meteorology,2002,113:159~183
    [84] Rannik B, Aubinet M, Kurbanmuradov O, et al. Footprint Analysis for Measurements Over aHeterogeneous Forest. Boundary-Layer Meteorology,2000,97:137~166
    [85] Roach M W, Gryning S E, Tassone C. A Two Dimensional Stochastic Dispersion Model for DaytimeConditions. Quarterly Journal of Royal Meteorological Society,2002,122:367~389
    [86] Sogachev A, Menzhulin G, Heimann M, et al. A Simple Three Dimensional Canopy-PlanetaryBoundary Layer Simulation Model for Scalar Concentrations and Fluxes. Tellus,2002,54B:784~819
    [87]刘庆新.热扩散法液流误差校正及其在林分水量平衡中的应用.中国林业科学研究院博士论文.2012,10~30
    [88]黄辉,孟平,张劲松,等华北低丘山地人工林蒸散的季节变化及环境影响要素.生态学报,2011,31(13):3569~3681
    [89]郑宁低丘山地人工林显热通量空间代表性和尺度效应的研究.安徽农业大学硕士论文.2010,20~60
    [90] Kalmal J C., Haugen D A. Some Errors in The Measurement of Reynolds Sress.J. APP.Meteorol.1969,8:460~462
    [91] Paw U K T, Baldocchi D D, Meyers T P, et al. Correction of Eddy-Covariance MeasurementsIncorporating both Advective Effects and Density Fluxes. Boundary-Layer Meteor,2000,97:487~511
    [92] Dyer A J. Flow Distortion By Supporting Structures.Boundary-layer Meteorol,1981,20:243~251.
    [93]卢俐,刘绍民,徐自为,等不同下垫面大孔径闪烁仪观测数据处理与分析.应用气象学报,2009,20(2):171~178
    [94]徐自为,刘绍民,宫丽娟,等涡动相关仪观测数据的处理与质量评价研究.地球科学进展,2008,23(4):357~370
    [95] Kolmogorov A N. The Local Structure of Turbulence in an Incompressible Viscous Fluid for Very LargeReynolds Numbers. Dokl Akad Nauk,1941,30:299~303
    [96] Hartogensis O K. Exploring Scintillometry in The Stable Atmospheric Surface Layer. WageningenUniversity,2006:240
    [97] H gstr m U. Analysis of Turbulence in the Surface Layer with A Modified Similarity Formulation forNear Neutral Conditions. J. Atmos. Sci,1990,47:1949~1972.
    [98] Garratt J R. The Atmospheric Boundary Layer. New York, USA: Cambridge University Press,1992:316
    [99] Kaimal J C., Finnigan J J. Atmospheric Boundary Layer Flows Their Structure and Measurement. NewYork, USA: Oxford University Press,1994:289
    [100] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral Characteristics of Surface Layer Turbulence. QuartJ Roy Meteorol Soc,1972,98:563~589
    [101] Baldocchi D D, Hutchison B A. Turbulence in an Almond Orchard: Spatial Variations in Spectra andCoherence. Bound-Layer Meteor,1988,44:267~283
    [102] Baldocchi D D, Meyers T P. A Spectral and Log-correlation Analysis of Turbulence in A DeciduousForest Canopy. Bound-Layer Meteor,1988,45:31~58
    [103]卞林根,陆龙骅,程彦杰,等青藏高原东南部昌都地区近地层湍流输送的观测研究.应用气象学报,2001,12(1):1~3
    [104]郭建侠华北玉米下垫面湍流输送特征及参数化方案比较研究.南京信息工程大学博士学位论文.2006,40~60
    [105]高志球,马耀明,王介民,等南沙群岛海域近海面粗糙度、中性曳力系数及总体交换系数研究.热带海洋,2000,19(1):38~42
    [106] Andreas E, Hill R J, Gosz J R, et al. Statistics of Surfacelayer Turbulence over Terrain withMetre-scale Heterogeneity. Bound.-Layer Meteor,1998,86:379~408
    [107] Tillman J E. The Indirect Determination of Stability, Heat And Momentum Fluxes in The AtmosphericBoundary Layer from Simple Scalar Variables during Dry Unstable Conditions. J Appl Meteorol,1972,11:783~792
