细粒棘球绦虫重组Bb-Eg95-EgA31疫苗构建及其免疫机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究拟从细粒棘球绦虫(Eg)原头节中扩增出Eg95和EgA31抗原编码基因,再通过基因拼接法(Gene SOEing)将两个单基因融合,构建Eg95-EgA31融合基因,并将其定向克隆到大肠杆菌-双歧杆菌穿梭表达载体pGEX-1λT,构建重组质粒pGEX-Eg95-EgA31,将该重组质粒电穿孔转化两歧双歧杆菌(Bb)以及大肠埃希菌BL21(DE3),构建细粒棘球绦虫重组Bb-Eg95-EgA31疫苗,研究Eg95-EgA31融合基因在大肠埃希菌BL21(DE3)中的表达效率,探讨重组Bb-Eg95-EgA31疫苗免疫小鼠后其免疫反应的动态变化和对Eg原头节攻击的保护力及其免疫机制,为囊型棘球蚴病(CE)的防治提供一种安全高效的新型疫苗。
     方法
     1.从细粒棘球蚴包囊中分离原头节,超声粉碎后提取总RNA为模板,通过RT-PCR分别扩增Eg95和EgA31抗原编码基因,然后采用Gene SOEing法剪接Eg95和EgA31,得到Eg95-EgA31融合基因,再将其定向克隆到大肠杆菌-双歧杆菌穿梭表达载体pGEX-1λT中,构建重组质粒pGEX-Eg95-EgA31,将该重组质粒电穿孔转化Bb,构建细粒棘球绦虫重组Bb-Eg95-EgA31疫苗;将该重组质粒电穿孔转化大肠埃希菌BL21(DE3),经异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达后用SDS-PAGE和Western blot对表达产物进行分析和鉴定。
     2.为了研究重组Bb-Eg95-EgA31疫苗免疫小鼠后不同时间点小鼠体内体液免疫和细胞免疫的变化,将重组Bb-Eg95-EgA31疫苗口服灌胃或鼻腔粘膜接种免疫BALB/c小鼠,免疫后0、2、4、6、8、10、12、14、16、18和20w用ELISA法检测血清IgG、IgG1、IgG2a、IgG2b、IgG3和IgE水平及脾淋巴细胞培养上清液中IFN-γ、IL-12、TNF-α和IL-10水平,MTT法检测脾淋巴细胞的增殖,流式细胞术(FCM)检测脾CD_4~+和CD_8~+ T细胞百分率。
     3.为了研究重组Bb-Eg95-EgA31疫苗对Eg原头节攻击的保护力及其免疫机制,将重组Bb-Eg95-EgA31疫苗皮下注射、肌肉注射、鼻腔粘膜接种或口服免疫BALB/c小鼠,免疫后8周,用50个Eg原头节经腹腔注射攻击,以空质粒、Bb或MRS作对照,25周后处死小鼠,分离细粒棘球蚴包囊并称重,计算囊重减少率,ELISA法检测血清IgG、IgG1、IgG2a、IgG2b、IgG3和IgE水平及脾淋巴细胞培养上清液中IFN-γ、IL-12、TNF-α和IL-10水平,MTT法检测脾淋巴细胞的增殖,FCM检测脾CD_4~+和CD_8~+ T细胞百分率,Annexin V-FITC染色法检测脾细胞凋亡发生率。
     结果
     1.琼脂糖凝胶电泳证实Eg95(471bp)、EgA31(500bp)抗原编码基因和Eg95-EgA31融合基因(1016bp)扩增成功;双酶切证实重组质粒pGEX- Eg95-EgA31构建成功;PCR证实重组Bb-Eg95-EgA31疫苗构建成功;SDS-PAGE证实重组质粒pGEX-Eg95-EgA31在大肠埃希菌BL21(DE3)中经IPTG诱导后能够表达分子量为62.5KDa左右的重组Eg95-EgA31融合蛋白,IPTG诱导3~5h重组蛋白表达量最高,占菌体总蛋白的18%,Western blot证实该融合蛋白具有特异的抗原性。
     2.动态观察表明:与0周未免疫小鼠相比,口服免疫组小鼠血清IgG、IgG2a、IgG2b、IgG1、IgG3和IgE水平分别在免疫后8~10周、2~20周、2~20周、4~8周、6~12周和10周显著升高,分别在免疫后8、2、6、6、8和10周达最高水平;脾淋巴细胞培养上清液IFN-γ、IL-12、TNF-α和IL-10水平分别在免疫后2~16周、2~12周、2~6周和4~12周显著升高,分别在免疫后4、2、4和6周达最高水平;脾淋巴细胞增殖水平在免疫后4~10周显著升高,在免疫后6周达最高水平;脾CD_4~+ T细胞在免疫后4~10周显著升高,在免疫后6周达最高水平,CD_8~+ T细胞无明显变化。鼻腔粘膜接种组小鼠血清IgG、IgG2a、IgG2b、IgG1、IgG3和IgE水平分别在免疫后4~10周、4~20周、2~20周、2~12周、4~12周和10~12周显著升高,分别在免疫后10、6、10、8、8和10周达最高水平;脾淋巴细胞培养上清液IFN-γ、IL-12、TNF-α和IL-10水平分别在免疫后2~8周、2~12周、2~8周和6~16周显著升高,分别在免疫后2、2、4和8周达最高水平;脾淋巴细胞增殖水平在免疫后4~8周显著升高,在免疫后6周达最高水平;脾CD_4~+ T细胞在免疫后4~8周显著升高,在免疫后6周达最高水平,CD_8~+ T细胞无明显变化。
     3.疫苗免疫加用Eg原头节攻击后发现,皮下注射组、肌肉注射组、鼻腔粘膜接种组和口服免疫组的囊重减少率分别为45.33%、41.33%、70.67%和62.67%;与对照组相比,免疫组小鼠血清IgG、IgG2a、IgG2b和IgG1水平显著升高,IgG3和IgE水平显著降低;脾IFN-γ、IL-12和TNF-α水平显著升高,IL-10水平显著降低;脾淋巴细胞显著增殖;脾CD_4~+和CD_8~+ T细胞显著增加;脾细胞凋亡发生率显著降低。鼻腔粘膜接种和口服灌胃是两种较好的免疫途径,且前者优于后者。
     结论
     1.通过RT-PCR成功扩增出Eg95和EgA31抗原编码基因。
     2.通过Gene SOEing法成功扩增出Eg95-EgA31融合基因。
     3.成功构建了细粒棘球绦虫重组质粒pGEX-Eg95-EgA31。
     4.成功构建了细粒棘球绦虫重组Bb-Eg95-EgA31疫苗。
     5.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31能在BL21(DE3)中经IPTG诱导表达,表达效率为18%,且表达的重组Eg95-EgA31融合蛋白具有特异的抗原性。
     6.重组Bb-Eg95-EgA31疫苗可诱导小鼠产生有效的免疫应答反应。
     7.重组Bb-Eg95-EgA31疫苗可诱导小鼠产生有效的保护性免疫应答,从而对抗Eg原头节的攻击。其诱导的保护力以鼻腔粘膜接种和口服免疫组最强,而鼻腔粘膜接种组优于口服免疫组。
Objective
     Eg95 and EgA31 coding gene was respectively amplified by RT-PCR from Echinococcus granulosus (Eg) protoscoleces.The Eg95-EgA31 fusion gene was obtained with Gene SOEing,then cloned into Escherichia coli-Bifidobacteria shuttle expression vector pGEX-1λT to construct recombinant plasmid pGEX-Eg95-EgA31.This recombinant plasmid was electroporated into Bifidobacteria bifidum (Bb) and E.coli BL2(DE3) to construct recombinant Bb-Eg95-EgA31 vaccine,with the purpose of exploring the expression of Eg95-EgA31 fusion gene in E.coli BL2(DE3),discussing the dynamics of immune responses induced by the recombinant Bb vaccine in BALB/c mice,and meanwhile investigating the protection against challenge with protoscoleces and immune mechanism in mice after immunization with the recombinant Bb vaccine.This could provide a safe and effective vaccine for the control of cystic echinococcosis(CE).
