CD86是NK细胞的激活性受体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然杀伤细胞(NK细胞)是天然免疫系统中非常重要的一类细胞毒性淋巴细胞,它是免疫系统中的第一道防线。NK细胞是一群特殊的细胞,它不同于获得性免疫在发挥功能的时候是需要抗体和主要组织相容性复合体(MHC)的。在哺乳类动物受到病毒感染或者肿瘤侵袭的时候,NK细胞会非常迅速地产生反应。NK细胞的活化是由激活性受体和抑制性受体之间的平衡所决定的,如果激活信号占主导地位NK细胞就会被活化,反过来如果抑制信号占主导那么NK细胞将受到抑制。NKG2D和NKp44是与杀伤肿瘤密切相关的NK细胞的激活性受体成员。在NK细胞的胞浆里有很多溶细胞颗粒,当NK细胞活化时,它们会释放到细胞与细胞的接触面。这些颗粒包括溶细胞的蛋白,比如穿孔素(perforin)和颗粒酶(granzyme),它们在促使靶细胞的死亡的过程中发挥重要作用。CD107a又叫做LAMP-1是一种溶酶体相关的膜蛋白,属于糖蛋白类,当NK细胞脱颗粒时,原来处于管腔膜的CD107a将暴露在细胞表面的突触上。Alter等发现当NK细胞被靶细胞刺激的时候CD107a也会在其细胞表面检测到,因此作为NK发挥杀伤作用时候脱颗粒的标志物。
     细胞毒T淋巴细胞相关抗原4(CTLA4)是表达在激活的T细胞表面而作负调节其活性的一种抗原。而CTLA4Ig是由人CTLA4胞外区和人IgG1的重链恒定区组成的融合蛋白。它通过竞争性结合抗原递呈细胞(APC)上的CD80、CD86分子来阻碍T细胞上的CD28同CD80、CD86结合给T细胞传递共刺激信号,从而成功诱导T细胞的耐受。很多对CTLA4Ig的体外和体内的研究表明其能够治疗自身免疫性疾病和控制器官排斥反应。CTLA4Ig的商业化产品Abatacept和Balatacept已被美国FDA批准治疗诸如关节炎之类的自身免疫性疾病,同时还可以用于控制移植排斥反应。
     但是,在使用了CTLA4Ig治疗的病人中,他们的肿瘤发生率和感染率并没有如预期的显著升高,这一点引起了我们的关注。为什么当CTLA4Ig作用于T细胞,使其活性受到抑制时,抗肿瘤和抗感染的免疫能力依然维持而没有减弱?同时,已被大家公认,在对肿瘤的监视和抗感染中,获得性免疫和天然免疫系统同时发挥着作用,那么是否在这个过程中,当获得性免疫被抑制的同时天然免疫系统发挥了作用呢?这一点还有待验证。Grohmann等人发现CTLA4Ig能够通过APC表面的B7分子影响APC的功能。与此同时,有研究证实静息的NK细胞可以表达CD86分子,而当NK细胞被激活时,可以同时表达能够被CTL4Ig结合的CD80和CD86分子。这些前人的研究结果促使我们对探索CTLA4Ig是否能通过调节NK细胞的功能从而在机体的免疫调节中起到作用产生了兴趣。
     在我们的研究中,体内和体外实验数据表明CTLA4Ig能够通过激活NK细胞增强其杀伤靶细胞的能力,同时,也提出了在杀伤靶细胞的过程中可能存在的新的分子机制。我们研究的主要发现和结论总结如下:
     一.体内试验中CTLA4Ig减少了黑色素瘤B16F0的转移和延长了荷瘤小鼠的存活时间:
     为了研究CTLA4Ig在肿瘤免疫中的作用,我们采用性别和年龄匹配的B6小鼠作为研究对象。在第0天尾静脉接种B16F0细胞,然后分别在第0天、第3天和第6天尾静脉注射CTLA4Ig和对照IgG。以小鼠的生存曲线和其肺部肿瘤的转移数量为观察指标。结果表明,CTLA4Ig实验组小鼠的生存时间明显长于对照组,CTLA4Ig实验组小鼠肺部肿瘤的转移数量也明显少于对照组。
     二.体内实验中CTLA4Ig增强小鼠NK细胞的毒性:
     1. CTLA4Ig通过作用于NK细胞来减少SCID小鼠体内黑色素瘤的转移;
     已经被证实CTLA4Ig是通过结合B7分子从而产生对获得性免疫中T细胞的调节,文献和我们的实验表明NK细胞中也表达B7分子,我们假设CTLA4Ig可能会对NK细胞产生调节,而NK细胞又是肿瘤细胞的强有力的效应细胞,我们采用SCID小鼠和B6小鼠作为研究对象。实验结果表明,CTLA4Ig处理的SCID荷瘤小鼠能够有效抑制肿瘤的转移;根据以上实验的提示,NK细胞可能在肿瘤转移中起到了非常重要的作用。因此,为了进一步明确可能存在这种作用,我们又用PK136清除B6小鼠体内的NK细胞,结果显示CTLA4Ig处理组和对照组肿瘤的转移数量没有明显差异,这又证明了CTLA4Ig是通过增强NK细胞的毒性来抑制了肿瘤的转移。
     2. CTLA4Ig增强了肿瘤侵润区域NK细胞的毒性;
     为了检测在CTLA4Ig作用后NK细胞的细胞毒性的变化,在我们的实验研究中,肿瘤接种后第10天处死小鼠,分离小鼠肺脏的淋巴细胞,采用磁珠分选技术纯化NK细胞,测试其毒性分子的表达和杀伤靶细胞能力的强弱。结果显示,CTLA4Ig组肿瘤侵润部位的NK细胞毒性明显高于IgG对照组的NK细胞毒性,因此提示CTLA4Ig能够增强NK细胞的毒性来减少肿瘤的转移。
     3. CTLA4Ig能够提高肿瘤侵润部位NK细胞的CD107a和perforin的表达;
     因为NK细胞脱颗粒的标志物CD107a和效应分子穿孔素是NK细胞毒性的两个重要指标。因此,检测了肿瘤侵润部位NK细胞CD107a和perforin的表达,结果显示CTLA4Ig处理组其CD107a和perforin的表达明显高于对照组。这提示肿瘤侵润部位的NK细胞可以被CTLA4Ig激活从而显著提高其杀伤靶细胞的能力。
     三、体外实验中CTLA4Ig能够提高NK细胞毒性对靶细胞的杀伤;
     1.在体外CTLA4Ig能够提高小鼠脾脏NK细胞毒性对靶细胞的杀伤;
     为了在体外验证CTLA4Ig对NK细胞毒性的作用,我们先分离B6小鼠脾脏的NK细胞,然后用磁珠分选技术纯化NK细胞,随后分别和加入了CTLA4Ig与对照IgG的YAC-1细胞共培养,然后检测NK细胞对YAC-1细胞的杀伤。实验结果显示CTLA4Ig实验组的NK细胞杀伤YAC-1细胞的能力比对照组明显增强。
     2.在体外CTLA4Ig能够提高荷瘤小鼠肿瘤侵润部位NK细胞的毒性;
     实验中取出B6荷瘤小鼠的肺脏,随后用磁珠分选技术纯化分离肺脏肿瘤侵润的NK细胞,然后按设定比例与YAC-1肿瘤细胞共培养,检测NK细胞对YAC-1的杀伤作用,通过实验组CTLA4Ig和对照组IgG的NK细胞杀伤作用的比较,结果显示CTLA4Ig能够显著提高荷瘤小鼠肿瘤侵润部位NK细胞的细胞毒性。
     3.在体外CTLA4Ig能够提高人外周血NK细胞的细胞毒性:
     通过分离人外周血单个核细胞(PBMC),用磁珠分选技术纯化其NK细胞,然按设定比例与K562肿瘤细胞共培养,最后检测NK细胞对K562的杀伤作用。通过比较实验组CTLA4Ig和对照组IgG中NK细胞对靶细胞的杀伤,结果显示CTLA4Ig能够显著提高人外周血NK细胞的细胞毒性。
     4.在体外CTLA4Ig能够显著提高NK92MI细胞的细胞毒性;
     因为通过磁珠分选的方法分离出来的NK细胞并没有达到绝对纯化,其他细胞可能会干扰实验的结果,因此我们采用了人NK92MI这种NK细胞系,来进一步观察CTLA4Ig对NK细胞毒性的影响。同时,NK92MI细胞上几乎不表达CD16这种,所以可以进一步排除CTLA4Ig中Fc段可能带来的ADCC作用的干扰。实验中,将NK92MI细胞与靶细胞K562共培养,通过检测实验组CTLA4Ig和对照组IgG处理的NK92MI细胞对K562细胞的杀伤作用,结果显示CTLA4Ig能够显著提高NK92MI的细胞毒性。
     四、CD86分子是CTLA4Ig介导的NK细胞毒性增强的激活性受体;
     1. NK细胞上CD86分子的表达能够在靶细胞和细胞因子刺激的环境中显著提高;
     根据文献报道,CTLA4Ig能够高亲和力的结合CD80和CD86分子,我们猜想CTLA4Ig可能是通过与它们结合起到增强NK细胞的功能从而杀伤肿瘤细胞的。为了进一步明确NK细胞表面有CD80和CD86的表达,我们检测了在正常生理条件下它们的表达,流式结果提示在小鼠脾脏NK细胞中大约有6%的CD86的表达,但是没有CD80的表达;在体外与YAC-1共培养或者IL-15刺激下的NK细胞CD86的表达有显著提高。另外,我们检测了在荷瘤小鼠B16肿瘤侵润部位的NK细胞表面CD80和CD86的表达,结果提示黑色素瘤B16细胞能够显著提高CD86分子的表达,CD80的表达却没有明显提高。以上结果提示在肿瘤环境中NK细胞能够显著提高其表面CD86的表达。
     2. CTLA4Ig能够显著提高NK细胞激活性受体NKG2D和NKp44的表达水平;
     总所周知,NK细胞的杀伤功能与其表面的激活性受体有密切的联系,同时NK细胞在杀伤靶细胞的过程中的一条途径是ADCC作用。为了排除CTLA4Ig可能介导的ADCC作用,同时为了验证CD86在NK细胞中的作用,我们采用了NK92MI这种能够自身高表达CD86分子的细胞系作为效应细胞,但同时其表面无CD32、CD64的表达,而只有少量CD16这种低亲力FcR的表达。在体外实验的结果提示,CTLA4Ig能够显著提高NK92MI细胞的激活性受体NKG2D和NKp44的表达水平。
     3. CD86可能在增强NK细胞对靶细胞的杀伤作用里起到类似激活性受体的作用;
     为了排除抗CD80抗体和抗CD86抗体这两种封闭性抗体对NK细胞毒性的影响,我们将抗CD80抗体和抗CD86抗体分别加入到NK92MI培养体系中,然后检测NK细胞对肿瘤细胞的杀伤作用,发现没有显著变化。然后,我们用抗CD86抗体和CTLA4Ig进行竞争实验。结果显示,当我们把抗CD86封闭抗体和CTLA4Ig同时加入到NK92MI和K562肿瘤细胞的共培养体系中,然后检测NK92MI细胞对肿瘤细胞的杀伤作用,发现其杀伤作用与对照组有部分减弱;当我们把抗CD86封闭抗体提前CTLA4Ig2小时加入NK92MI和K562肿瘤细胞的共培养体系中,目的先让抗CD86封闭抗体先占据CD86分子结合位点,然后检测其对肿瘤细胞的杀伤时,我们发现由CTLA4Ig产生使NK细胞毒性增强的作用被逆转了。这些结果提示,CD86可能在CTLA4Ig增强NK细胞抗肿瘤毒性的过程中起到关键作用。
     总结:我们验证了CTLA4Ig能够显著减少B16肿瘤的转移以及延长荷瘤小鼠的生存时间;同时观察到在清除了NK细胞的小鼠注射CTLA4Ig后,并没有改善肿瘤细胞的转移;在体内CTLA4Ig作用后能够显著提高NK细胞毒性相关的CD107a和perforin的表达。另外,我们在体内外实验中验证了在肿瘤环境的刺激下,NK细胞能够提高CD86分子的表达;高表达CD86分子的人NK细胞系,体外实验在CTLA4Ig的作用下能明显增强其杀伤靶细胞的能力。最后我们用抗体封闭实验,验证了CTLA4Ig可能是通过CD86分子起到使NK细胞毒性增强的作用。综上所诉,我们发现了一条由CTLA4Ig介导的增加NK细胞杀伤能力的新途径,证明了CD86分子在NK细胞表面起到了类似激活性受体的作用,而在与CTLA4Ig结合后起到增强NK细胞杀伤能力的新机制。
Natural Killer cells (NK cells) are a very important type of cytotoxic lymphocytes ininnate immunity which is the first barrier of the immune system. NK cells are a unique,different from acquired immune system which needs antibody and MHC to act. They makevery fast responses when mammality was infected by virus or invaded by tumor cells.
