直纹面叶轮数控铣削加工刀具轨迹规划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体叶轮数控铣削传统加工工艺一般包括流道开槽、扩槽、半精加工、精加工、表面检测与磨粒流抛光处理等一系列工艺环节,其中粗加工环节是影响加工效率的最重要的环节。实践表明传统粗加工工艺效率较低,为了提高整体直纹面叶轮的粗加工效率,并且弥补目前商用计算机辅助制造CAM软件在五坐标插铣加工方面的不足,本文针对直纹面叶轮的五坐标插铣粗加工和侧铣半精加工进行了刀具轨迹规划。本文研究的叶轮的叶片为直纹面型,因为如果能加工出高质量的直纹面,就能够运用逼近的方法加工出高质量的自由曲面,所以研究直纹面叶轮的加工方法有很大的现实意义。
     在插铣粗加工及侧铣半精加工的刀具轨迹规划过程中,引入了SLERP四元数插值法,运用此法在直纹面叶轮的叶背和叶盆的偏移边界矢量之间能够实现均匀插值,从而可以求出插铣加工时的刀轴矢量,推导了五坐标插铣加工的步距计算公式,进而确定了直纹面叶轮流道行方向的插铣密度,在能完全切除加工余量的基础上保证了切削效率。
     依据上述算法在VC++和OpenGL平台上开发了整体叶轮五坐标插铣粗加工及侧铣半精加工软件模块,通过该软件模块生成了插铣粗加工和侧铣半精加工的刀具轨迹文件并且通过OpenGL对刀具轨迹进行了仿真。最后通过五轴机床的后置处理算法生成了插铣粗加工和侧铣半精加工的NC代码,并且使用VERICUT机床加工仿真软件对生成的NC代码进行了仿真。OpenGL仿真和NC代码仿真均表明了插铣法的高效性。
The traditional processing technology of integral impeller includes slotting, expanding, semi-finishing, finishing, surface inspection, abrasive fluid polishing and other methods. In these methods, rough machining is the most important factor affecting machining efficiency. Practice shows that the efficiency of traditional rough machining is very low. In order to improve the rough machining efficiency of integral ruled surface impeller, and to make up the shortfall of the current commercial CAM (Computer-Aided Manufacturing) software on five-axis plunge milling, plunge milling is introduced. Focusing on ruled surface impeller, tool-path of the plunge milling and flank-milling semi-finishing is planed in the five-axis machine tool.
     In this paper, quaternion and SLERP (Spherical Linear Quaternion Interpolation) are introduced. According to the offset boundary vector of ruled surface blade, interpolated cutter axes are generated by using quaternion interpolation algorithm, row spacing and step distance calculating algorithm are promoted and deduced to ensure high material removal rate and machining efficiency. A special CAM software module of integrated ruled surface impeller plunge milling and flank semi-finishing is independently developed. The generated cutting path is simulated in OpenGL and VC++ environment.
     The NC-code is generated by post-processing the planed tool-path. Finally, the tool-path concerning NC-code is simulated the in the VERICUT software. Simulation shows that plunge milling and flank milling improve the efficiency of rough machining ruled surface impeller greatly as desired.
引文
1王永章,杜君文,陈国全.数控技术.高等教育出版社, 2001:10~11
    2刘亚珍. NURBS曲面数控加工刀具可行方向计算研究.大连理工大学硕士学位论文. 2005:3~5
    3张曙.开放式数控系统的现状与趋势.世界制造技术与装备市场, 2007(01): 84~87
    4戴晓华,王文,王威,秦兴,陈子辰.开放式数控系统研究综述.组合机床与自动化加工技术, 2000(11):5~7
    5焦建斌,刘军,任秉银等.三元叶轮的多坐标数控加工方法及其误差分析.风机技术, 1996(6):19~22
    6赵万生,詹涵菁,王刚.涡轮叶盘加工技术.航空精密制造技术, 2000, 36(5):1~5
    7王刚,赵万生,史旭明.整体涡轮通道加工方法的研究.电加工, 1999(3):5~7
    8陈晧晖,刘华明,孙春华.国内外叶轮数控加工发展现状.航天制造技术, 2002(2):45~48
    9 G. Elber, R. Fish. 5-Axis Freeform Surface Milling Using Piecewise Ruled Surface Approximation. Journal of Manufacturing Science and Engineering, 1997, 119(8):383~387
    10 X. W. Liu. Five-Axis NC Cylindrical Milling of Sculptured Surfaces. Computer-Aided Design,1995,27(12):887
    11蔡永林,席光,查建中.任意扭曲直纹面叶轮数控侧铣刀位计算与误差分析.西安交通大学学报,2004,38(5):517~520
    12 J. Senatore1, F. Monies. Y. Landon and W. Rubio. Optimising Positioning of the Axis of a Milling Cutter on an Offset Surface by Geometric Error Minimization. The International Journal of Advanced Manufacturing Technology, 2008,37(6),861~871
    13 D. M. Tsay, M. J. Her. Accurate 5-Axis Machining of Twisted Ruled Surfaces, ASME, 2001, (123):731~738
    14 J.-M. Redonnet, W. Rubio; G. Dessein. Side Milling of Ruled Surfaces: Optimum Positioning of the Milling Cutter and Calculation of Interference. International Journal of Advanced Manufacturing Technology. 1998,14(7):459~465