     Methods
     1. The total RNA was extracted from hydatid cyst protoscoleces shattered by ultrasound-breaking,then Eg95 and EgA31 coding gene was respectively amplified by RT-PCR from the total RNA.The Eg95-EgA31 fusion gene was obtained with Gene SOEing,then cloned into Escherichia coli-Bifidobacteria shuttle expression vector pGEX-1λT to construct recombinant plasmid pGEX-Eg95-EgA31.This recombinant plasmid was electroporated into Bifidobacteria bifidum (Bb) and E.coli BL2(DE3) to construct recombinant Bb-Eg95-EgA31 vaccine.The plasmid pGEX-Eg95-EgA31 was transformed into BL21(DE3) by electroporation and the Eg95-EgA31 fusion gene was expressed in the presence of isopropyl-β-D-thiogalactopyranosid(IPTG).The recombinant Eg95-EgA31 fusion protein was analyzed and identified by SDS-PAGE and Western blot.
     2. To observe the dynamics of humoral and cellular immune responses in mice after immunization with recombinant Bb-Eg95-EgA31 vaccine.BALB/c mice were immunized orally or intranasally by the vaccine.On week 0,2,4,6,8,10,12,14,16,18 and 20 after vaccination,the level of IgG,IgG subclass and IgE in sera was determined by ELISA.The level of IFN-γ,IL-12,TNF-αand IL-10 in splenocyte culture supernatant was measured by ELISA.The level of proliferation in splenocytes was tested by MTT.The percentage of CD_4~+ and CD_8~+ T cells in splenocytes was determined by flow cytometry(FCM).
     3. To explore protection against challenge with protoscoleces and immune mechanism in mice after immunization with the recombinant Bb vaccine.BALB/c mice were immunized subcutaneously, intramuscularly,orally or intranasally by the vaccine,blank vector,Bb or MRS served as control groups,respectively.All mice were challenged with 50 protoscoleces in the 8th week after immunization and killed in the 25th week after challenge.The weight of hydatid cyst was measured and the reduction rate of the weight was calculated.The level of IgG,IgG subclass and IgE in sera was determined by ELISA.The level of IFN-γ,IL-12,TNF-αand IL-10 in splenocyte culture supernatant was measured by ELISA.The level of proliferation in splenocytes was tested by MTT.The percentage of CD_4~+ and CD_8~+ T cells in splenocytes was determined by FCM.The apoptotic rate of splenocytes was determined by Annexin V-FITC staining method.
     Results
     1. Eg95(471bp) and EgA31(500bp) coding genes,and Eg95-EgA31 fusion gene were successfully amplified by agarose gel electrophoresis analysis.The recombinant plasmid pGEX-Eg95-EgA31 was successfully constructed by restriction analysis.The recombinant Bb-Eg95-EgA31 vaccine of Echinococcus granulosus was successfully constructed by PCR.SDS-PAGE showed that the recombinant Eg95-EgA31 fusion protein was successfully expressed in E.coli BL2(DE3) in the presence of IPTG,and the relative molecular weight of the protein was approximately 62.5kDa.The expression level the protein reached highest at 3~5h after induction,and the expression efficiency of the protein was 18% of the total bacterial proteins.Western blot showed that the expressed fusion protein showed specific antigenicity.
     2. Dynamic observation showed as follows:Compared with 0 week non immunization group,in the oral immunization group,the level of IgG,IgG1,IgG2a,IgG2b,IgG3 and IgE significantly increased in the 8~10th week,4~8th week,2~20th week,2~20th week,6~12th week,and 10th week after immunization,respectively,and peaked in the 8th,6th,2th,6th,8th and 10th week after immunization,respectively.The level of IFN-γ,IL-12,TNF-αand IL-10 significantly increased in the 2~16th week,2~12th week,2~6th week and 4~12th week after immunization,respectively,and peaked in the 4th,2th,4th and 6th week after immunization,respectively.The level of splenocyte proliferation significantly increased in the 4~10th week after immunization,and peaked in the 6th week after immunization.The percentage of CD_4~+ T in splenocytes significantly increased in the 4~10th week after immunization,and peaked in the 6th week after immunization.The percentage of CD_8~+ T in splenocytes had no obvious change.In the intranasal immunization group,the level of IgG,IgG1,IgG2a,IgG2b,IgG3 and IgE significantly increased in the 4~10th week,2~12th week,4~20th week,2~20th week,4~12th week and 10~12th week after immunization,respectively,and peaked in the 10th,8th,6th,10th,8th and 10th week after immunization,respectively.The level of IFN-γ,IL-12,TNF-αand IL-10 significantly increased in the 2~8th week,2~12th week,2~8th week and 6~16th week after immunization,respectively,and peaked in the 2th,2th,4th and 8th week after immunization,respectively.The level of splenocyte proliferation significantly increased in the 4~8th week after immunization,and peaked in the 6th week after immunization.The percentage of CD_4~+ T in splenocytes significantly increased in the 4~8th week after immunization,and peaked in the 6th week after immunization.The percentage of CD_8~+ T in splenocytes had no obvious change.