     NK cell activation is determined by the balance of activating and inhibitory receptorstimulation. If the activating signal is more prominent then NK cell will be activated,similarly if the inhibitory receptor signaling dominants then NK cell activity will be inhibited.NKG2D and NKp44, the two activating NK receptors, are involved in tumor cell lysis byactivated NK cells. NK cells have a lot of cytolytic granules in their cytoplasm. When NKcells are activated, they release these granules to the site of cell–cell contact. These granulescontain cytolytic proteins, such as perforin and granzyme, that are involved in inducingtarget cell death. Lining the membrane of the granules is the lysosomal-associatedmembrane protein, LAMP-1or CD107a. CD107a is a glycoprotein representingapproximately50%of the proteins in the lysosomal membrane. During degranulation,CD107a on the luminal membrane is exposed in the immunological synapse and thenantibody could bind. Alter et al. showed that CD107a can also be detected on the surface ofNK cells following stimulation with target cells, so CD107a is considered as a marker ofdegranulation.
     Cytotoxic T-lymphocyte-associated antigen4(CTLA4) is expressed on the surface of Tcells hours or days after activation and functions as a negative regulator of T cell activation.CTLA4Ig is constructed by genetically fusing the external domain of human CTLA4to theheavy-chain constant region of human IgG1. CTLA4Ig has been shown to induce T celltolerance by binding to both CD80and CD86on antigen-presenting cells (APC), whichprevents the binding of CD28to CD80and CD86to deliver costimulatory signals to T cells.Many in vitro and in vivo studies demonstrated that CTLA4Ig could be used for controlling ofautoimmune diseases and allograft rejection. Both commercial products of CTLA4Ig, Abatacept and Belatecept (Bristol-Myers Squibb), have been approved by the FDA as atherapy for treating autoimmune diseases such as arthritis, and for controlling graft rejection.
     One interesting aspect of CTLA4Ig is that patients treated with this fusion proteinexperienced not much higher incidence of tumors and infectious episodes than controls. Weare interested in why immunocompetence against tumors remains while T cell activation issuppressed by CTLA4Ig. It is believed that surveillance for tumorigenesis and anti-infectionare mediated by both adaptive and innate immune cells. Whether the innate immunity is intactwhen the adaptive immunity is suppressed by CTLA4Ig has not been examined. Grohmannet.al. found that CTLA4Ig could influence APC function via the interaction with B7molecules on APC. Moreover, recent studies demonstrated that resting NK cells couldexpress CD86and that activated NK cells express both CD80and CD86receptors that mightbe bound by CTLA4Ig. These results prompted us to study the possibility that CTLA4Ig canregulate tumor surveillance and anti-infection immune by modulating NK cell function.
     In the present study, we reveal the novel function of CTLA4Ig via enhancement of NKcell cytotoxicity to target cells in vivo and in vitro and also show the underlying moleculemechanism was involve in this activity. Our main findings and conclusions of this study aresummarized as follows:
     1. CTLA4Ig reduces melanoma metastasis in vivo and prolonged host survival.
     To define the role of CTLA4Ig in tumor immunity, sex-and age-matched B6mice wereinjected with B16F0cells on Day0, followed by intravenous injection of either CTLA4Ig(n=10) or isotype control IgG (n=10) on Days0,3and6, respectively. The survival time andthe melanoma lung metastasis of each animal were monitored. The results showed that micetreated with CTLA4Ig had significantly longer survival time and significantly lower numbersof lung metastatic tumor nodules than those treated with control IgG. These results suggestthat CTLA4Ig contribute to the anti-tumor protection.
     2. CTLA4Ig enhances NK cell cytotoxicity in vivo.
     1). CTLA4Ig reduced the melanoma metastasis in SCID mice and B6mice with NKcells depletion.
     It has been demonstrated that CTLA4Ig inhibits the function of the adaptive immunesystem by blocking B7/CD28interactions. We hypothesized that innate immunity, but notadaptive immunity, plays a critical role in the CTLA4Ig-mediated anti-tumor activity. To test our hypothesis, sex-and age-matched SCID mice were used, and the results showed thatCTLA4Ig could also significantly inhibit the lung metastasis of melanoma tumors in SCIDmice. Because NK cells play an important role in tumor surveillance in the body, we furtherexamined whether NK cells were involved in the CTLA4Ig-mediated anti-tumor activity.Therefore, we used the PK136depleting antibody to deplete NK cells in mice. The resultsshow that depletion of NK cells results in the abolishment of the CTLA4Ig killing target celleffect and indicate that NK cells might play some role in the CTLA4Ig-mediated killingactivity.
     2). CTLA4Ig enhances the tumor infiltrating NK cell cytotoxicity in vivo.The ability of NK cells to kill tumor cells are critical immune surveillance mechanismsfor eradicating developing tumors. To assess the NK cells cytotoxicity in NK-dependent-CTLA4Ig-anti-tumor activity in vivo, the B16melanoma mice treated with either CTLA4Igor control IgG were sacrificed10days after tumor inoculation; magnetic-activated cellsorting was used to isolate the infiltrating NK cells from lung tissue for the analysis ofcytolytic activity and cytokine production. The results showe that tumor-infiltrating NK cellsfrom mice treated with CTLA4Ig possess significantly higher cytolytic activity than thosetreated with control IgG. These results suggest that CTLA4Ig retards tumor metastasis byenhancing the NK cell cytotoxicity to tumor cells in vivo.
     3). CTLA4Ig induces higher number of perforin-producing and CD107a-positive NKcells in vivo.
     Because the degranulation marker CD107a and effector molecules perforin are alsoclosely associated with NK cell cytotoxicity against tumor cells, we examined the expressionof these molecules in tumor infiltrating NK cells of mice treated with either CTLA4Ig orcontrol IgG. The results showed that there were significantly higher numbers ofperforin-producing and CD107a-positive NK cells in CTLA4Ig-treated mice than controlIgG-treated mice. These results clearly show that the cytotoxicity of the infiltrating NK cellsis markedly enhanced in the process of CTLA4Ig-mediated killing activity.
     3. CTLA4Ig stimulats NK cell cytolytic activity in vitro.
     1). CTLA4Ig enhances mouse spleen NK cell cytotoxicity in vitro.
     To assess the direct effect of CTLA4Ig on NK cells, we first examined the role ofCTLA4Ig in NK cell cytotoxicity against tumor cells in vitro. Mouse splenic NK cells were purified by MACS and were co-cultured with either CTLA4Ig or control IgG to analyze thecytolytic activity to YAC-1cells. As compared to control IgG, CTLA4Ig could significantlyenhance NK cell cytotoxicity to YAC-1cell in vitro.
     2). CTLA4Ig enhances tumor-infiltrating NK cells cytotoxicity ex vivo.
     Then, we checked the effect of CTLA4Ig on NK cell cytotoxicity to tumor cells ex vivo.The tumor-infiltrating NK cells were purified from lungs of mice bearing B6melanomatumor and co-cultured with either CTLA4Ig or control IgG to analyze the cytolytic activity toYAC-1cells. As compared to control IgG, CTLA4Ig significantly enhanced the cytotoxicityof the infiltrating NK cells ex vivo.
     3). CTLA4Ig enhances human NK cells cytotoxicity in vitro.
     Then, we also checked the effect of CTLA4Ig on human NK cell cytotoxicity againsttumor cells in vitro. The human NK cells were purified from PBMC and co-cultured witheither CTLA4Ig or control IgG to analyze the cytolytic activity to K562cells. As compared tocontrol IgG, CTLA4Ig significantly enhanced the cytotoxicity of human NK cells in vitro.
     4). CTLA4Ig enhances the NK92MI cell cytotoxicity in vitro.