    [108] Choi T, Hong J, Kim J, et al. Turbulent Exchange of Heat, Water Vapor, And Momentum over ATibetan Prairie by Eddy Covariance And Flux Variance Measurements. J. Geophys. Res.,2004,109,D21106, doi:10.1029/2004JD004767
    [109] Panofsky H A, Dutton J A. Atmospheric Turbulence Models and Methods for EngineeringApplications. New York: Wiley-Iinterscience,1984:1~397
    [110] Merry M, Panofsky H A. Statistics of Verticalmo Tions over Land And Water. Q J R Meteor Soc,1976,102(431):255~260
    [111]赵鸣,苗曼倩,王彦昌边界层气象学教程.北京:气象出版社,1991:89~907
    [112]王介民,刘晓虎,祁永强应用涡度相关方法对戈壁地区湍流输送特征的初步研究.高原气象,1990,9(2):120~129
    [113]李家伦,洪钟祥,罗卫军,等青藏高原改则地区近地层通量观测研究.大气科学,1999,23(2):142~151
    [114]刘辉志,洪钟祥青藏高原改则地区近地层湍流特征.大气科学,2000,24(3):289~300
    [115] Peng J, Wu X, Jiang Z, et al. Comparison of Turbulent Characters over Urban and Suburban SurfaceLayer in Nanjing Winter. Journal of Nanjing Institute of Meteorology,2008,31(6):871~878
    [116] Li Y, Li Y, Zhao X. The Comparison and Analysis of ABL Observational Data on the East Edge ofTibetan Plateau And in Chengdu Plain II: Characteristics of Turbulence in The Surface Layer. Plateauand Mountain Meteorology Research,2008,28(3):8~14
    [117] Bian L, Lu L, Cheng Y, et al. Turbulent Measurement over the Southeastern Tibetan Plateau. Journal ofApplied Meteorological Science,2001,12(1):1~13
    [118] Mahrt L, Sun J, Blumen W, Delany T, et al. Nocturnal Boundary-layer regimes. Bound-Layer Meteor,1998,88:255~278
    [119] Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of Turbulent VelocityComponents in The Surface Layer under Convective Conditions. Bound-Layer Meteor,1977,11:355~361
    [120] Davidson K L. Observational Results on The innocence of Stability and Wind-wave Coupling onMomentum Transfer and Turbulence actuations over Ocean waves. Bound-Layer Meteor.,1974,6:305~332
    [121] Zhou M., Xu X., Bian L., et al. Observa-tional Analysis and Dynamic Study of The Boundarylayer ofThe Qinghai-Xizang Plateau. Beijing: Chinese Mete-orological Press,1998:125
    [122] Wyngaard J C, Izumi Y, Jr S A. Collins Behaviour of the Refractive Index Structure Parameter NearThe Ground, J. Opt. Soc. Am,1971,15:1177~1188
    [123] Wyngaard J C. On Surface Layer Turbulence, in D.A. Haugen (ed.), Workshop on Micrometeorology,American Meteorological Society, Boston, MA,1973:101~149
    [124] Hill R J, Ochs G R, Wilson J J. Measuring Surface Fluxes of Heat and Momentum Using Scintillation.Bound-Layer Meteor,1992,58:391~408
    [125] Thiermann V, Grassl H. The Measurement of Turbulent Surface Layer Fluxes by Use of BichromaticScintillation. Bound-Layer Meteor,1992,58:367~389
    [126] Haenel H D, Grbnhage L. Footprint Analysis: A Closed Analytical Solution Based onHeight-dependent Profiles of Wind Speed and Eddy Viscosity. Boundary-Lay Meteorol,1999,93:395~409
    [127] Zhang X D, Jia X H, Yang J Y, et al. Evaluation of MOST Functions and Roughness LengthParameterization on Sensible Heat Flux Measured by Large Aperture Scintillometer over A Corn Field.Agricultural and Forest Meteorology,2010,150:1182~1191