     3. Protective experiments found that the hydatid cyst weight was reduced by 45.33%,41.33%,70.67% and 62.67% in the subcutaneous,intramuscular,oral or intranasal immunization group,respectively.Compared with the control group,in the immunization groups,the level of IgG,IgG2a,IgG2b and IgG1 significantly increased while the level of IgG3 and IgE significantly decreased.The level of IFN-γ,IL-12 and TNF-αsignificantly increased while the level of IL-10 significantly decreased.The level of splenocyte proliferation significantly increased.The percentage of CD4+ and CD_8~+ T of splenocytes were significantly increased.The apoptotic rate of splenocytes significantly decreased.
     Conclusion
     1. Eg95 and EgA31 coding genes were successfully cloned by RT-PCR.
     2. The Eg95-EgA31 fusion gene was successfully amplified by Gene SOEing.
     3. The recombinant plasmid pGEX-Eg95-EgA31 was successfully constructed.
     4. The recombinant Bb-Eg95-EgA31 vaccine was successfully constructed.
     5. BL21(pGEX-Eg95-EgA31) could express recombinant Eg95-EgA31 fusion protein in the presence of IPTG.The expression efficiency was 18%,and the expressed fusion protein showed specific antigenicity.
     6. The recombinant Bb-Eg95-EgA31 vaccine could induce effective immune responses in mice.
     7. The recombinant Bb-Eg95-EgA31 vaccine could induce protective immune responses in mice,which could be responsible for protection against the challenge with Eg protoscoleces. Intranasal inoculation and oral vaccination are two better immune routes,and the former is better than the latter.
引文
[1] Craig PS,McManus DP,Lightowlers MW,et al.Prevention and control of cystic echinococcosis[J].Lancet Infect Dis,2007,7(6):385-394.
    [2] Zhang W,McManus DP.Recent advances in the immunology and diagnosis of echinococcosis[J].FEMS Immunol Med Microbiol,2006,47(1):24-41.
    [3] Yang YR,McManus DP,Huang Y,et al.Echinococcus granulosus infection and options for control of cystic echinococcosis in Tibetan communities of Western Sichuan Province,China[J].PLoS Negl Trop Dis,2009,3(4):e426.
    [4] Yang YR,Craig PS,Vuitton DA,et al.Serological prevalence of echinococcosis and risk factors for infection among children in rural communities of southern Ningxia,China[J].Trop Med Int Health,2008, 13(8):1086-1094.
    [5] Yang YR,Craig PS,Sun T,et al.Echinococcosis in Ningxia Hui Autonomous Region,northwest China[J].Trans R Soc Trop Med Hyg,2008,102(4):319- 328.
    [6]陈根,史大中.包虫病治疗的现状[J].地方病通报,2001,4(16):95-97.
    [7] Deplazes P,Thompson RC,Constantine CC,et al.Primary infection of dogs with Echinococcus granulosus systemic and local(Peyer,s pathes) immune responses[J].Vet Immunol Immunopathol,1994,40(2):171-184.
    [8] Rigano R,Profumo E,Siracusano A,et al.New perspectives in the immunology of Echinococcus granulosus infection[J].Parasitologia,1997,39(4):275-277.
    [9] Lightowlers MW,Heath DD.Immunity and vaccine control of Echinococcus granulosus infection in animal and intermediate hosts[J].Parasitol- ogia,2004,46(1-2):27-31.
    [10]李文桂,陈雅棠.细粒棘球绦虫Eg95疫苗研究进展[J].中国人兽共患病学报,2006,22(11):1070-1072,1077.
    [11]李文桂,陈雅棠.双歧杆菌生物学作用研究进展[J].地方病通报,2006,21 (1):85-88.
    [12]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-Em14-3-3疫苗的构建及其表达效率[J].西安交通大学学报(医学版),2008,29(2):148-151,159.
    [13] Matteuzzi D,Brigidi P,Rossi M,et al.Characterization and molecular clonging of Bifidobacterium longum cryptic plasmid pMB1[J].Lett Appl Microbiol,1990,11(4):220-223.
    [14] Missich R,Sgorbati B,Donald JL,et al.Transfection of Bifidobacterium longum with pRM2,a constructed Escherichia coli-Bifidobacteria longum shuttle vector[J].Plasmid,1994,32(2):208-211.
    [15]韩庆旺,徐根兴,徐叶芬,等.大肠杆菌-双歧杆菌穿梭表达载体的构建及内皮抑素基因的表达[J].生物技术通讯,2006,17(1):18-21.
    [16] Yi C,Huang Y,Guo ZY,et al.antitumor effect of cytosine deaminase/ 5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma[J].Acta Pharmacologica Sinica, 2005,26(5):629-634.
    [17] Rhim SL,Park MS,Ji GE.Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum[J].Biotech Lett, 2006,28(3):163-168.
    [18]云雪霞,胡静,陈清.霍乱弧菌肠毒素B亚单位基因在大肠杆菌和双歧杆菌的表达[J].中国人兽共患病学报,2007,23(2):168-171.
    [19]谢婷,李文桂,曾莉蓉.结核分枝杆菌重组Bb-ESAT-6疫苗的构建、鉴定和表达及其保护力[J].中国人兽共患病学报,2008,24(6):555-561.
    [20]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗的构建及鉴定[J].中国人兽共患病学报,2007,23(10):1026-1029.
    [21] Rossi M,Brigidi P,Rodriguez A,et al.Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction[J].Res Microbiol,1996,147(3):133-143.
    [22] Argnani A,Leer RJ,Luijk N,et al.A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium[J]. Microbiol,1996,142(1):109-114.
    [23] Gauci C,Heath D,Chow C,et al.Hydatid disease:vaccinology and develop- ment of the EG95 recombinant vaccine[J].Expert Rev Vaccines,2005,4 (1):103-112.