     Because the NK cells isolated by using MACS were not highly purified (the purity wasless than90%), it was possible that the CTLA4Ig was acting on other cell types in the culture.To address this issue, we used a human NK cell line, NK-92MI, as the effector cells to checkthe possible direct role of CTLA4Ig in regulating NK function. The results showed thatcytotoxicity of NK-92MI cells to K562tumor cell was significantly greater increased in thepresence of CTLA4Ig than that in the presence of control IgG in vitro. The results suggestthat CTLA4Ig might directly stimulate NK cell cytotoxicity.
     4. CD86is the target molecule in CTLA4Ig-mediated enhancement of NK cytolyticactivity.
     1). NK cells could significantly increase the expression of CD86upon tumor cellstimulation.
     Based on the fact that CTLA4Ig binds with high affinity to CD80/CD86, wehypothesized that CD80or CD86might play in role in the ability of CTLA4Ig to enhance NKcell functions against tumor metastasis. To understand the expression of CD80and CD86onphysiological NK cells of B6mouse, the CD80/CD86expression on NK cells was examinedby flow cytometry. The results showed that prior to activation, mouse NK cells had6% expression of CD86and little CD80expression. The expression of CD86on NK cells wassignificantly increased following activation with both YAC-1tumor cells and cytokine IL-15in vitro. Furthermore, we detected the expressions of CD86and CD80on the tumor-infiltrating NK cells in vivo10days after injection of B16melanoma cells. The data showedthat injection of B16melanoma cells could significantly increase the expression of CD86, butnot CD80, on infiltrating NK cells. These results indicated that NK cells could significantlyincrease the expression of CD86upon stimulation by tumor cells and that CTLA4Ig activatesNK cells possibly via ligation of CD86on the activated NK cells.
     2). CTLA4Ig induces higher level of expression of both NKG2D and NKp44.
     To test the role of CD86in regulating NK cell function, we used NK92-MI thatspontaneously expressed high levels of CD86, but not CD80, as effector cells for ligationwith CTLA4Ig in vitro. The results showed that the ligation of NK-92MI cells withCTLA4Ig significantly induced higher expression level of NK effector molecules NKG2Dand NKp44.
     3). CD86rather than CD80on NK cells might be involved in the enhancement of NKcell cytotoxicity in competition experiments.
     To exclude that the anti-CD80and anti-CD86antibody may affect the cytotoxicity ofNK cells, we added anti-CD80or anti-CD86antibody into NK-92MI cell culture system, asexpected, no effect of anti-CD80and anti-CD86antibody on NK-92MI cell cytotoxicity wasfound. Then, an anti-CD86antibody was used to compete for CD86molecules on NK-92MIwith CTLA4Ig. The results showed that when anti-CD86antibody, together with CTLA4Ig,was added into the NK-92MI cell culture system, the CTLA4Ig-mediated NK-92MI cellactivation was partly decreased. If anti-CD86antibody was added2hours earlier thanCTLA4Ig, which meant that the anti-CD86antibody had pre-occupied the CD86moleculeson NK cells, CTLA4Ig-mediated NK-92MI cell cytotoxicity was completely abolished.These data from the competition experiments clearly demonstrates that CD86rather thanCD80on NK cells is involved in the enhancement of NK cell cytotoxicity to target cells.
     Conclusion: we showed that brief administration of CTLA4Ig significantly reducedtumor metastasis and prolonged the survival of host mice bearing B16melanoma. Depletionof NK cells prior to CTLA4Ig administration eliminated the CTLA4Ig-mediated killingactivity. CTLA4Ig can significantly enhance NK cell cytotoxicity to target cells via up-regulation of NK cell effecter molecules CD107a and perforin in vivo. In addition, wedemonstrated that, upon activation, NK cells could significantly increase the expression ofCD86both in vitro and in vivo, and ligation of CD86with CTLA4Ig significantly increasedthe ability of NK cells to kill target cells. Furthermore, a human NK cell line that expressedhigh level of CD86, but not CD80, was directly activated by CTLA4Ig so that killing oftargets was enhanced; this enhanced killing could be inhibited by blocking CD86. Ourfindings uncover a novel function of CTLA4Ig in innate immunity and suggest that CD86onNK cells is an activating receptor and closely involved in the CTLA4Ig-mediatedcytotoxicity activity.
引文
1Hervey PS, Keam SJ.2006. Abatacept. BioDrugs20:53-61; discussion2.
    2Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, FiorettiMC, Puccetti P.2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol3:1097-101
    3Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L.2001. Activating receptorsand coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol19:197-223
    Farag SS, Caligiuri MA.2006. Human natural killer cell development and biology. Blood Rev20:123-37
    5Winchester BG.2001. Lysosomal membrane proteins. Eur J Paediatr Neurol5Suppl A:11-9
    1Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A.2006. Surface NK receptors and their ligands ontumor cells. Semin Immunol18:151-8
    2Gorczynski RM, Kiziroglu F.1994. Role of CTLA4-Ig on induction of unrespon-siveness to multiple minoralloantigens. Transpl Int7Suppl1: S599-601
    3Finck BK, Linsley PS, Wofsy D.1994. Treatment of murine lupus with CTLA4Ig. Science265:1225-7
    4Dumont FJ.2004. Technology evaluation: abatacept, Bristol-Myers Squibb. Curr Opin Mol Ther6:318-30
    5Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, Anderson D, Cowan S, Price K, Naemura J,Emswiler J, Greene J, Turk LA, Bajorath J, Townsend R, Hagerty D, Linsley PS, Peach RJ.2005. Rational development ofLEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant5:443-53
    6Luo G, Wu J, Chen X, He W, Yi S, Xie Z, Zheng J, Zhu J.2005. CTLA4Ig introduced by adenovirus vector locally toprolong the survival of xenogeneic skin grafts on rat burn wounds. J Trauma59:1209-15
    7Malm H, Corbascio M, Osterholm C, Cowan S, Larsen CP, Pearson TC, Ekberg H.2002. CTLA4ig induces long-termgraft survival of allogeneic skin grafts and totally inhibits T-cell proliferation in LFA-1-deficient mice. Transplantation73:293-7
    8Hervey PS, Keam SJ.2006. Abatacept. BioDrugs20:53-61; discussion2
    Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, FiorettiMC, Puccetti P.2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol3:1097-101
    1Hanna J, Fitchett J, Rowe T, Daniels M, Heller M, Gonen-Gross T, Manaster E, Cho SY, LaBarre MJ, Mandelboim O.2005. Proteomic analysis of human natural killer cells: insights on new potential NK immune functions. Mol Immunol42:425-31
    1Qin F, Sun HX.2008. Immunosuppressive activity of the ethanol extract of Sedum sarmentosum and its fractions onspecific antibody and cellular responses to ovalbumin in mice. Chem Biodivers5:2699-709
    Ulmer AJ, Scholz W, Ernst M, Brandt E, Flad HD.1984. Isolation and subfractionation of human peripheral bloodmononuclear cells (PBMC) by density gradient centrifu-gation on Percoll. Immunobiology166:238-50
    1Marcusson-Stahl M, Cederbrant K.2003. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dosetoxicity studies. Toxicology193:269-79
    1Cooper MA, Fehniger TA, Caligiuri MA.2001. The biology of human natural killer-cell subsets. Trends Immunol22:633-40
    2Sutlu T, Alici E.2009. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J InternMed266:154-81
    3Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y.2004. Cytokines in cancer immunity and immunotherapy. ImmunolRev202:275-93Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, Secchiero P, Manzoli FA, Vitale M.2004.