    [128] Monin A S, Yaglom A M. Statistical Fluid Mechanics of Turbulence Vol.2. Cambridge, MA, USA:MIT Press,1975:874
    [129] Monin A S., Yaglom A M. Statistical Fluid Mechanics of Turbulence Vol.1. Cambridge, MA, USA:MIT Press,1971:769
    [130] Katul G G, Albertson J D, Hsieh C I, et al. The ‘Inactive’ Eddy Motion and the Large-scale TurbulentPressure Fluctuations in the Dynamic Sublayer. J. Atmos. Sci,1996,53:2512~2524
    [131] Wesely M L. The Combined Effect of Temperature and Humidity on the Refractive Index. J. Appl.Meteorol,1976,15:43~49
    [132] Asanumaa J, Iemotob K. Measurements of Regional Sensible Heat Flux over Mongolian GrasslandUsing Large Aperture Scintillometer. Journal of Hydrology,2007,333:58~67
    [133]蔡旭辉.湍流微气象观测的印痕分析方法及其应用拓展.大气科学,2008,32(1):123~132
    [134]赵晓松,关德新,吴家兵,等长白山阔叶红松林通量观测的footprint及源区分布.北京林业大学学报,2005,27(3):17~23
    [135]米娜,于贵瑞,温学发,等中国通量观测网络通量观测空间代表性初步研究.中国科学D辑:地球科学,2006,36(增刊I)22~33
    [136] Luhar A, Rao K. Lagrangian Stochastic Dispersion Model Simulations of Tracer Data in NocturnalFlows over Complex Terrain. Atmos. Environ,1994,28:3417~3431
    [137] Rannik B, Aubinet M, Kurbanmuradov O, et al. Footprint Analysis for Measurements over AHeterogeneous Forest. Bound-Layer Meteorology,2000,97:137~166
    [138] Gêckede M., Rebmann C., Foken T. A Combination of Quality Assessment Tools for Eddy CovarianceMeasurements with Footprint Modelling for The Characterisation of Complex Sites. Agricultural andForest Meteorology,2004,127:175~188
    [139] Rebmann C, Gêckede M, Foken T, et al. Quality Analysis Applied on Eddy Covariance Measurementat Complex Forest Sites Using Footprint Modeling. Theoretical and Applied Climatology,2005,80:121~141
    [140] Kim J, Guo Q, Baldocchi D D, et al. Upscaling Fluxes From Tower to Landscape: Overlaying FluxFootprints on High Resolution (IKONOS) Images of Vegetation Cover. Agricultural and ForestMeteorology,2006,136:132~146
    [141] Liu Shaomin, Hu Guang, Lu Li, et al. Estimation of Regional Evapotranspiration by TM/ETM+Dataover Heterogeneous Surfaces. Photogrammet ric Engineering&Remote Sensing,2007,10(73):1169~1178
    [142]彭谷亮,蔡旭辉,刘绍民大孔径闪烁仪湍流通量印痕模型的建立与应用.北京大学校报(自然科学版),2007,43(6):822~827
    [143] Kormann R, Meixner F X. An Analytic Footprint Model for Non-neutral Stratification.Boundary-Layer Meteorology,2001,99:207~224
    [144] Hill R J, Bohlander R A, Clifford S F, et al. Turbulence-induced Millimeter-wave ScintillationCompared with Micrometeorological Measurements. IEEE Transactions on Geoscience and RemoteSensing,1998,26(3):330~342
    [145] Wood N, Mason P J. The Influence of Static Stability on the Effective Roughness Lengths forMomentum and Heat Transfer. Quarterly Journal of Royal Meteorology Society,1991,117:1025~1056
    [146]周成,陈家宜,蔡旭辉.非均匀地表的湍流通量和掺混高度.北京大学学报(自然科学版),2006,42(3):315~319
    [147]卢俐地表感热通量的观测、影响因子和尺度关系的研究.北京师范大学博士论文.2008,50~150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700