    [24] Cortez-Herrera E,Yamamoto RR,Rodrigues JJ,et al.Echinococcus granulosus:cloning and functional in vitro characterization of an actin filament fragmenting protein[J].Exp Parasitol,2001,97(4):215- 225.
    [25] Siles-Lucas M,Nunes CP,Zaha A.Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes[J].Parasitol,2001,122(3):281-287.
    [26] González G,Spinelli P,Lorenzo C,et al.Molecular characterization of P-29,a metacestode-specific component of Echinococcus granulosus which is immunologically related to,but distinct from,antigen 5[J].Mol Biochem Parasitol,2000,105(2):177-184.
    [27] Lorenzo C,Last JA,Gonzalez-Sapienza GG.The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post- translational modifications[J].Parasitology,2005,131(5):669-677.
    [28] Fu Y,Martinez C,Chalar C,et al.A new potent antigen from Echinococcus granulosus associated with muscles and tegument[J].Mol Biochem Parasitol,1999,102(1):43-52.
    [29] Chabalgoity JA,Harrison JA,Esteves A,et al.Expression and immuno-genicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains[J].Infect Immun,1997, 65(6):2402-2412.
    [30] Lightowlers MW,Lawrence SB,Gauci CG,et a1.Vaccination against hydatidosis using a defined recombinant antigen[J].Parasite Immunol ,1996,18(9):457-462.
    [31] Lightowlers MW,Jensen O,Fernandez E,et a1.Vaccination trails in Australia and Argentina conform the effectiveness of the Eg95 hydatid vaccine in sheep[J].Int J Parasitol,1999,29(4):531-534.
    [32]丁剑冰,林仁勇,温浩,等.细粒棘球蚴95抗原基因的克隆及原核表达质粒的构建[J].新疆医科大学学报,2002,25(4):356-359.
    [33]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [34] Scheerlinck JP,Casey G,McWaters P,et al.The immune response to a DNA vaccine can be modulated by co-delivery of cytokine genes using a DNA prime-protein boost stategy[J].Vaccine,2001,19(28-29):4053-4060.
    [35]林仁勇,丁剑冰,温浩,等.新疆株细粒棘球绦虫不同发育阶段95抗原基因克隆及序列分析[J].中国寄生虫学与寄生虫病杂志,2003,21(3):170-172.
    [36]林仁勇,丁剑冰,温浩,等.全长细粒棘球蚴95抗原基因的克隆及DNA疫苗的构建[J].新疆医科大学学报,2002,25(4):359-361.
    [37]丁剑冰,林仁勇,温浩,等.细粒棘球蚴95(Eg95)抗原基因的克隆及真核表达质粒的构建[J].中国人兽共患病杂志,2003,19(1):42-44.
    [38]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [39]丁剑冰,魏晓丽,林仁勇,等.Eg95基因疫苗不同免疫途径的体液免疫应答比较[J].新疆医科大学学报,2003,26(3):219-221.
    [40]朱佑明,李文桂.细粒棘球绦虫重组BCG-Eg95疫苗构建及鉴定[J].中国人兽共患病学报,2006,22(9):805-808.
    [41]朱佑明,李文桂.细粒棘球绦虫Eg95抗原编码基因在BCG中的表达效率研究[J].中国病原生物学杂志,2006,1(2):95-97.
    [42]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后IgG及其亚类和IgE的动态观察[J].重庆医科大学学报,2007,32(1):1-3.
    [43]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后脾细胞亚群的动态观察[J].中国地方病学杂志,2009,28(1):54-57.
    [44]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后脾细胞因子的动态观察[J].免疫学杂志,2009,25(1):31-33,38.
    [45]李文桂,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗诱导的保护力观察[J].免疫学杂志,2007,23(4):383-385,389.
    [46]李文桂,王鸿,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞淋巴因子变化的研究[J].中国寄生虫学与寄生虫病杂志,2007,25(2):109-113.
    [47]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞亚群变化的研究[J].免疫学杂志,2007,23(6):657-659.
    [48]李文桂,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗对感染小鼠脾细胞凋亡的影响[J].中国免疫学杂志,2007,23(12):1071-1073,1082.
    [49]周辉,李文桂.细粒棘球绦虫转基因植物载体重组pBI-Eg95-EgA31质粒构建及鉴定[J].中国人兽共患病学报,2008,24(4):309-311.
    [50]周辉,李文桂,叶艳菊,等.细粒棘球绦虫转Eg95-EgA31融合基因苜蓿的培育及鉴定[J].热带医学杂志,2009,26(3):116-118.
    [51]胡旭初,许劲,陆家海,等.细粒棘球蚴95全长基因的克隆与在甲醇酵母中的表达[J].热带医学杂志,2003,3(1):28-31.
    [52] Marsland BJ,Tisdall DJ,Heath DD,et al.Construction of a recombinant orf virus that expresses an Echinococcus granulosus vaccine antigen from a novel genomic insertion site[J].Arch Virol,2003,148(3):555- 562.
    [53] Fu YC,Marchal S,Marchal T,et al.Cellular immune response of lymphnodes from dogs following the intradermal injection of a recombinant antigen corresponding to a 66KDa protein of Echinococcus granulosus[J].VetImmunol Immunopathol,2000,74(3-4):195-208.
    [54] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J]. Parasitol Res,2005,96(2):113-120.
    [55] Fraize M,Sarciron ME,Saboulard D,et al.An in vitro model to evaluate the cytokine response in Echinococcus infections[J].Parasitol Res,2004,92(6):506-512.
    [56] Huston JS,McCarteny J,Tal ME,et al.Medical application of single chain antibodies[J].Intern Rev Immuno,1993,10(2-3):195-197.
    [57] Horton RM,Hunt HD,Ho SN,et al.Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension[J]. Gene,1989,77(1):61-68.
    [58] Horton RM.In Vitro recombination and mutagenesis of DNA:SOEing together tailor-made genes.Method in molecular biology:PCR cloning protocols from molecular cloning to genetic engineering[M].Edited by White BA,1997,67(1):141-149.
    [1] Lightowlers MW,Lawrence SB,Gauci CG,et al.Vaccination against hydatidosis using a defined recombinant antigen[J].Parasite Immunol, 1996,18(9):457-462.
    [2] Lightowlers MW,Jensen O,Fernandez E,et al.Vaccination trials in Australia and Argentina confirm the effectiveness of the Eg95 hydatid vaccine in sheep[J].Int J Parasitol,1999,29(4):531-534.