    Activated human NK and CD8+T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAILreceptors but are resistant to TRAIL-mediated cytotoxicity. Blood104:2418-24
    5Trinchieri G.2003. Interleukin-12and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol3:133-46
    6Fehniger TA, Cooper MA, Caligiuri MA.2002. Interleukin-2and interleukin-15: immunotherapy for cancer. CytokineGrowth Factor Rev13:169-83
    7van der Vliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, Gavin MA, Rudensky AY, Atkins MB, Balk SP, ExleyMA.2007. Effects of the administration of high-dose interleukin-2on immunoregulatory cell subsets in patients withadvanced melanoma and renal cell cancer. Clin Cancer Res13:2100-8
    1Maxwell LJ, Singh JA.2010. Abatacept for rheumatoid arthritis: a Cochrane systematic review. J Rheumatol37:234-45
    2Tremblay F, Fernandes M, Habbab F, de BEMD, Loertscher R, Meterissian S.2002. Malignancy after renaltransplantation: incidence and role of type of immunosuppre-ssion. Ann Surg Oncol9:785-8
    Pla M, Mahouy G.1991. The SCID mouse. Nouv Rev Fr Hematol33:489-91
    4Ishii E, Ueda I, Shirakawa R, Yamamoto K, Horiuchi H, Ohga S, Furuno K, Morimoto A, Imayoshi M, Ogata Y, ZaitsuM, Sako M, Koike K, Sakata A, Takada H, Hara T, Imashuku S, Sasazuki T, Yasukawa M.2005. Genetic subtypes offamilial hemophago-cytic lymphohistiocytosis: correlations with clinical features and cytotoxic T lymphoc-yte/naturalkiller cell functions. Blood105:3442-8
    5Orange JS.2008. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol8:713-25
    6Krzewski K, Coligan JE.2012. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol3:335
    7Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, LiebermanJ.2011. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol oftarget cells. Nat Immunol12:770-7
    1Portales P, Reynes J, Pinet V, Rouzier-Panis R, Baillat V, Clot J, Corbeau P.2003. Interferon-alpha restores HIV-inducedalteration of natural killer cell perforin express-ion in vivo. AIDS17:495-504
    2Rak GD, Mace EM, Banerjee PP, Svitkina T, Orange JS.2011. Natural killer cell lytic granule secretion occurs through apervasive actin network at the immune synapse. PLoS Biol9: e1001151
    3Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO.2005. Cytolytic granule polarization and degranulationcontrolled by different receptors in resting NK cells. J Exp Med202:1001-12
    4Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T.1999. Activation of NK cells and T cells by NKG2D,a receptor for stress-inducible MICA. Science285:727-9
    5Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N,Vitale M, Moretta L, Lopez M, Moretta A.2003. Identification of PVR (CD155) and Nectin-2(CD112) as cell surfaceligands for the human DNAM-1(CD226) activating molecule. J Exp Med198:557-67
    6Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH.2008.NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity28:571-80
    7Long EO.2002. Versatile signaling through NKG2D. Nat Immunol3:1119-20
    8Groh V, Wu J, Yee C, Spies T.2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cellactivation. Nature419:734-8
    9Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A.1998.NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved innon-major histocompatibility complex-restricted tumor cell lysis. J Exp Med187:2065-72
    1Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A, Biassoni R.1999. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel memberof the immunoglobulin superfamily. J Exp Med189:787-96
    2Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN.2002. Distinct role of CD80and CD86in the regulation of theactivation of B cell and B cell lymphoma. J Biol Chem277:7766-75
    3Hanna J, Fitchett J, Rowe T, Daniels M, Heller M, Gonen-Gross T, Manaster E, Cho SY, LaBarre MJ, Mandelboim O.2005. Proteomic analysis of human natural killer cells: insights on new potential NK immune functions. Mol Immunol42:425-31
    4Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL.2004. Cross-talk between activated human NK cellsand CD4+T cells via OX40-OX40ligand interactions. J Immunol173:3716-24
    Wilson JL, Charo J, Martin-Fontecha A, Dellabona P, Casorati G, Chambers BJ, Kiessling R, Bejarano MT, LjunggrenHG.1999. NK cell triggering by the human costimulatory molecules CD80and CD86. J Immunol163:4207-12
    1Trinchieri G, Valiante N.1993. Receptors for the Fc fragment of IgG on natural killer cells. Nat Immun12:218-34
    1Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S.2011. Innate oradaptive immunity? The example of natural killer cells. Science331:44-9
    2Lanier LL.2008. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol9:495-502
    3Lee SH, Miyagi T, Biron CA.2007. Keeping NK cells in highly regulated antiviral warfare. Trends Immunol28:252-9
    4Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B, Trinchieri G, Sher A.2012. NKcell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells atthe site of infection. Immunity36:1047-59
    1Orange JS.2008. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol8:713-25
    2Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG.2009. Natural killer cells in humanautoimmunity. Curr Opin Immunol21:634-40
    3Moffett-King A.2002. Natural killer cells and pregnancy. Nat Rev Immunol2:656-63
    4Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, TowerC, Regan L, Moore GE, Carrington M, Moffett A.2010. Maternal activating KIRs protect against human reproductivefailure mediated by fetal HLA-C2. J Clin Invest120:4102-10
    1Bryceson YT, Ljunggren HG, Long EO.2009. Minimal requirement for induction of natural cytotoxicity and intersectionof activation signals by inhibitory receptors. Blood114:2657-66
    2Lanier LL.2005. NK cell recognition. Annu Rev Immunol23:225-74
    1Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH.1998. Immunoreceptor DAP12bearing a tyrosine-based activationmotif is involved in activating NK cells. Nature391:703-7
    2Smith-Garvin JE, Koretzky GA, Jordan MS.2009. T cell activation. Annu Rev Immunol27:591-619
    3Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A,West R, Xu W, Vivier E, Levin SD.2009. The B7family member B7-H6is a tumor cell ligand for the activating naturalkiller cell receptor NKp30in humans. J Exp Med206:1495-503
    4Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C.2002. Human dendritic cells activate restingnatural killer (NK) cells and are recognized via the NKp30receptor by activated NK cells. J Exp Med195:343-51
    5Bryceson YT, March ME, Ljunggren HG, Long EO.2006. Synergy among receptors on resting NK cells for theactivation of natural cytotoxicity and cytokine secretion. Blood107:159-66
    6Feng J, Call ME, Wucherpfennig KW.2006. The assembly of diverse immune receptors is focused on a polarmembrane-embedded interaction site. PLoS Biol4: e142
    7Abi-Rached L, Parham P.2005. Natural selection drives recurrent formation of activating killer cellimmunoglobulin-like receptor and Ly49from inhibitory homol-ogues. J Exp Med201:1319-32
    8Hiby SE, Walker JJ, O'Shaughnessy K M, Redman CW, Carrington M, Trowsdale J, Moffett A.2004. Combinations ofmaternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med200:957-65
    9Yokoyama WM, Seaman WE.1993. The Ly-49and NKR-P1gene families encoding lectin-like receptors on naturalkiller cells: the NK gene complex. Annu Rev Immunol11:613-35
    10Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Verges S, Lanier LL, Weisdorf D, Miller JS.2012.Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+naturalkiller cells with potent function. Blood119:2665-74
    11Gasser S, Raulet D.2006. The DNA damage response, immunity and cancer. Semin Cancer Biol16:344-7
    12Raulet DH.2003. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol3:781-90
    1Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH.2008.NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity28:571-80
    2Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH.1999. An activating immunoreceptor complexformed by NKG2D and DAP10. Science285:730-2
    3Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD.2009. PI3K links NKG2D signaling to a CrkLpathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol182:6933-42
    4Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, Davidson D, Veillette A.2003. Binding ofSAP SH2domain to FynT SH3domain reveals a novel mechanism of receptor signalling in immune regulation. Nat CellBiol5:149-54
    5Cannons JL, Tangye SG, Schwartzberg PL.2011. SLAM family receptors and SAP adaptors in immunity. Annu RevImmunol29:665-705
    6Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A.2001. Regulation of SLAM-mediated signal
    7transduction by SAP, the X-linked lympho-proliferative gene product. Nat Immunol2:681-90Veillette A, Dong Z, Perez-Quintero LA, Zhong MC, Cruz-Munoz ME.2009. Importance and mechanism of 'switch'function of SAP family adapters. Immunol Rev232:229-39
    8Dong Z, Cruz-Munoz ME, Zhong MC, Chen R, Latour S, Veillette A.2009. Essential function for SAP family adaptorsin the surveillance of hematopoietic cells by natural killer cells. Nat Immunol10:973-80
    9Dong Z, Davidson D, Perez-Quintero LA, Kurosaki T, Swat W, Veillette A.2012. The adaptor SAP controls NK cellactivation by regulating the enzymes Vav-1and SHIP-1and by enhancing conjugates with target cells. Immunity36:974-85
    10Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM.2010. Absence of mouse2B4promotes NKcell-mediated killing of activated CD8+T cells, leading to prolonged viral persistence and altered pathogenesis. J ClinInvest120:1925-38
    1Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M.2008.DNAM-1promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J ExpMed205:2965-73
    2Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N,Vitale M, Moretta L, Lopez M, Moretta A.2003. Identification of PVR (CD155) and Nectin-2(CD112) as cell surfaceligands for the human DNAM-1(CD226) activating molecule. J Exp Med198:557-67
    3Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, RiveraP, Capobianco A, Moretta L, Moretta A, Bottino C.2006. Expression of the DNAM-1ligands, Nectin-2(CD112) andpoliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood107:2030-6
    4Shibuya A, Lanier LL, Phillips JH.1998. Protein kinase C is involved in the regulation of both signaling and adhesionmediated by DNAX accessory molecule-1receptor. J Immunol161:1671-6
    5Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A.1999. Physical andfunctional association of LFA-1with DNAM-1adhesion molecule. Immunity11:615-23
    6Dennehy KM, Klimosch SN, Steinle A.2011. Cutting edge: NKp80uses an atypical hemi-ITAM to trigger NKcytotoxicity. J Immunol186:657-61
    Bryceson YT, March ME, Ljunggren HG, Long EO.2006. Synergy among receptors on resting NK cells for theactivation of natural cytotoxicity and cytokine secretion. Blood107:159-66
    1Fauriat C, Long EO, Ljunggren HG, Bryceson YT.2010. Regulation of human NK-cell cytokine and chemokineproduction by target cell recognition. Blood115:2167-76
    Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA.2001. Humannatural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood97:3146-51
    1Kim HS, Das A, Gross CC, Bryceson YT, Long EO.2010. Synergistic signals for natural cytotoxicity are required toovercome inhibition by c-Cbl ubiquitin ligase. Immunity32:175-86
