太阳能一体化板的研发及力学保温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油、煤炭等传统能源的日渐紧张,几乎取之不尽用之不竭的太阳能的开发利用逐渐被提上日程。太阳能发电等工程的规模逐渐扩大,并且开发了一系列的光伏产品。众多建筑的表面一般情况下光照充足,可以为太阳能发电提供场所,这样就可以大大降低建筑本身的能耗。但传统的光伏产品不容易在建筑中安装,况且零散的太阳能电池板会影响建筑本身的美观,有时还会留下一定的安全隐患。所以业主们对太阳能产品在建筑上的应用态度较为消极。
     针对上述情况,本课题将调查现在关于光伏产业的相关政策、光伏一体化板的发展现状和太阳能电池板的工作原理。对四种可能的一体化形式做了可行性的分析论证。将光伏板与夹芯板结合在一起,研究开发一种新型的太阳能一体化板。因为在本课题的一体化板中的电池板需要满足一定的温度需求,所以本课题中考虑晶体硅电池温度与转化效率的关系,在一体化板中设置通风道,使得电池板的温度不会过高,并将采用现有的热学理论对一体化板进行了热学分析设计,将得到合适的通风槽的高度和宽度。对于一体化板力学性能的研究本课题中将参照荷载规范和幕墙规范等对光伏板进行设计,对一体化板中的电池板并做力学的等效模型等效分析。最后使用有限元软件ABAQUS分别进行了热学和力学性能的有限元分析,分析中将模拟聚氨酯、岩棉以及聚苯乙烯泡沫等三种芯材和多种尺寸的模型,并对模型做了比较和相应的优化。使得把光伏板成为一个结构构件,并能满足承载力的要求,同时本文中还将进一步研究一体化板的强度相对与普通夹芯板的强度提高值,即钢化玻璃板对夹芯板的强化效果并给出相应的评价指标。除此之外,本文中还研究了一体化板的隔热保温性能,并与没有玻璃板的普通夹芯板的隔热性能进行比较。鉴于条件有限,不能对一体化板进行具体的试验,但希望本文的理论研究对以后的太阳能与建筑一体化的相关研究有一定的帮助。
With traditional energy sources becoming increasingly tense such as oil, coal and so on, solar energy development and utilization has been put on the agenda. The scale of the Solar power project is gradually expanding, and have been developed a series of photovoltaic products. The surfaces of many buildings have sufficient sunshine ,so they can provide sites for solar power utilization, that the energy consumption of the building itself can be greatly reduced. But traditional photovoltaic products is not easy to install on the building. Moreover, solar panels scattered on the buildings itself will affect the beauty, sometimes leaving potential security risks. This caused that building owners insisted a more negative attitude on applications of solar energy products.
     In response to these circumstances, this paper make an investigation on the PV industry policies, the development of photovoltaic panel and the working principle of solar panels. This paper have made a analysis about the feasibility of the four possible integrated forms of. Photovoltaic panels and sandwich panels. Through this work ,we can make a new integrated panel. The paper considered the relationship between temperature and conversion efficiency in the crystalline silicon cells, so the ventilation roads have been set up in the integration board to make the temperature of the battery plate will not be too high. Also this paper has made the thermal analysis and design on the integration panel with the existing theory; Thick design of the photovoltaic panels refer to loads norms and curtain wall norms in this paper, and making a equivalent mechanics model. In the final the panel were made finite element analysis using ABAQUS about the thermal and mechanical properties, in which models include the polyurethane, rock wool and polystyrene foam as core material and a variety of sizes of the panel. In final the models were compared and optimized. Make the photovoltaic panels as a structural component, and can meet the loads’requirements, and integrated board also has very good heat insulation effect. Given the limited conditions, there is no specific test, but wish to my theory research can provide some help for the concerning research in the future.
引文
1.颜丰.寒冷地区多层住宅太阳能技术与建筑的一体化设计探索.大连理工大学硕士毕业论文. 2008: 01-22
    2. B.P. Jelle, T. N.Nilsen. Assessment of Durability of Indoor Building Materials and Inventory by Selecting Adequate Solar Material Protection Factors for Window Panes and Glass Structures . Norwegian University of Science and Technology 2009(01): 04-05
    3.赵宏娟.太阳能电池工作原理及种类.黑龙江科技信息, 2007: 02
    4. G.F. Abdelal . Thermal Fatigue Analysis of Solar Panel Structure for Micro Satellite Applications. Remote Sensing and Space Science. 2008(04):05-08
    5. Kumi Nitta. Quality Assurance Design Guideline for Solar Panel, Insulation Design Guideline and Spacecraft Charging Guideline in Jaxa. J.Appl.Phys. 2006, 35: 02-04
    6.王建军.太阳能光伏发电应用中的温度影响,青海师范大学学报,2005(06): 02-03
    7.赵镇南.传热学.第二版.高等教育出版社. 2008: 162-268
    8.姚仲鹏.传热学.第二版.北京理工大学出版社, 2003: 156-183
    9.黄小坤.玻璃幕墙及采光顶结构设计若干问题探讨,全国铝门窗幕墙行业年会论文, 2008: 26-39
    10.安二峰.典型玻璃材料冲击力力学性能研究,北京理工大学学报, 2010.2(03)
    11. Julien RION. Ultra-Light Photovoltaic Composite Sandwich Structures .J.U, 2008: 65-87
    12.王厚华,黄春勇.中空玻璃空气夹层内的自然对流换热.重庆大学学报. 2009, (07): 02-05
    13. The European Standard. Self-Supporting Double Skin Metal Faced Insulating Panels-Factory Made Products–Specifications. EN 14509-2006
    14. H. M. Hsiao, S. M. Lee and D .R. Buyny . Core Crush Mechanisms and Solutions in the Manufacturing Of Sandwich Structures . Research and Technology. 2002 (02): 06-10
    15.石永久,王元清,邓晓蔚,罗忆,徐悦.夹板式单层玻璃板承载性能的简化设计方法.建筑科学. 2009, (09): 07-08
    16. ISO/FDIS Standard. Glass in building - Determination of light Transmittance, Solar Direct Transmittance, Total Solar Energy Transmittance, Ultraviolet Transmittance and related Glazing Factors”, 9050:2003(E).