    [3] Fu YC,Martinez C,Chalar C,et al.A new potent antigen from Echinococcus granulosus associated with muscles and tegument[J].Mol Biochem Parasitol,1999,102(1):43-52.
    [4] Fu YC,Marchal S,Marchal T,et al.Cellular immune response of lymphnodes from dogs following the intradermal injection of a recombinant antigen corresponding to a 66kDa protein of Echinococcus granulosus[J].Vet Immunol Immunopathol,2000,74(3-4):195-208.
    [5] Horton RM,Cai ZL,Ho SN,et al.Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction[J].Biotech- niques,1990,8(5):528-535.
    [6] Horton RM,Hunt HD,Ho SN,et al.Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension[J]. Gene,1989,77(1):61-68.
    [7] Horton RM.In vitro recombination and mutagenesis of DNA:SOEing together tailor-made genes.Method in molecular biology:PCR cloning protocols from molecular cloning to genetic engineering[M].Edited by White BA,1997,67(1):141-149.
    [1]史大中.中国囊性包虫病的地理分布[J].地方病通报,2000,15(1):74-75.
    [2]李文桂,陈雅棠.双歧杆菌生物学作用研究进展[J].地方病通报,2006, 21(1):85-88.
    [3] Missich R,Sgorbati B,Donald JL,et al.Transfection of Bifidobacterium longum with pRM2,a constructed Escherichia coli-Bifidobacteria longum shuttle vector[J].Plasmid,1994,32(2):208-211.
    [4]李文桂,陈雅棠.细粒棘球绦虫Eg95疫苗研究进展[J].中国人兽共患病学报,2006,22(11):1070-1072,1077.
    [5]韩庆旺,徐根兴,徐叶芬,等.大肠杆菌-双歧杆菌穿梭表达载体的构建及内皮抑素基因的表达[J].生物技术通讯,2006,17(1):18-21.
    [6] Yi C,Huang Y,Guo ZY,et al.Antitumor effect of cytosine deaminase/5- fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma[J].Acta Pharmacologica Sinica, 2005,26(5):629-634.
    [7] Rhim SL,Park MS,Ji GE.Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum[J].Biotech Lett, 2006,28(3):163-168.
    [8]云雪霞,胡静,陈清.霍乱弧菌肠毒素B亚单位基因在大肠杆菌和双歧杆菌的表达[J].中国人兽共患病学报,2007,23(2):168-171.
    [9]谢婷,李文桂,曾莉蓉.结核分枝杆菌重组Bb-ESAT-6疫苗的构建、鉴定和表达及其保护力[J].中国人兽共患病学报,2008,24(6):555-561.
    [10]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗的构建及鉴定[J].中国人兽共患病学报,2007,23(10):1026-1029.
    [1]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-Em14-3-3疫苗的构建及其表达效率[J].西安交通大学学报(医学版),2008,29(2):148-151,159.
    [2]庸建国,茹炳椹,德长洁,等.蛋白质工程的研究[J].北京大学学报(自然科学版),1998,34(2):342-348.
    [3]崔立斌,马清钧.新生肽的折叠与重组蛋白可溶性表达[J].生物工程进展,1998,18(1):36-40.
    [4] Lacham-Kaplan O,Chy H,Trounson A.Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes[J].Stem Cells,2006,24(2):266-273.
    [1] Dematteis S,Baz A,Rottenberg M,et al.Antibody and Th1/Th2-type responses in BALB/c mice inoculated with liver or dead Echinococcus granulosus protoscoleces[J].Parasite Immunol,1999,21(1):19-26.
    [2] Khabiri AR,Bagheri F,Assmar M,et al.Analysis of specific IgE and IgG subclass antibodies for diagnosis of Echinococcus granulosus[J]. Parasite Immunol,2006,28(8):357-362.
    [3]郑宏,徐志新,杨戈雄,等.感染细粒棘球蚴绵羊诱发过敏性休克期间IgG、IgG1和IgE水平的探讨[J].中国寄生虫学与寄生虫病杂志,2003,21(1):42- 45.
    [4] Al-Qaoud KM,Abdel-Hafez SK.The induction of T helper type 1 response by cytokine gene transfection protects mice against secondary hydatidosis[J].Parasitol Res,2008,102(6):1151-1155.
    [5]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [6]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [7] Haralabidis S,Karagouni E,Frydas S,et al.Immunoglobulin and cytokine profile in murine secondary hydatidosis[J].Parasite Immunol,1995, 17(12):625-630.
    [8] Rigano R,Profumo E,Ioppolo S,et al.Immunological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J].Clin Exp Immunol,1995,102(2):281-285.
    [9]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [10]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [11]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后IgG及其亚类和IgE的动态观察[J].重庆医科大学学报,2007,32(1):1-3.
    [12] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J]. Parasitol Res,2005,96(2):113-120.
    [13] MacDonald TT.The mucosal immune system[J].Parasite Immunol,2003,25 (5):235-246.
    [1]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [2]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [3] Mosmann T.Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65(1-2):55-63.
    [4] Rogan MT.T-cell activity associated with secondary infections and implanted cysts of Echinococcus granulosus in BALB/c mice[J].Parasite immunol,1998,20(11):527-533.
    [5]张亚楼,卢晓梅,张琰,等.细粒棘球绦虫囊液对外周血淋巴细胞的影响[J].中国病原生物学杂志,2005,18(2):124-126.
    [6]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [7]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [1] Riley EM,Dixon JB.Experimental Echinococcus granulosus infection in mice:immunocytochemical analysis of lymphocyte populations in local lymphoid infections during early infection[J].Parasitol,1987,94(3) :523-532.
    [2]张亚楼,卢晓梅,张琰,等.细粒棘球绦虫囊液对外周血淋巴细胞的影响[J].中国寄生虫病防治杂志,2005,18(2):124-126.
    [3]张琰,温浩,林仁勇,等.细粒棘球蚴病患者淋巴细胞及细胞因子变化的初步观察[J].中国寄生虫学与寄生虫病杂志,2007,25(3):209-212.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [5]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [6]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [7]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [8]于飞,康金凤,伊藤亮,等.细粒棘球蚴感染小鼠T淋巴细胞亚群的变化及意义[J].新疆医科大学学报,2005,28(5):402-404.