    2Hidano S, Sasanuma H, Ohshima K, Seino K, Kumar L, Hayashi K, Hikida M, Kurosaki T, Taniguchi M, Geha RS,Kitamura D, Goitsuka R.2008. Distinct regulatory functions of SLP-76and MIST in NK cell cytotoxicity and IFN-gammaproduction. Int Immunol20:345-52
    3Jordan MS, Sadler J, Austin JE, Finkelstein LD, Singer AL, Schwartzberg PL, Koretzky GA.2006. Functional hierarchyof the N-terminal tyrosines of SLP-76. J Immunol176:2430-8
    4Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O, Balbo A, Yamaguchi H, Houtman JC, Appella E, Schuck P,Samelson LE.2010. Cooperative interactions at the SLP-76complex are critical for actin polymerization. EMBO J29:2315-28
    1Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM.2006. Centrosome polarization delivers secretorygranules to the immunological synapse. Nature443:462-5
    2Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM.2009. The strength of T cell receptor signal controls thepolarization of cytotoxic machinery to the immunological synapse. Immunity31:621-31
    3Etienne-Manneville S.2004. Cdc42--the centre of polarity. J Cell Sci117:1291-300
    4Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J, Keppler MD, Monypenny J, Coolen T,Barber PR, Vojnovic B, Suhling K, Fraternali F, Ameer-Beg S, Parker PJ, Thomas NS, Ng T.2011. A targeted siRNAscreen identifies regulators of Cdc42activity at the natural killer cell immunological synapse. Sci Signal4: ra81
    5Banerjee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawver L, Orange JS.2007. Cdc42-interacting protein-4functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J Exp Med204:2305-20
    6Sanborn KB, Mace EM, Rak GD, Difeo A, Martignetti JA, Pecci A, Bussel JB, Favier R, Orange JS.2011.Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules topromote NK-cell cytotoxicity. Blood118:5862-71
    7Liu D, Bryceson YT, Meckel T, Vasiliver-Shamis G, Dustin ML, Long EO.2009. Integrin-dependent organization andbidirectional vesicular traffic at cytotoxic immune synapses. Immunity31:99-109
    8Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, Boelens JJ, Celkan T, Farah RA, HultenbyK, Winiarski J, Roche PA, Nordenskjold M, Henter JI, Long EO, Ljunggren HG.2007. Defective cytotoxic lymphocytedegranulation in syntaxin-11deficient familial hemophagocytic lymphohistiocytosis4(FHL4) patients. Blood110:1906-15
    9Krzewski K, Gil-Krzewska A, Watts J, Stern JN, Strominger JL.2011. VAMP4-and VAMP7-expressing vesicles areboth required for cytotoxic granule exocytosis in NK cells. Eur J Immunol41:3323-9
    de Saint Basile G, Menasche G, Fischer A.2010. Molecular mechanisms of biogenesis and exocytosis of cytotoxicgranules. Nat Rev Immunol10:568-79
    1Barreira da Silva R, Graf C, Munz C.2011. Cytoskeletal stabilization of inhibitory interactions in immunologic synapsesof mature human dendritic cells with natural killer cells. Blood118:6487-98
    2Barreira da Silva R, Munz C.2011. Natural killer cell activation by dendritic cells: balancing inhibitory and activatingsignals. Cell Mol Life Sci68:3505-18
    3Mortier E, Woo T, Advincula R, Gozalo S, Ma A.2008. IL-15Ralpha chaperones IL-15to stable dendritic cell membranecomplexes that activate NK cells via trans presentation. J Exp Med205:1213-25
    4Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA.2007. High basal STAT4balanced by STAT1induction tocontrol type1interferon effects in natural killer cells. J Exp Med204:2383-96
    5Cyster JG, Schwab SR.2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu RevImmunol30:69-94
    6Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E.2007. Natural killer cell trafficking in vivo requires a dedicated sphingosine1-phosphate receptor. Nat Immunol8:1337-44
    1Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM.2009. Cytokine-induced memory-like naturalkiller cells. Proc Natl Acad Sci U S A106:1915-9
    2Sun JC, Beilke JN, Lanier LL.2009. Adaptive immune features of natural killer cells. Nature457:557-61
    3Sun JC, Ma A, Lanier LL.2009. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection.J Immunol183:2911-4
    4Rajagopalan S.2010. Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4(CD158d). Traffic11:1381-90
    5Moffett-King A.2002. Natural killer cells and pregnancy. Nat Rev Immunol2:656-63
    1Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A, Joosten I, Long EO.2006. Activation ofNK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol4: e9
    2Rajagopalan S, Moyle MW, Joosten I, Long EO.2010. DNA-PKcs controls an endosomal signaling pathway for aproinflammatory response by natural killer cells. Sci Signal3: ra14
    3Long EO.2008. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev224:70-84
    4Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO.2003. Vav1dephosphorylation by thetyrosine phosphatase SHP-1as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol23:6291-9
    Abeyweera TP, Merino E, Huse M.2011. Inhibitory signaling blocks activating receptor clustering and inducescytoskeletal retraction in natural killer cells. J Cell Biol192:675-90
    1Das A, Long EO.2010. Lytic granule polarization, rather than degranulation, is the preferred target of inhibitoryreceptors in NK cells. J Immunol185:4698-704
    2Peterson ME, Long EO.2008. Inhibitory receptor signaling via tyrosine phosphor-ylation of the adaptor Crk. Immunity29:578-88
    Liu D, Peterson ME, Long EO.2012. The adaptor protein Crk controls activation and inhibition of natural killer cells.Immunity36:600-11
    1Mesecke S, Urlaub D, Busch H, Eils R, Watzl C.2011. Integration of activating and inhibitory receptor signaling byregulated phosphorylation of Vav1in immune cells. Sci Signal4: ra36
    Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A, Long EO.1995. Peptide specificity in therecognition of MHC class I by natural killer cell clones. Science267:1016-8
    1Dam J, Guan R, Natarajan K, Dimasi N, Chlewicki LK, Kranz DM, Schuck P, Margulies DH, Mariuzza RA.2003.Variable MHC class I engagement by Ly49natural killer cell receptors demonstrated by the crystal structure of Ly49Cbound to H-2K(b). Nat Immunol4:1213-22
    2Fadda L, Borhis G, Ahmed P, Cheent K, Pageon SV, Cazaly A, Stathopoulos S, Middleton D, Mulder A, Claas FH,Elliott T, Davis DM, Purbhoo MA, Khakoo SI.2010. Peptide antagonism as a mechanism for NK cell activation. Proc NatlAcad Sci U S A107:10160-5
    3Ljunggren HG, Karre K.1990. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today11:237-44
    4Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH.2005. A subset of natural killer cellsachieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood105:4416-23
    1Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, RomagneF, Ugolini S, Vivier E.2006. Human NK cell education by inhibitory receptors for MHC class I. Immunity25:331-42
    2Yokoyama WM, Kim S.2006. Licensing of natural killer cells by self-major histocompatibility complex class I.Immunol Rev214:143-54
    Brodin P, Lakshmikanth T, Johansson S, Karre K, Hoglund P.2009. The strength of inhibitory input during educationquantitatively tunes the functional responsiveness of individual natural killer cells. Blood113:2434-41
    1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM,Ugolini S.2011. Innate or adaptive immunity? The example of natural killer cells.Science331:44-9
    2. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N.2008. Potential role of NKcells in the induction of immune responses: implications for NK cell-basedimmunotherapy for cancers and viral infections. Int Rev Immunol27:93-110
    3. Lanier LL.2001. A renaissance for the tumor immunosurveillance hypothesis. Nat Med7:1178-80
    4. Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S,Moretta L, Moretta A, Biassoni R.1999. NKp44, a triggering receptor involved intumor cell lysis by activated human natural killer cells, is a novel member of theimmunoglobulin superfamily. J Exp Med189:787-96
    5. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA,Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, EllisdonAM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL,Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC.2007. A commonfold mediates vertebrate defense and bacterial attack. Science317:1548-51
    6. Bots M, Medema JP.2006. Granzymes at a glance. J Cell Sci119:5011-4
    7. Djeu JY, Jiang K, Wei S.2002. A view to a kill: signals triggering cytotoxicity. ClinCancer Res8:636-40
    8. Fukuda M.1991. Lysosomal membrane glycoproteins. Structure, biosynthesis, andintracellular trafficking. J Biol Chem266:21327-30
    9. Alter G, Malenfant JM, Altfeld M.2004. CD107a as a functional marker for theidentification of natural killer cell activity. J Immunol Methods294:15-22
    10. Gorczynski RM, Kiziroglu F.1994. Role of CTLA4-Ig on induction of unrespon-siveness to multiple minor alloantigens. Transpl Int7Suppl1: S599-601
    11. Finck BK, Linsley PS, Wofsy D.1994. Treatment of murine lupus with CTLA4Ig.Science265:1225-7
    12. Webb LM, Walmsley MJ, Feldmann M.1996. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28co-stimulatory pathway: requirement forboth B7-1and B7-2. Eur J Immunol26:2320-8
    13. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobertm E, Anderson D,Cowan S, Price K, Naemura J, Emswiler J, Greene J, Turk LA, Bajorath J, Townsend R,Hagerty D, Linsley PS, Peach RJ.2005. Rational development of LEA29Y (belatacept),a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am JTransplant5:443-53
    14. Dumont FJ.2004. Technology evaluation: abatacept, Bristol-Myers Squibb. Curr OpinMol Ther6:318-30
    15. Allison C.2005. Abatacept as add-on therapy for rheumatoid arthritis. Issues EmergHealth Technol:1-4
    16. Kremer JM, Dougados M, Emery P, Durez P, Sibilia J, Shergy W, Steinfeld S, Tindall E,Becker JC, Li T, Nuamah IF, Aranda R, Moreland LW.2005. Treatment of rheumatoidarthritis with the selective costimulation modulator abatacept: twelve-month results of aphase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum52:2263-71
    17. Hervey PS, Keam SJ.2006. Abatacept. BioDrugs20:53-61; discussion2
    18. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P,Belladonna ML, Bianchi R, Fioretti MC, Puccetti P.2002. CTLA-4-Ig regulatestryptophan catabolism in vivo. Nat Immunol3:1097-101
    19. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL.2004. Cross-talkbetween activated human NK cells and CD4+T cells via OX40-OX40ligandinteractions. J Immunol173:3716-24
    20. Hanna J, Fitchett J, Rowe T, Daniels M, Heller M, Gonen-Gross T, Manaster E, Cho SY,LaBarre MJ, Mandelboim O.2005. Proteomic analysis of human natural killer cells:insights on new potential NK immune functions. Mol Immunol42:425-31
    21. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, Anderson D, CowanS, Price K, Naemura J, Emswiler J, Greene J, Turk LA, Bajorath J, Townsend R,Hagerty D, Linsley PS, Peach RJ.2005. Rational development of LEA29Y (belatacept),a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am JTransplant5:443-53
    22. Lanier LL.2005. NK cell recognition. Annu Rev Immunol23:225-74
    23. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S.2008. Functions of naturalkiller cells. Nat Immunol9:503-10
    24. Uhrberg M.2005. The KIR gene family: life in the fast lane of evolution. Eur JImmunol35:10-5
    25. Purdy AK, Campbell KS.2009. Natural killer cells and cancer: regulation by the killercell Ig-like receptors (KIR). Cancer Biol Ther8:2211-20