    17. Buehler, F.U., Seferis, J.C., and Zeng, S. Consistency Evaluation of a Qualified Glass Fiber Prepreg System, J. Advanced Materials, 2001(33), 41-50.
    18. Waldo J.E. Beek and RenéA.J. Janssen . Hybrid Polymer-Inorganic Photovoltaic Cells. Hybrid Nanocomposites for Nanotechnology, 2009(10): 321-342
    19. International Standard. Photovoltaic Module Safety Qualification. IEC 61730: 2004
    20.马眷荣,黎晓瑞,金宗哲.玻璃的弯曲强度与Weibull模数.建筑材料科学研究院院刊. 1987, (01).
    21.于元,夏立辉,张志文.非晶硅与晶硅太阳电池在太阳能光伏发电应用中热性能的研究.太阳能学报. 2008, (08).
    22. American Standard. Standard Practice for Determining Load Resistance of Glass in Buildings. ASTM E1300: 2004
    23.中华人民共和国建设部.建筑结构荷载规范.中国建筑科学研究院. 2002
    24. Dan Zenkert, Jan Backlund. PVC Sandwich Core Materials: Mode I Fracture Toughness. Composites Science and Technology. 1989(07)
    25.李维红.玻璃材料在双向应力下失效分析的数值模拟与失效准则的验证.大连理工大学博士论文, 2005: 82-86
    26. H. Hoppe, N.S. Sariciftci. Polymer Solar Cells. Advance Polymer Science. 2008(12):77–86
    27. Rion J, Geiser A, Leterrier Y, M?nson J-AE. Ultra-light Asymmetric Photovoltaic Sandwich Structures. Journal of Composites. 2009: 06-07
    28.建设部.建筑玻璃采光顶规范.中国建筑工业出版社, 2007: 26-32
    29.陈建.空间结构屋面太阳能应用及光伏屋面板开发研究.浙江大学硕士论文,2008: 32-54
    30.孙中宁,曹夏昕,阎昌琪.竖直窄环隙通道内的强迫对流换热.工程热物理学报. 2003, (05): 02-04
    31.电子工业部.地面用晶体硅光伏组件-设计鉴定和定型.国家质量监督局. 1998: 26-28
    32.万静,许纪倩,张苏华.风压及玻璃强度与刚度校核.图学教育研究, 2004: 01
    33.建设部.玻璃幕墙工程技术规范.中国建筑工业出版社, 2003
    34.中国建筑材料科学研究院.建筑玻璃应用技术规程.中国建筑工业出版社, 2009: 34-42
    35.史洁.上海高层住宅外界面太阳能系统整合设计研究.同济大学博士论文, 2008: 25-46
    36. H.-R.Meyer-Piening. Sandwich Plates:Stresses,Deflection,Bucklingand Wrinkling Loads- A Case Study. Journal of Sandwich Structures and Materials, 2006, (8): 16
    37.邹杰.彩钢夹芯板的保温隔热及力学性能研究.哈尔滨工业大学硕士论文, 2007.6: 72-81
    38.解维益.金属面绝热用夹芯板保温隔热和力学性能研究.哈尔滨工业大学硕士论文, 2009: 37-56
    39. D H W Li and T N T Lam. An analysis of building energy performances and benefits using solar fa?ades 2008, (01)
    40. C. Alexandru, C. Pozna. Different tracking strategies for optimizing the energetic efficiency of a photovoltaic system, 2008: 03
    41. S.Medved. A large-panel unglazed roof-integrated liquid solar collector––energy and economic evaluation, 2003, (09)
    42. Moh’d Sami S. Ashhab. Optimization and modeling of a photovoltaic solar integrated system by neural networks, 2008, (07)
    43. Julien Rion, Yves Leterrier, Jan-Anders E.M?nson.. Ultra-light asymmetric photovoltaic sandwich structures, 2009, (03)
    44. Na Wang. A marketable all-electric solar house: A report of a Solar Decathlon project, 2009, (03)
    45.建设部.采暖通风与空气调节设计规范, 2003: 45-49
    46. Joel A. Lamson. Solar Thermal Electric Panel (STEP): Performance Analysis, 2008
    47.石亦平,周玉蓉. ABAQUS有限元分析实例详解,机械工业出版社,2008: 10-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700