    [9]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后脾细胞亚群的动态观察[J].中国地方病学杂志,2009,28(1):54-57.
    [1] Rigano R,Profumo E,Di Felice G,et al.In vitro production of cytokines by peripheral blood mononuclear cells from hydatid patients[J].Clin Exp Immunol,1995,99(3):433-439.
    [2] Rigano R,Profumo E,Buttari B,et al.Cytokine gene expression in peripheral blood mononuclear cells(PBMC)from patients with pharmacologically treated cystic echinococcosis[J].Clin Exp Immunol, 1999,118(1):95-101.
    [3]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [5] Haralabidis S,Karagouni E,Frydas S,et al.Immunoglobulin and cytokine profile in murine secondary hydatidosis[J].Parasite Immunol,1995,17(12):625-630.
    [6]王松,许晏,朱明,等.细粒棘球蚴病小鼠的细胞因子动态研究[J].地方病通报,2002,17(4):8-11.
    [7]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后脾细胞因子的动态观察[J].免疫学杂志,2009,25(1):31-33,38.
    [8] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J].Parasitol Res,2005,96(2):113-120.
    [1] Haralabidis S,Karagouni E,Frydas S,et al.Immunoglobulin and cytokine profile in murine secondary hydatidosis[J].Parasite Immunol,1995,17 (12):625-630.
    [2] Dematteis S,Baz A,Rottenberg M,et al.Antibody and Th1/Th2-type responses in BALB/c mice inoculated with liver or dead Echinococcus granulosus protoscoleces[J].Parasite Immunol,1999,21(1):19-26.
    [3] Khabiri AR,Bagheri F,Assmar M,et al.Analysis of specific IgE and IgG subclass antibodies for diagnosis of Echinococcus granulosus[J]. Parasite Immunol,2006,28(8):357-362.
    [4]郑宏,徐志新,杨戈雄,等.感染细粒棘球蚴绵羊诱发过敏性休克期间IgG、IgG1和IgE水平的探讨[J].中国寄生虫学与寄生虫病杂志,2003,21(1):42- 45.
    [5] Al-Qaoud KM,Abdel-Hafez SK.The induction of T helper type 1 response by cytokine gene transfection protects mice against secondary hydatidosis[J].Parasitol Res,2008,102(6):1151-1155.
    [6] Rigano R,Profumo E,Ioppolo S,et al.Immunological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J].Clin Exp Immunol,1995,102(2):281-285.
    [7]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [8]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [9]李文桂,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗诱导的保护力观察[J].免疫学杂志,2007,23(4):383-385,389.
    [10]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [11]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [12] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J].Parasitol Res,2005,96(2):113-120.
    [1] Rogan MT.T-cell activity associated with secondary infections and implanted cysts of Echinococcus granulosus in BALB/c mice[J].Parasite Immunol,1998,20(11):527-533.
    [2]张亚楼,卢晓梅,张琰,等.细粒棘球绦虫囊液对外周血淋巴细胞的影响[J].中国寄生虫病防治杂志,2005,18(2):124-126.
    [3]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [5] Mosmann T.Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65(1-2):55-63.
    [6]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [7]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [8]谢婷,李文桂,曾莉蓉.结核分枝杆菌重组Bb-ESAT-6疫苗的构建、鉴定和表达及其保护力[J].中国人兽共患病学报,2008,24(6):555-561.
    [9] Bonenfant C,Dimier-Poisson I,Velge-Roussel F,et al.Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii[J].Infect Immun, 2001,69(3):1605-12.
    [1] Riley EM,Dixon JB.Experimental Echinococcus granulosus infection in mice:immunocytochemical analysis of lymphocyte populations in local lymphoid infections during early infection[J].Parasitol,1987,94(3) :523-532.
    [2]张亚楼,卢晓梅,张琰,等.细粒棘球绦虫囊液对外周血淋巴细胞的影响[J].中国寄生虫病防治杂志,2005,18(2):124-126.
    [3]张琰,温浩,林仁勇,等.细粒棘球蚴病患者淋巴细胞及细胞因子变化的初步观察[J].中国寄生虫学与寄生虫病杂志,2007,25(3):209-212.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [5]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [6] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J].Parasitol Res,2005,96(2):113-120.
    [7]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞亚群变化的研究[J].免疫学杂志,2007,23(6):657-659.
    [8] MacDonald TT.The mucosal immune system[J].Parasite Immunol,2003,25 (5):235-246.
    [9] Bonenfant C,Dimier-Poisson I,Velge-Roussel F,et al.Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii[J].Infect Immun, 2001,69(3):1605-12.
    [1] Mosmann TR,Sad S.The expanding universe of T-cell subsets:Th1,Th2 and more[J].Immunol Today,1996,17(3):138-146.
    [2] Kuribayashi K,Tsukiyama M,Takenaka T.Secretion patterns of Th1- and Th2-type cytokines in immune deviation caused by dendritic cells[J].Int Arch Allergy Immunol,1997,114(1):30-37.
    [3] Brière F,Servet-Delprat C,Bridon JM,et al.Human interleukin 10 induces naive surface immunoglobulin D+ (sIgD+) B cells to secrete IgG1 and IgG3[J].J Exp Med 1994,179(2):757-762.
    [4] Ortona E,Rigano R,Buttari B,et al.An update on immunodiagnosis of cystic echinococcosis[J].Acta Trop,2003,85(2):165-171.
    [5]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [6]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [7] Rigano R,Profumo E,Di Felice G,et al.In vitro production of cytokines by peripheral blood mononuclear cells from hydatid patients[J].Clin Exp Immunol,1995,99(3):433-439.
    [8] Rigano R,Profumo E,Buttari B,et al.Cytokine gene expression in peripheral blood mononuclear cells(PBMC)from patients with pharmacologically treated cystic echinococcosis[J].Clin Exp Immunol, 1999,118(1):95-101.
    [9] Rigano R,Profumo E,Ioppolo S,et al.Immunological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J].Clin Exp Immunol,1995,102(2):281-285.
    [10] Fraize M,Sarciron ME,Azzouz S,et al.Immunogenicity of two Echinococcus granulosus antigens EgA31 and EgTrp in mice[J]. Parasitol Res,2005,96(2):113-120.
    [11]李文桂,王鸿,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞淋巴因子变化的研究[J].中国寄生虫学与寄生虫病杂志,2007,25(2):109-113.