    26. Cerwenka A, Lanier LL.2003. NKG2D ligands: unconventional MHC class I-likemolecules exploited by viruses and cancer. Tissue Antigens61:335-43
    27. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, MorettaL.2001. Activating receptors and coreceptors involved in human natural killercell-mediated cytolysis. Annu Rev Immunol19:197-223
    28. Farag SS, Caligiuri MA.2006. Human natural killer cell development and biology.Blood Rev20:123-37
    29. Winchester BG.2001. Lysosomal membrane proteins. Eur J Paediatr Neurol5Suppl A:11-9
    30. Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A.2006. SurfaceNK receptors and their ligands on tumor cells. Semin Immunol18:151-8
    31. Luo G, Wu J, Chen X, He W, Yi S, Xie Z, Zheng J, Zhu J.2005. CTLA4Ig introducedby adenovirus vector locally to prolong the survival of xenogeneic skin grafts on ratburn wounds. J Trauma59:1209-15
    32. Malm H, Corbascio M, Osterholm C, Cowan S, Larsen CP, Pearson TC, Ekberg H.2002. CTLA4ig induces long-term graft survival of allogeneic skin grafts and totallyinhibits T-cell proliferation in LFA-1-deficient mice. Transplantation73:293-7
    33. Qin F, Sun HX.2008. Immunosuppressive activity of the ethanol extract of Sedumsarmentosum and its fractions on specific antibody and cellular responses to ovalbuminin mice. Chem Biodivers5:2699-709
    34. Ulmer AJ, Scholz W, Ernst M, Brandt E, Flad HD.1984. Isolation and subfractionationof human peripheral blood mononuclear cells (PBMC) by density gradient centrifu-gation on Percoll. Immunobiology166:238-50
    35. Langhans B, Ahrendt M, Nattermann J, Sauerbruch T, Spengler U.2005. Comparativestudy of NK cell-mediated cytotoxicity using radioactive and flow cytometriccytotoxicity assays. J Immunol Methods306:161-8
    36. Marcusson-Stahl M, Cederbrant K.2003. A flow-cytometric NK-cytotoxicity assayadapted for use in rat repeated dose toxicity studies. Toxicology193:269-79
    37. Vizler C, Nagy T, Kusz E, Glavinas H, Duda E.2002. Flow cytometric cytotoxicityassay for measuring mammalian and avian NK cell activity. Cytometry47:158-62
    38. Cooper MA, Fehniger TA, Caligiuri MA.2001. The biology of human naturalkiller-cell subsets. Trends Immunol22:633-40
    39. Sutlu T, Alici E.2009. Natural killer cell-based immunotherapy in cancer: currentinsights and future prospects. J Intern Med266:154-81
    40. Farag SS, Caligiuri MA.2004. Cytokine modulation of the innate immune system inthe treatment of leukemia and lymphoma. Adv Pharmacol51:295-318
    41. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y.2004. Cytokines in cancer immunityand immunotherapy. Immunol Rev202:275-93
    42. Becknell B, Caligiuri MA.2005. Interleukin-2, interleukin-15, and their roles in humannatural killer cells. Adv Immunol86:209-39
    43. Rosenberg SA.2000. Interleukin-2and the development of immunotherapy for thetreatment of patients with cancer. Cancer J Sci Am6Suppl1: S2-7
    44. Colombo MP, Trinchieri G.2002. Interleukin-12in anti-tumor immunity andimmunotherapy. Cytokine Growth Factor Rev13:155-68
    45. Bottino C, Moretta L, Pende D, Vitale M, Moretta A.2004. Learning how todiscriminate between friends and enemies, a lesson from Natural Killer cells. MolImmunol41:569-75
    46. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A.2004. Differentcheckpoints in human NK-cell activation. Trends Immunol25:670-6
    47. Trinchieri G.1989. Biology of natural killer cells. Adv Immunol47:187-376
    48. Trinchieri G.2003. Interleukin-12and the regulation of innate resistance and adaptiveimmunity. Nat Rev Immunol3:133-46
    49. Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, Sundan A,Espevik T.1997. Regulation of Fas and Fas-ligand expression in NK cells by cytokinesand the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine9:394-404
    50. Johnsen AC, Haux J, Steinkjer B, Nonstad U, Egeberg K, Sundan A, Ashkenazi A,Espevik T.1999. Regulation of APO-2ligand/trail expression in NK cells-involvementin NK cell-mediated cytotoxicity. Cytokine11:664-72
    51. Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, SecchieroP, Manzoli FA, Vitale M.2004. Activated human NK and CD8+T cells express bothTNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistantto TRAIL-mediated cytotoxicity. Blood104:2418-24
    52. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B.1998. Naturalkiller (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand byimmature and mature primary human NK cells. J Exp Med188:2375-80
    53. Fehniger TA, Cooper MA, Caligiuri MA.2002. Interleukin-2and interleukin-15:immunotherapy for cancer. Cytokine Growth Factor Rev13:169-83
    54. van der Vliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, Gavin MA, RudenskyAY, Atkins MB, Balk SP, Exley MA.2007. Effects of the administration of high-doseinterleukin-2on immunoregulatory cell subsets in patients with advanced melanomaand renal cell cancer. Clin Cancer Res13:2100-8
    55. Ghiringhelli F, Menard C, Martin F, Zitvogel L.2006. The role of regulatory T cells inthe control of natural killer cells: relevance during tumor progression. Immunol Rev214:229-38
    56. Maxwell LJ, Singh JA.2010. Abatacept for rheumatoid arthritis: a Cochrane systematicreview. J Rheumatol37:234-45
    57. Westhovens R, Kremer JM, Moreland LW, Emery P, Russell AS, Li T, Aranda R,Becker JC, Qi K, Dougados M.2009. Safety and efficacy of the selective costimulationmodulator abatacept in patients with rheumatoid arthritis receiving backgroundmethotrexate: a5-year extended phase IIB study. J Rheumatol36:736-42
    58. Tremblay F, Fernandes M, Habbab F, de BEMD, Loertscher R, Meterissian S.2002.Malignancy after renal transplantation: incidence and role of type of immunosuppre-ssion. Ann Surg Oncol9:785-8
    59. Dantal J, Hourmant M, Cantarovich D, Giral M, Blancho G, Dreno B, Soulillou JP.1998. Effect of long-term immunosuppression in kidney-graft recipients on cancerincidence: randomised comparison of two cyclosporin regimens. Lancet351:623-8
    60. Pla M, Mahouy G.1991. The SCID mouse. Nouv Rev Fr Hematol33:489-91
    61. Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, BoelensJJ, Celkan T, Farah RA, Hultenby K, Winiarski J, Roche PA, Nordenskjold M, HenterJI, Long EO, Ljunggren HG.2007. Defective cytotoxic lymphocyte degranulation insyntaxin-11deficient familial hemophagocytic lymphohistiocytosis4(FHL4) patients.Blood110:1906-15
    62. Ishii E, Ueda I, Shirakawa R, Yamamoto K, Horiuchi H, Ohga S, Furuno K, MorimotoA, Imayoshi M, Ogata Y, Zaitsu M, Sako M, Koike K, Sakata A, Takada H, Hara T,Imashuku S, Sasazuki T, Yasukawa M.2005. Genetic subtypes of familial hemophago-cytic lymphohistiocytosis: correlations with clinical features and cytotoxic T lymphoc-yte/natural killer cell functions. Blood105:3442-8
    63. Orange JS.2008. Formation and function of the lytic NK-cell immunological synapse.Nat Rev Immunol8:713-25
    64. Krzewski K, Coligan JE.2012. Human NK cell lytic granules and regulation of theirexocytosis. Front Immunol3:335
    65. Voskoboinik I, Smyth MJ, Trapani JA.2006. Perforin-mediated target-cell death andimmune homeostasis. Nat Rev Immunol6:940-52
    66. Pipkin ME, Lieberman J.2007. Delivering the kiss of death: progress on understandinghow perforin works. Curr Opin Immunol19:301-8
    67. Talanian RV, Yang X, Turbov J, Seth P, Ghayur T, Casiano CA, Orth K, Froelich CJ.1997. Granule-mediated killing: pathways for granzyme B-initiated apoptosis. J ExpMed186:1323-31
    68. Beresford PJ, Xia Z, Greenberg AH, Lieberman J.1999. Granzyme A loading inducesrapid cytolysis and a novel form of DNA damage independently of caspase activation.Immunity10:585-94
    69. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J.2005.Perforin triggers a plasma membrane-repair response that facilitates CTL induction ofapoptosis. Immunity23:249-62
    70. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS,Bleackley RC, Kirchhausen T, Lieberman J.2011. Perforin pores in the endosomalmembrane trigger the release of endocytosed granzyme B into the cytosol of target cells.Nat Immunol12:770-7
    71. Portales P, Reynes J, Pinet V, Rouzier-Panis R, Baillat V, Clot J, Corbeau P.2003.Interferon-alpha restores HIV-induced alteration of natural killer cell perforin express-ion in vivo. AIDS17:495-504
    72. Rak GD, Mace EM, Banerjee PP, Svitkina T, Orange JS.2011. Natural killer cell lyticgranule secretion occurs through a pervasive actin network at the immune synapse.PLoS Biol9: e1001151
    73. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA.2003. Sensitive and viable identification of antigen-specific CD8+T cells by a flowcytometric assay for degranulation. J Immunol Methods281:65-78
    74. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO.2005. Cytolytic granulepolarization and degranulation controlled by different receptors in resting NK cells. JExp Med202:1001-12
    75. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T.1999. Activation ofNK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285:727-9
    76. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S, Nanni M, BiassoniR, Bottino C, Moretta A, Moretta L.2001. Role of NKG2D in tumor cell lysis mediatedby human NK cells: cooperation with natural cytotoxicity receptors and capability ofrecognizing tumors of nonepithelial origin. Eur J Immunol31:1076-86
    77. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, GrassiJ, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A.2003.Identification of PVR (CD155) and Nectin-2(CD112) as cell surface ligands for thehuman DNAM-1(CD226) activating molecule. J Exp Med198:557-67
    78. Moretta L, Moretta A.2004. Unravelling natural killer cell function: triggering andinhibitory human NK receptors. EMBO J23:255-9
    79. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M,Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J.2005. DNA damage response as acandidate anti-cancer barrier in early human tumorigenesis. Nature434:864-70
    80. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T,Venere M, Ditullio RA, Jr., Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M,Kittas C, Halazonetis TD.2005. Activation of the DNA damage checkpoint andgenomic instability in human precancerous lesions. Nature434:907-13
    81. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D,Greenberg NM, Raulet DH.2008. NKG2D-deficient mice are defective in tumorsurveillance in models of spontaneous malignancy. Immunity28:571-80
    82. Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA,Lanier LL.2004. NKG2D blockade prevents autoimmune diabetes in NOD mice.Immunity20:757-67
    83. Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL.2005. Function ofNKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. NatImmunol6:938-45
    84. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M,Chalupny NJ.2001. ULBPs, novel MHC class I-related molecules, bind to CMVglycoprotein UL16and stimulate NK cytotoxicity through the NKG2D receptor.Immunity14:123-33
    85. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T.2001.Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced onvirus-infected cells. Nat Immunol2:255-60
    86. Jonjic S, Babic M, Polic B, Krmpotic A.2008. Immune evasion of natural killer cellsby viruses. Curr Opin Immunol20:30-8
    87. Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T, RammenseeHG, Steinle A.2005. Systemic NKG2D down-regulation impairs NK and CD8T cellresponses in vivo. J Immunol175:720-9