    15王增强,单晨伟,任军学,田荣鑫.开式整体叶盘四坐标插铣开槽粗加工刀位轨迹规划.航空制造技术, 2007(2):94~97
    16 Y. Altintas, S. Engin. Generalized Modeling of Mechanics and Dynamics of Milling Cuts, Ann. CIRP 2001,50(1):25~30
    17 E. J. A. Armarego, N. P. Deshpande. Computerized Predictive Cutting Models for Force in End-milling Including Eccentricity Effects. Ann. CIRP. 1989, 38(1): 45~49
    18 E. J. A. Armarego, N. P. Deshpande Computerized End-milling Force Predictions with Cutting Models Allowing for Eccentricity and Cutter Deflections. Ann. CIRP. 1991,40(1):25~29
    19 J. Tlusty, S. Smith, W. R. Winfough. Techniques for the Use of Long Slender End Mills in High-Speed Milling. Ann. CIRP. 1996,45(1):393~396
    20 S. Wakaoka, Y. Yamane, K. Sekiya, etc. High-Speed and High-Accuracy Plunge Cutting for Vertical Walls. Journal of Materials Processing Technology, 2002, 127(2):246~250
    21刘焕领.插铣过程刀具磨损监测技术研究.天津大学硕士学位论文. 2007:2~3
    22郭连水,刘秋丰,曹浩波.涡轮叶盘数控加工优化的研究与实现.新技术新工艺. 2005,(10):19~21
    23齐文国,孙建军,赵剑波,等.铝合金插铣铣削力建模与分析.组合机床与自动化加工技术. 2007,()1:32~34,40
    24 H. K. Jeong, Plunge Milling Force Model Using Instantaneous Cutting Force Coefficients, International Journal of Precision Engineering and Manufacturing, 2006,7(3):8~13
    25 H. K. Jeong , A. Yusuf. Dynamics and Stability of Plunge Milling Operations, Trans ASME, Journal of Manufacturing Science and Engineering, 2007, 129(1): 32~40
    26杨建中.复杂多曲面数控加工刀具轨迹生成方法研究.华中科技大学博士学位论, 2006:5~8
    27 K. Lee, T. J. Kim, S. E. Hong. Generation of Tool path with Selection of Proper Tools for Rough Cutting Process. Computer-Aided Design, 1994,26(11):822~831
    28 Y. M. Kyoung, K. K. Cho, C. S. Jun. Optimal Tool Selection for Pocket Machining in Process Planning. Computers and Industrial Engineering,1997,33:505~508
    29 D. Veeramani, Y. S. Gau. Selection of an Optimal Set of Cutting-tool Sizes for 2 1/2 D Pocket Machining. Computer-Aided Design, 1997,29(12):869~877
    30 S. Hinduja, A. Roaydi, P. Philimis, G. Barrow. Determination of Optimum Cutter Diameter for Machining 2 1/2-D Pockets. International Journal of Machine Tools and Manufacture,2001,41:687~702
    31 Y. J. Tseng, Y. R. Sue. Machining of Free-form Solids Using an Octree Volume Decomposition Approach. International Journal of Production Research, 1999,37(1) :49~72
    32李海军.计算机图形学若干基本算法的实现研究.吉林大学博士学位论文2008:1~2
    33施开达,马利庄.试论四元数与旋转矩阵的关系及其在计算机图形学中的应用.浙江海洋学院学报(人文科学版). 1997(1):7~13
    34 K. Shoemake. Animating Rotation with Quaternion Curves.1985,19(3):245~254
    35 A. P. Pobegailo. Spherical Splines and Orientation Interpolation. The Visual Computer. 1994,11(1):63~68
    36刘延柱.高等动力学.高等教育出版社, 2001:94~96
    37 R. Heise. B.A. MacDonald. Quaternions and Motion Interpolation. In:Earnshow RA and Wyvill B(ends) New advances in computer graphics. Proc C-omputer Graphics International’89, Springer, Berlin Heidelberg New York,1989:229~244
    38 Fletcher Dunn, Ian Parberry. 3D数学基础:图形与游戏开发.史银雪,陈洪,王荣静.清华大学出版社, 2005:130~173
    39李瑰贤.空间几何建模及其应用.高等教育出版社,2007:77~79
    40任军学,张定华,王增强,等.整体叶盘数控加工技术研究.航空学报, 2004, 25(2):205~208.
    41 J. H. Oliver, E. D. Goodman. Direct Dimension Nc Verification. Computer-Aided Design. 1990,22(01):3~9
    42郭爱斌,葛研军. OpenGL实现数控加工刀具轨迹实时仿真研究.机械科学与技术, 2002,(S1) .
    43熊烽,宾鸿赞.数控工具磨床加工仿真研究.华中科技大学学报(自然科学版), 2002,30(4):4~6
    44苏云玲.三元整体叶轮的几何造型与五坐标数控加工.大连理工大学硕士学位论文, 2004:5~6
    45 D. Shreiner, M. Woo, J. Neider, T. Davis. OpenGL编程指南(原书第五版).徐波,等.机械工业出版社. 2006:1~126
    46焦建彬,凌晓东,郝明晖.四坐标侧铣加工中的误差分析.哈尔滨工业大学学报, 2003,(07):815~819
    47冯显英,葛荣雨.五坐标数控机床后置处理算法的研究.工具技术, 2006,40(4):44~46
    48刘雄伟,王增强,杨海成.五坐标数控加工后置处理.组合机床与自动化加工技术. 1994, (01):7~10
    49李云龙,曹岩.数控机床加工仿真系统VERICUT.西安交通大学出版社, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700