    [1] Tour BA,Sarthou JL,Aribot G,et al.Plasmodium falciparum inducesapoptosis in human mononuclear cells[J].Infect Immun,1996,64(3): 744-750.
    [2]李文桂,陈雅棠,刘成伟.双氢青蒿素对卡氏肺孢子虫肺炎大鼠脾细胞凋亡的影响[J].中国人兽共患病杂志,2003,19(2):55-59.
    [3]李富荣,石佑恩,史大中,等.泡球蚴感染过程中宿主CD4+ T细胞凋亡和凋亡相关基因转录水平的研究[J].中国人兽共患病杂志,2003,19(4):59-62,65.
    [4]王文实,李雍龙.日本血吸虫细胞凋亡及其诱导的研究[J].中国寄生虫学与寄生虫病杂志,2000,18(5):269-271.
    [5]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):502-506.
    [6]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组质粒pGEX-Eg95-EgA31的构建及其在大肠埃希菌BL21(DE3)中的表达[J].中国病原生物学杂志,2009,4(5) :350-354.
    [7]李文桂,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗对感染小鼠脾细胞凋亡的影响[J].中国免疫学杂志,2007,23(12):1071-1073,1082.
    [1] Lightowlers MW,Lawrence SB,Gauci CG,et al.Vaccination against hydatidosis using a defined recombinant antigen[J].Parasite Immunol, 1996,18(9):457-462.
    [2] Lightowlers MW,Jensen O,Fernandez E,et al.Vaccination trials in Australia and Argentina confirm the effectiveness of the EG95 hydatid vaccine in sheep[J].Int J Parasitol,1999,29(4):531-534.
    [3] Thompson RCA.Biology and Systematics of Echinococcus.In: Thompson RCA,Lymbery AJ.Echinococcus and Hydatid Disease.Oxon:CAB International,1995:1-50.
    [4] Chow C,Gauci CG,Alan FC,et al.A gene family expressing a host- protective antigen of Echinococcus granulosus[J].Mol Biochem Parasitol,2001,118(1):83-88.
    [5]林仁勇,丁剑冰,温浩,等.新疆株细粒棘球绦虫不同发育阶段95抗原基因克隆及序列分析[J].中国寄生虫学与寄生虫病杂志,2003,21(3):170-172.
    [6]林仁勇,丁剑冰,温浩,等.全长细粒棘球蚴95抗原基因的克隆及DNA疫苗的构建[J].新疆医科大学学报,2002,25(4):359-361.
    [7]丁剑冰,林仁勇,温浩,等.细粒棘球蚴95抗原基因的克隆及原核表达质粒的构建[J].新疆医科大学学报,2002,25(4):356-359.
    [8]丁剑冰,林仁勇,温浩,等.细粒棘球蚴95(Eg95)抗原基因的克隆及真核表达质粒的构建[J].中国人兽共患病杂志,2003,19(1):42-44.
    [9]丁剑冰,魏晓丽,马秀敏,等.细粒棘球绦虫Eg95重组蛋白诱导小鼠免疫应答的研究[J].新疆医科大学学报,2005,28(4):305-307.
    [10]林仁勇,丁剑冰,卢晓梅,等.细粒棘球绦虫Eg95抗原基因疫苗体外瞬时表达及对小鼠诱导的免疫应答[J].中国寄生虫学与寄生虫病杂志,2004,22(4): 204-208.
    [11]丁剑冰,魏晓丽,林仁勇,等.Eg95基因疫苗不同免疫途径的体液免疫应答比较[J].新疆医科大学学报,2003,26(3):219-221.
    [12]胡旭初,许劲,陆家海,等.细粒棘球蚴95全长基因的克隆与在甲醇酵母中的表达[J].热带医学杂志,2003,3(1):28-31.
    [13] Marsland BJ,Tisdall DJ,Heath DD,et al.Construction of a recombinant orf virus that expresses an Echinococcus granulosus vaccine antigen from a novel genomic insertion site[J].Arch Virol,2003,148(3):555-562.
    [14]李文桂,王鸿,朱佑明.多房棘球绦虫重组BCG-EmⅡ/3疫苗构建及其表达效率[J].中国地方病学杂志,2006,25(5):490-493.
    [15]李文桂,王鸿,朱佑明.多房棘球绦虫重组BCG-EmⅡ/3疫苗诱导的保护力观察[J].中国地方病学杂志,2007,26(2):156-158.
    [16]王鸿,李文桂.多房棘球绦虫重组BCG-Em14-3-3疫苗的构建及鉴定[J].中国病原生物学杂志,2006,1(1):43-46.
    [17]朱佑明,李文桂.细粒棘球绦虫重组BCG-Eg95疫苗构建及鉴定[J].中国人兽共患病学报,2006,22(9):805-808.
    [18]朱佑明,李文桂.细粒棘球绦虫Eg95抗原编码基因在BCG中的表达效率研究[J].中国病原生物学杂志,2006,1(2):95-97.
    [19]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗免疫小鼠后IgG及其亚类和IgE的动态观察[J].重庆医科大学学报,2007,32(1):1-3.
    [20]李文桂,王鸿,朱佑明.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞淋巴因子变化的研究[J].中国寄生虫学与寄生虫病杂志,2007,25(2):109-113.
    [21]李文桂,朱佑明,王鸿.细粒棘球绦虫重组BCG-Eg95疫苗诱导小鼠脾细胞亚群变化的研究[J].免疫学杂志,2007,23(6):657-659.
    [1] Lightowlers MW,Liu D,Haralambous A,et al.Subunit composition and specificity of the major cyst fluid antigens of Echinococcus granulosus[J].Mol Biochem Parasitol,1989,37(2):171-182.
    [2] Ortona E,Rigano R,Margutti P,et al.Native and recombinant antigens in the immunodiagnosis of human cystic echinococcosis[J].Parasite Immunol,2000,22(11):553-559.
    [3] Haag KL,Zanotto P,Alves-Junior L,et al.Searching for antigen B genes and their adaptive sites in distinct strains and species of the helminth Echinococcus[J].Infect Genet Evol,2006,6(4):251-261.
    [4] Haag KL,Alves-Junior L,Zaha A,et al.Contingent,non-neutral evolution in a multicellular parasite:natural selection and gene conversion in the Echinococcus granulosus antigen B gene family[J]. Gene,2004,333:157-167.