    88. Long EO.2002. Versatile signaling through NKG2D. Nat Immunol3:1119-20
    89. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH.2002.The role of the NKG2D immunoreceptor in immune cell activation and natural killing.Immunity17:19-29
    90. Salih HR, Rammensee HG, Steinle A.2002. Cutting edge: down-regulation of MICA onhuman tumors by proteolytic shedding. J Immunol169:4098-102
    91. Groh V, Wu J, Yee C, Spies T.2002. Tumour-derived soluble MIC ligands impairexpression of NKG2D and T-cell activation. Nature419:734-8
    92. Arreygue-Garcia NA, Daneri-Navarro A, del Toro-Arreola A, Cid-Arregui A,Gonzalez-Ramella O, Jave-Suarez LF, Aguilar-Lemarroy A, Troyo-Sanroman R,Bravo-Cuellar A, Delgado-Rizo V, Garcia-Iglesias T, Hernandez-Flores G, DelToro-Arreola S.2008. Augmented serum level of major histocompatibility complexclass I-related chain A (MICA) protein and reduced NKG2D expression on NK and Tcells in patients with cervical cancer and precursor lesions. BMC Cancer8:16
    93. Salih HR, Goehlsdorf D, Steinle A.2006. Release of MICB molecules by tumor cells:mechanism and soluble MICB in sera of cancer patients. Hum Immunol67:188-95
    94. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R,Moretta L, Moretta A.1998. NKp44, a novel triggering surface molecule specificallyexpressed by activated natural killer cells, is involved in non-major histocompatibilitycomplex-restricted tumor cell lysis. J Exp Med187:2065-72
    95. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E,Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A.1999.Identification and molecular characterization of NKp30, a novel triggering receptorinvolved in natural cytotoxicity mediated by human natural killer cells. J Exp Med190:1505-16
    96. Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, MorettaA.1998. Molecular cloning of NKp46: a novel member of the immunoglobulinsuperfamily involved in triggering of natural cytotoxicity. J Exp Med188:953-60
    97. Walker LS, Sansom DM.2011. The emerging role of CTLA4as a cell-extrinsicregulator of T cell responses. Nat Rev Immunol11:852-63
    98. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, Kenefeck R, WilloxAK, Royle SJ, Rappoport JZ, Sansom DM.2012. Constitutive clathrin-mediatedendocytosis of CTLA-4persists during T cell activation. J Biol Chem287:9429-40
    99. Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN.2002. Distinct role of CD80andCD86in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem277:7766-75
    100.Hunter CA, Ellis-Neyer L, Gabriel KE, Kennedy MK, Grabstein KH, Linsley PS,Remington JS.1997. The role of the CD28/B7interaction in the regulation of NK cellresponses during infection with Toxoplasma gondii. J Immunol158:2285-93
    101.Wilson JL, Charo J, Martin-Fontecha A, Dellabona P, Casorati G, Chambers BJ,Kiessling R, Bejarano MT, Ljunggren HG.1999. NK cell triggering by the humancostimulatory molecules CD80and CD86. J Immunol163:4207-12
    102.Martin-Fontecha A, Assarsson E, Carbone E, Karre K, Ljunggren HG.1999. Triggeringof murine NK cells by CD40and CD86(B7-2). J Immunol162:5910-6
    103.Trinchieri G, Valiante N.1993. Receptors for the Fc fragment of IgG on natural killercells. Nat Immun12:218-34
    1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM,Ugolini S.2011. Innate or adaptive immunity? The example of natural killer cells.Science331:44-9
    2. Tassi I, Klesney-Tait J, Colonna M.2006. Dissecting natural killer cell activationpathways through analysis of genetic mutations in human and mouse. Immunol Rev214:92-105
    3. Lanier LL.2008. Up on the tightrope: natural killer cell activation and inhibition. NatImmunol9:495-502
    4. Veillette A.2010. SLAM-family receptors: immune regulators with or withoutSAP-family adaptors. Cold Spring Harb Perspect Biol2: a002469
    5. Bryceson YT, Chiang SC, Darmanin S, Fauriat C, Schlums H, Theorell J, Wood SM.2011. Molecular mechanisms of natural killer cell activation. J Innate Immun3:216-26
    6. Lee SH, Miyagi T, Biron CA.2007. Keeping NK cells in highly regulated antiviralwarfare. Trends Immunol28:252-9
    7. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B,Trinchieri G, Sher A.2012. NK cell-derived interferon-gamma orchestrates cellulardynamics and the differentiation of monocytes into dendritic cells at the site ofinfection. Immunity36:1047-59
    8. Orange JS.2008. Formation and function of the lytic NK-cell immunological synapse.Nat Rev Immunol8:713-25
    9. Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG.2009. Naturalkiller cells in human autoimmunity. Curr Opin Immunol21:634-40
    10. Jiang W, Chai NR, Maric D, Bielekova B.2011. Unexpected role for granzyme K inCD56bright NK cell-mediated immunoregulation of multiple sclerosis. J Immunol187:781-90
    11. Moffett-King A.2002. Natural killer cells and pregnancy. Nat Rev Immunol2:656-63
    12. Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ,Redman CW, Morgan L, Tower C, Regan L, Moore GE, Carrington M, Moffett A.2010.Maternal activating KIRs protect against human reproductive failure mediated by fetalHLA-C2. J Clin Invest120:4102-10
    13. Bryceson YT, Ljunggren HG, Long EO.2009. Minimal requirement for induction ofnatural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood114:2657-66
    14. Bryceson YT, March ME, Ljunggren HG, Long EO.2006. Synergy among receptors onresting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood107:159-66
    15. Moretta L, Moretta A.2004. Unravelling natural killer cell function: triggering andinhibitory human NK receptors. EMBO J23:255-9
    16. Lanier LL.2005. NK cell recognition. Annu Rev Immunol23:225-74
    17. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH.1998. Immunoreceptor DAP12bearing a tyrosine-based activation motif is involved in activating NK cells. Nature391:703-7
    18. Tomasello E, Olcese L, Vely F, Geourgeon C, Blery M, Moqrich A, Gautheret D,Djabali M, Mattei MG, Vivier E.1998. Gene structure, expression pattern, andbiological activity of mouse killer cell activating receptor-associated protein(KARAP)/DAP-12. J Biol Chem273:34115-9
    19. Smith-Garvin JE, Koretzky GA, Jordan MS.2009. T cell activation. Annu RevImmunol27:591-619
    20. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD,Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD.2009. The B7family member B7-H6is a tumor cell ligand for the activating natural killer cellreceptor NKp30in humans. J Exp Med206:1495-503
    21. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C.2002. Humandendritic cells activate resting natural killer (NK) cells and are recognized via theNKp30receptor by activated NK cells. J Exp Med195:343-51
    22. Feng J, Call ME, Wucherpfennig KW.2006. The assembly of diverse immune receptorsis focused on a polar membrane-embedded interaction site. PLoS Biol4: e142
    23. Abi-Rached L, Parham P.2005. Natural selection drives recurrent formation ofactivating killer cell immunoglobulin-like receptor and Ly49from inhibitory homol-ogues. J Exp Med201:1319-32
    24.24. Barclay AN, Hatherley D.2008. The counterbalance theory for evolution andfunction of paired receptors. Immunity29:675-8
    25. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K,Vlahov D, Trowsdale J, Wilson M, O'Brien SJ, Carrington M.2002. Epistaticinteraction between KIR3DS1and HLA-B delays the progression to AIDS. Nat Genet31:429-34
    26. Hiby SE, Walker JJ, O'Shaughnessy K M, Redman CW, Carrington M, Trowsdale J,Moffett A.2004. Combinations of maternal KIR and fetal HLA-C genes influence therisk of preeclampsia and reproductive success. J Exp Med200:957-65
    27. Yokoyama WM, Seaman WE.1993. The Ly-49and NKR-P1gene families encodinglectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol11:613-35
    28. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Verges S, LanierLL, Weisdorf D, Miller JS.2012. Cytomegalovirus reactivation after allogeneictransplantation promotes a lasting increase in educated NKG2C+natural killer cellswith potent function. Blood119:2665-74
    29. Gasser S, Raulet D.2006. The DNA damage response, immunity and cancer. SeminCancer Biol16:344-7
    30. Raulet DH.2003. Roles of the NKG2D immunoreceptor and its ligands. Nat RevImmunol3:781-90
    31. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y.2005.NKG2D function protects the host from tumor initiation. J Exp Med202:583-8
    32. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D,Greenberg NM, Raulet DH.2008. NKG2D-deficient mice are defective in tumorsurveillance in models of spontaneous malignancy. Immunity28:571-80
    33. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH.1999. Anactivating immunoreceptor complex formed by NKG2D and DAP10. Science285:730-2
    34. Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD.2009. PI3Klinks NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion,polarity, and granule secretion. J Immunol182:6933-42
    35. Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, Davidson D,Veillette A.2003. Binding of SAP SH2domain to FynT SH3domain reveals a novelmechanism of receptor signalling in immune regulation. Nat Cell Biol5:149-54
    36. Ma CS, Nichols KE, Tangye SG.2007. Regulation of cellular and humoral immuneresponses by the SLAM and SAP families of molecules. Annu Rev Immunol25:337-79
    37. Cannons JL, Tangye SG, Schwartzberg PL.2011. SLAM family receptors and SAPadaptors in immunity. Annu Rev Immunol29:665-705
    38. Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A.2001.Regulation of SLAM-mediated signal transduction by SAP, the X-linked lympho-proliferative gene product. Nat Immunol2:681-90
    39. Eissmann P, Beauchamp L, Wooters J, Tilton JC, Long EO, Watzl C.2005. Molecularbasis for positive and negative signaling by the natural killer cell receptor2B4(CD244).Blood105:4722-9
    40. Veillette A, Dong Z, Perez-Quintero LA, Zhong MC, Cruz-Munoz ME.2009.Importance and mechanism of 'switch' function of SAP family adapters. Immunol Rev232:229-39
    41. Dong Z, Cruz-Munoz ME, Zhong MC, Chen R, Latour S, Veillette A.2009. Essentialfunction for SAP family adaptors in the surveillance of hematopoietic cells by naturalkiller cells. Nat Immunol10:973-80
    42. Dong Z, Davidson D, Perez-Quintero LA, Kurosaki T, Swat W, Veillette A.2012. Theadaptor SAP controls NK cell activation by regulating the enzymes Vav-1and SHIP-1and by enhancing conjugates with target cells. Immunity36:974-85
    43. Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM.2010. Absence ofmouse2B4promotes NK cell-mediated killing of activated CD8+T cells, leading toprolonged viral persistence and altered pathogenesis. J Clin Invest120:1925-38
    44. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM,Smyth MJ, Colonna M.2008. DNAM-1promotes activation of cytotoxic lymphocytesby nonprofessional antigen-presenting cells and tumors. J Exp Med205:2965-73
    45. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T,Kikutani H, Shibuya K, Shibuya A.2008. Accelerated tumor growth in mice deficientin DNAM-1receptor. J Exp Med205:2959-64
    46. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, GrassiJ, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A.2003.Identification of PVR (CD155) and Nectin-2(CD112) as cell surface ligands for thehuman DNAM-1(CD226) activating molecule. J Exp Med198:557-67
    47. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, LazzeriE, Lasagni L, Martini S, Rivera P, Capobianco A, Moretta L, Moretta A, Bottino C.
    2006. Expression of the DNAM-1ligands, Nectin-2(CD112) and poliovirus receptor(CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood107:2030-6
    48. Shibuya A, Lanier LL, Phillips JH.1998. Protein kinase C is involved in the regulationof both signaling and adhesion mediated by DNAX accessory molecule-1receptor. JImmunol161:1671-6
    49. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H,Shibuya A.1999. Physical and functional association of LFA-1with DNAM-1adhesionmolecule. Immunity11:615-23
    50. Welte S, Kuttruff S, Waldhauer I, Steinle A.2006. Mutual activation of natural killercells and monocytes mediated by NKp80-AICL interaction. Nat Immunol7:1334-42
    51. Dennehy KM, Klimosch SN, Steinle A.2011. Cutting edge: NKp80uses an atypicalhemi-ITAM to trigger NK cytotoxicity. J Immunol186:657-61
    52. Fauriat C, Long EO, Ljunggren HG, Bryceson YT.2010. Regulation of human NK-cellcytokine and chemokine production by target cell recognition. Blood115:2167-76
    53. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE,Caligiuri MA.2001. Human natural killer cells: a unique innate immunoregulatory rolefor the CD56(bright) subset. Blood97:3146-51
    54. Kim HS, Das A, Gross CC, Bryceson YT, Long EO.2010. Synergistic signals fornatural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase.Immunity32:175-86
    55. Peterson EJ, Clements JL, Ballas ZK, Koretzky GA.1999. NK cytokine secretion andcytotoxicity occur independently of the SLP-76adaptor protein. Eur J Immunol29:2223-32
    56. Hidano S, Sasanuma H, Ohshima K, Seino K, Kumar L, Hayashi K, Hikida M,Kurosaki T, Taniguchi M, Geha RS, Kitamura D, Goitsuka R.2008. Distinct regulatoryfunctions of SLP-76and MIST in NK cell cytotoxicity and IFN-gamma production. IntImmunol20:345-52
    57. Jordan MS, Sadler J, Austin JE, Finkelstein LD, Singer AL, Schwartzberg PL, KoretzkyGA.2006. Functional hierarchy of the N-terminal tyrosines of SLP-76. J Immunol176:2430-8
    58. Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O, Balbo A, Yamaguchi H,Houtman JC, Appella E, Schuck P, Samelson LE.2010. Cooperative interactions at theSLP-76complex are critical for actin polymerization. EMBO J29:2315-28
    59. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM.2006. Centrosomepolarization delivers secretory granules to the immunological synapse. Nature443:462-5
    60. Fischer A, Latour S, de Saint Basile G.2007. Genetic defects affecting lymphocytecytotoxicity. Curr Opin Immunol19:348-53
    61. Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM.2009. The strength of T cellreceptor signal controls the polarization of cytotoxic machinery to the immunologicalsynapse. Immunity31:621-31
    62. Etienne-Manneville S.2004. Cdc42--the centre of polarity. J Cell Sci117:1291-300
    63. Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J,Keppler MD, Monypenny J, Coolen T, Barber PR, Vojnovic B, Suhling K, Fraternali F,Ameer-Beg S, Parker PJ, Thomas NS, Ng T.2011. A targeted siRNA screen identifiesregulators of Cdc42activity at the natural killer cell immunological synapse. Sci Signal4: ra81
    64. Banerjee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawver L, Orange JS.2007.Cdc42-interacting protein-4functionally links actin and microtubule networks at thecytolytic NK cell immunological synapse. J Exp Med204:2305-20
    65. Sanborn KB, Mace EM, Rak GD, Difeo A, Martignetti JA, Pecci A, Bussel JB, FavierR, Orange JS.2011. Phosphorylation of the myosin IIA tailpiece regulates singlemyosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity.Blood118:5862-71
    66. Liu D, Bryceson YT, Meckel T, Vasiliver-Shamis G, Dustin ML, Long EO.2009.Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immunesynapses. Immunity31:99-109
    67. Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, BoelensJJ, Celkan T, Farah RA, Hultenby K, Winiarski J, Roche PA, Nordenskjold M, HenterJI, Long EO, Ljunggren HG.2007. Defective cytotoxic lymphocyte degranulation insyntaxin-11deficient familial hemophagocytic lymphohistiocytosis4(FHL4) patients.Blood110:1906-15
    68. Krzewski K, Gil-Krzewska A, Watts J, Stern JN, Strominger JL.2011. VAMP4-andVAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NKcells. Eur J Immunol41:3323-9
    69. de Saint Basile G, Menasche G, Fischer A.2010. Molecular mechanisms of biogenesisand exocytosis of cytotoxic granules. Nat Rev Immunol10:568-79
    70. Barreira da Silva R, Graf C, Munz C.2011. Cytoskeletal stabilization of inhibitoryinteractions in immunologic synapses of mature human dendritic cells with naturalkiller cells. Blood118:6487-98
    71. Barreira da Silva R, Munz C.2011. Natural killer cell activation by dendritic cells:balancing inhibitory and activating signals. Cell Mol Life Sci68:3505-18
    72. Dubois S, Mariner J, Waldmann TA, Tagaya Y.2002. IL-15Ralpha recycles andpresents IL-15In trans to neighboring cells. Immunity17:537-47
    73. Kobayashi H, Dubois S, Sato N, Sabzevari H, Sakai Y, Waldmann TA, Tagaya Y.2005.Role of trans-cellular IL-15presentation in the activation of NK cell-mediated killing,which leads to enhanced tumor immunosurveillance. Blood105:721-7
    74. Mortier E, Woo T, Advincula R, Gozalo S, Ma A.2008. IL-15Ralpha chaperones IL-15to stable dendritic cell membrane complexes that activate NK cells via transpresentation. J Exp Med205:1213-25
    75. Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA.2007. High basal STAT4balanced by STAT1induction to control type1interferon effects in natural killer cells. JExp Med204:2383-96
    76. Cyster JG, Schwab SR.2012. Sphingosine-1-phosphate and lymphocyte egress fromlymphoid organs. Annu Rev Immunol30:69-94
    77. Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y,Baratin M, Tomasello E, Vivier E.2007. Natural killer cell trafficking in vivo requires adedicated sphingosine1-phosphate receptor. Nat Immunol8:1337-44
    78. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM.2009.Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A106:1915-9
    79. Sun JC, Beilke JN, Lanier LL.2009. Adaptive immune features of natural killer cells.Nature457:557-61
    80. Sun JC, Ma A, Lanier LL.2009. Cutting edge: IL-15-independent NK cell response tomouse cytomegalovirus infection. J Immunol183:2911-4
    81. Rajagopalan S.2010. Endosomal signaling and a novel pathway defined by the naturalkiller receptor KIR2DL4(CD158d). Traffic11:1381-90
    82. Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A, Joosten I,Long EO.2006. Activation of NK cells by an endocytosed receptor for soluble HLA-G.PLoS Biol4: e9
    83. Rajagopalan S, Moyle MW, Joosten I, Long EO.2010. DNA-PKcs controls anendosomal signaling pathway for a proinflammatory response by natural killer cells.Sci Signal3: ra14
    84. Long EO.2008. Negative signaling by inhibitory receptors: the NK cell paradigm.Immunol Rev224:70-84
    85. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO.2003. Vav1dephosphorylation by the tyrosine phosphatase SHP-1as a mechanism for inhibition ofcellular cytotoxicity. Mol Cell Biol23:6291-9
    86. Abeyweera TP, Merino E, Huse M.2011. Inhibitory signaling blocks activatingreceptor clustering and induces cytoskeletal retraction in natural killer cells. J Cell Biol192:675-90
    87. Das A, Long EO.2010. Lytic granule polarization, rather than degranulation, is thepreferred target of inhibitory receptors in NK cells. J Immunol185:4698-704
    88. Peterson ME, Long EO.2008. Inhibitory receptor signaling via tyrosine phosphor-ylation of the adaptor Crk. Immunity29:578-88
    89. Liu D, Peterson ME, Long EO.2012. The adaptor protein Crk controls activation andinhibition of natural killer cells. Immunity36:600-11
    90. Mesecke S, Urlaub D, Busch H, Eils R, Watzl C.2011. Integration of activating andinhibitory receptor signaling by regulated phosphorylation of Vav1in immune cells. SciSignal4: ra36
    91. Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A, Long EO.1995. Peptide specificity in the recognition of MHC class I by natural killer cell clones.Science267:1016-8
    92. Dam J, Guan R, Natarajan K, Dimasi N, Chlewicki LK, Kranz DM, Schuck P,Margulies DH, Mariuzza RA.2003. Variable MHC class I engagement by Ly49naturalkiller cell receptors demonstrated by the crystal structure of Ly49C bound to H-2K(b).Nat Immunol4:1213-22
    93. Fadda L, Borhis G, Ahmed P, Cheent K, Pageon SV, Cazaly A, Stathopoulos S,Middleton D, Mulder A, Claas FH, Elliott T, Davis DM, Purbhoo MA, Khakoo SI.2010. Peptide antagonism as a mechanism for NK cell activation. Proc Natl Acad Sci US A107:10160-5
    94. Ljunggren HG, Karre K.1990. In search of the 'missing self': MHC molecules and NKcell recognition. Immunol Today11:237-44
    95. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH.2005. Asubset of natural killer cells achieves self-tolerance without expressing inhibitoryreceptors specific for self-MHC molecules. Blood105:4416-23
    96. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C,Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E.2006. Human NK celleducation by inhibitory receptors for MHC class I. Immunity25:331-42
    97. Yokoyama WM, Kim S.2006. Licensing of natural killer cells by self-majorhistocompatibility complex class I. Immunol Rev214:143-54
    98. Brodin P, Lakshmikanth T, Johansson S, Karre K, Hoglund P.2009. The strength ofinhibitory input during education quantitatively tunes the functional responsiveness ofindividual natural killer cells. Blood113:2434-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700