    [5] Mamuti W,Yamasaki H,Sako Y,et al.Molecular cloning,expression,and serological evaluation of an 8-kilodalton subunit of antigen B from Echinococcus multilocularis[J].J Clin Microbiol,2004,42(3):1082- 1088.
    [6] Mamuti W,Sako Y,Xiao N,et al. Echinococcus multilocularis:develop- mental stage-specific expression of antigen B 8-kDa subunits.ExpParasitol,2006,113(2):75-82.
    [7] Virginio VG,Hernandez A,Rott MB,et al.A set of recombinant antigens from Echinococcus granulosus with potential for in the immuno- diagnosis of human cystic hydatid disease[J].Clin Exp Immunol, 2003,132(2):309-315.
    [8] Siracusano A,Buttari B,Delunardo F,et al.Critical points in the immunodiagnosis of cystic echinococcosis in human[J].Parasitologia, 2004,46(4):401-403.
    [9] Mcvie A,Ersfeld K,Rogan MT,et al.Expression and immunological characterization of Echinococcus granulosus recombinant antigen B for IgG4 subclass detection in human cystic echinococcosis[J].Acta Trop,1997,67(1-2):19-35.
    [10] Barbieri M,Fernandez V,Gonzalez G,et al.Diagnostic evaluation of a synthetic peptide derived from a novel antigen B subunit as related to other available peptides and native antigens used for serology of cystic hydatidosis[J].Parasite Immunol,1998,20(2):51-61.
    [11] Gonzalez-Sapienza GG,Lorenzo C,Nieto A,et al.Improved immuno- diagnosis of cystic hydatid disease by using asynthetic peptide with higher diagnostic value than that of its parent protein, Echinococcus granulosus antigen B[J].J Clin Microbiol,2000,38(11): 3979-3983.
    [12]卢晓梅,温浩,Alison,等.细粒棘球蚴重组抗原B的表达提取及其血清学检测初探[J].地方病通报,2001,18(3):14-16.
    [13]江莉,冯正,许学年,等.细粒棘球蚴AgB亚单位抗原基因的克隆和表达系统的优化[J].热带医学杂志,2007,7(6):539-542.
    [14]陈新华,温浩,张耀新,等.抗细粒棘球蚴人工重组B抗原人源单链可变区抗体的筛选与在原核系统中的表达[J].中国寄生虫病防治杂志,2002,15(4): 224-226.
    [15]陈新华,温浩,张耀新,等.抗细粒棘球蚴人工重组B抗原人源单链可变区抗体的筛选、鉴定和免疫活性检测[J].中华微生物学和免疫学杂志,2003, 23(1):72-73.
    [16] Lorenzo C,Salinas G,Brugnini A,et al.Echinococcus granulosus antigen 5 is closely related to proteases on the trypsin family[J]. Biochem J,2003,369(1):191-198.
    [17] Lorenzo C,Last JA,Gonzalez-Sapienza GG.The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post- translational modifications[J].Parasitol,2005,131(5):669-677.
    [18] Li J,Zhang WB,Wilson M,et al.A novel recombinant antigen for immunodiagnosis of human cystic echinococcosis[J].J Infect Dis, 2003,188(12):1951-1960.
    [19] Ram D,Grossman Z,Markovics A,et al.Rapid changes in the expression of a gene encoding a calcium-binding protein in Schistosoma mansoni[J].Mol Biochem Parasitol,1989,34(2):167-175.
    [20]郭中敏,徐劲,陆家海,等.Echinococcus granulosus钙结合蛋白基因的克隆和序列分析[J].热带医学杂志,2002,2(4):351-353.
    [21]侯秋莲,王慧,张壮志.细粒棘球绦虫抗氧化蛋白TPx的免疫定位[J].细胞与分子免疫学杂志,2007,23(11):998-1000.
    [22] Li J,Zhang WB,McManus DP.Recombinant antigens for immunodiagnosis of cystic echinococcosis[J].Biol Proced Online,2004,6:67-77.
    [23] Margutti P,Ortona E,Delunardo F,et al.Thioredoxin peroxidase from Echinococcus granulosus:a candidate to extend the antigenic panel for the immunodiagnosis of human cystic echinococcosis[J].Diagn Microbiol Infect Dis,2008,60(3):279-85.
    [24] Schechtman D,Ram D,Tarrab-Hazdai R,et al.Stage-specific expression of the mRNA encoding a 14-3-3 protein during the cycle of Schistosoma mansoni [J].Mol Biochem Parasitol,1995,73(1-2):275-278.
    [25]汪学龙,沈继龙,蒋作君.日本血吸虫信号转导分子14-3-3蛋白epsilon亚型基因的克隆与序列分析[J].中国地方病学杂志,2002,21(4):264-266.
    [26] Siles-Lucas M,Felleisen RS,Hemphill A,et al.Stage-specific expression of the 14-3-3 gene in Echinococcus multilocularis[J]. Mol Biochem Parasitol,1998,91(2):281-293.
    [27] Siles-Lucas M,Nunes CP,Zaha A.Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes[J].Parasitol,2001,122(3):281-287.
    [28]黄瑾,赵嘉庆,王娅娜,等.细粒棘球蚴中国大陆株重组14-3-3蛋白基因的克隆和序列分析[J].宁夏医学院学报,2006,28(2):93-95,98.
    [29] Fu Y,Martinez C,Chalar C,et al.A new potent antigen from Echinococcus granulosus associated with muscles and tegument[J].Mol Biochem Parasitol,1999,102(1):43-52.
    [30]由弘,傅玉才,张立民,等.细粒棘球绦虫EgA31重组抗原与其它寄生蠕虫的免疫交叉反应[J].寄生虫与医学昆虫学报,2004,11(3):144-146.
    [31] Esteves AB,Dallagiovanna B,Ehrlich R.A developmentally regulated gene of Echinococcus granulosus codes for a 15.5-kilodalton polypeptide related to fatty acid binding proteins[J].Mol Biochem Parasitol,1993,58(2):215-222.
    [32]郭中敏,陆家海,徐劲,等.包虫疫苗候选抗原基因FABP的克隆与序列分析[J].热带医学杂志,2002,2(2):143-146.
    [33]郝慧芳,王志钢,李志伟.细粒棘球蚴内蒙株FABP基因cDNA的克隆与核酸疫苗的构建[J].中国寄生虫学与寄生虫病杂志,2007,25(4):352-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700