铜绿假单胞菌重组Bb-oprE疫苗构建及其免疫机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建并鉴定铜绿假单胞菌rBb-OprF疫苗;分析和检测重组质粒的表达效率和重组蛋白OprF的免疫原性;采用4种不同接种途径疫苗免疫小鼠后,用PAO1菌株攻击,计数实验动物(BALB/c小鼠)肺组织Pa菌荷量,观察血清IgG及其亚类、IgA和IgE的变化;通过检测小鼠脾细胞增殖情况、CD4~+和CD8~+T亚群数量、脾细胞培养上清液中CK (IFN-γ、IL-12、TNF-α和IL-10)的变化和脾细胞凋亡情况,从而初步阐明rBb-OprF疫苗的保护性免疫机制,为Pa疫苗的研制提供有价值的理论资料。
     方法
     1、疫苗构建
     以铜绿假单胞菌标准株PAO1的总RNA为模板,通过RT-PCR扩增获得OprF抗原编码基因序列,用PCR扩增oprF27-1032目的基因片段,定向克隆入pGEX-1LambdaT穿梭质粒中GST标签下游的MCS,构建重组表达质粒pGEX-OprF;将重组质粒pGEX-OprF转化感受态大肠杆菌BL21(DE3),经异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达;用PCR鉴定和测序分析序列正确后用电穿孔法将重组质粒pGEX-OprF导入Bb,构建铜绿假单胞菌重组Bb-OprF疫苗,在mRNA水平检测其表达情况。用SDS-PAGE对pGEX-oprF在大肠杆菌BL21(DE3)中经IPTG诱导1~13h表达的目的蛋白进行分析,并用Western blot对重组OprF蛋白进行免疫原性鉴定。
     2、保护性免疫机制
     为了研究铜绿假单胞菌rBb-OprF疫苗对BALB/c小鼠急性Pa肺炎的保护作用,设计将56只雌性、清洁级的BALB/c小鼠按不同免疫途径随机分为7组,每组8只。
     A组: rBb-OprF疫苗皮下注射(SC),将5×10~6CFU疫苗悬浮于100μL的MRS液体培养基,背部皮下注射1次;
     B组:rBb-OprF肌肉注射(IM),将5×10~6CFU的疫苗悬浮于100μL的MRS液体培养基,对小鼠后腿股四头肌注射1次;
     C组:rBb-OprF鼻腔粘膜接种(IN),将5×10~5CFU的疫苗悬浮于100μL的MRS液体培养基,鼻腔黏膜接种1次;
     D组:rBb-OprF口服灌胃接种(PO),将5×10~8CFU的疫苗悬浮于100μL的MRS液体培养基,口服灌胃1次;
     E组:空载体对照组(Ca),将5×10~6CFU的Bb(pGEX-1LambdaT)悬浮于100μL的MRS液体培养基,背部皮下注射1次;
     F组:Bb对照组(Bb),将5×10~6CFU的Bb悬浮于100μL的MRS液体培养基,背部皮下注射1次;
     G组:MRS对照组(MRS),100μL的MRS液体培养基,背部皮下注射1次。
     各组按上述接种BALB/c小鼠后8w,乙醚麻醉,用弯曲接种针吸50μL的109CFU/mL的浮游PAO1菌株,从鼻腔注入。在PAO1株鼻腔感染攻击后1w,收集血清和脾细胞,用经典的ELISA法检测各组小鼠血清特异性的IgG及其亚类、IgA和IgE抗体水平;用MTT比色法检测脾细胞原液或PaAg刺激后细胞增殖水平变化;利用FCM检测脾细胞CD++4和CD8亚群变化;用ELISA法检测脾细胞原液或PaAg刺激后培养上清液中IFN-γ、IL-12、TNF-α和IL-10的水平以及用AnnexinV-FITC试剂盒检测脾细胞凋亡率。
     结果
     采用RT-PCR扩增出1016bp的OprF编码基因;成功构建pGEX-OprF重组质粒,经双酶切鉴定,切出4947bp的载体片段和1016bp的目的基因片段;序列分析发现其与预期结果一致;以rBb抽提质粒为模板进行PCR扩增可得到1016bp的oprF基因片段,以阳性rBb的总RNA为模板进行RT-PCR扩增,产物经1.2%的琼脂糖凝胶电泳鉴定,可见一条约1016bp的条带,证明外源基因oprF能够在Bb中表达mRNA。SDS-PAGE分析表达产物分子质量约为61kDa,与预期结果一致,表达的目的蛋白质占菌体总蛋白的16%;Western blot鉴定结果重组蛋白能被Pa外膜粗抗原免疫小鼠血清识别,提示重组OprF抗原与天然OprF蛋白具有相同的抗原性,成功构建铜绿假单胞菌rBb-OprF疫苗。
     rBb-OprF疫苗免疫后8w,用50μL的10~9CFU/ml的浮游PAO1菌株鼻腔内感染攻击后1w检测:
     (1)疫苗组肺Pa荷菌量:SC组、IM组、IN组和PO组肺组织Pa菌荷量均低于MRS对照组,SC组与IM组、IN组和PO组间存在差异;空载体、Bb和MRS对照组间差异无统计学意义。
     (2)ELISA法检测血清抗体结果:疫苗免疫组血清IgG、IgG1、IgG2a和IgG2b水平显著增加;皮下注射组和口服灌胃组IgG3水平显著增加;皮下注射组IgA水平增加;疫苗免疫组IgE水平无明显变化。
     (3)MTT法检测的小鼠脾淋巴细胞增殖结果:所有疫苗接种组脾T细胞增殖明显,SC组和IM组高于IN组和PO组。
     (4)流式细胞仪检测脾CD4+T细胞和CD8+T细胞结果:各疫苗组脾细胞CD+4T细胞和CD+8T细胞显著增加;CD4+T细胞在SC组最高,CD+8T细胞在SC组、IM组和IN高于PO组。
     (5)应用Annexin V-FITC kits检测小鼠脾细胞凋亡结果:疫苗接种组脾细胞凋亡发生率降低,SC组低于IM组、IN和PO组。
     结论
     通过RT-PCR成功扩增出OprF抗原编码基因;成功构建铜绿假单胞菌rBb-OprF疫苗;重组质粒pGEX-OprF能在大肠杆菌BL21中表达,表达效率较高,重组融合蛋白具有与天然OprF蛋白相同的抗原性;rBb-OprF疫苗能诱导BALB/c小鼠产生较强的保护性免疫反应,皮下和肌肉注射接种是较好的接种途径;铜绿假单胞菌rBb-OprF疫苗可诱导小鼠产生混合型的Th1和Th2免疫应答。
Objective
     To construct and identify recombinant Bifidobacteria(rBb)-OprFvaccine of Pseudomonas aeruginosa,and then to decompose the expressionof recombinated plasmid pGEX-OprF induced by IPTG in BL21(DE3).BALB/c mice were immunized with the vaccine subcutaneously,intramuscularly, intranasallyand orally,thenthe mice were challenged with109CFU PAO1strain8th week after vaccination and sacrificed on9th weekafter infection. The number of viable bacteria in lung homogenate wascounted. Sera were collected to determine the levels of IgA, IgE, IgG andtheir subclasses by ELISA. The proliferation of splenocytes wassignificantly increased by methyltetrazolium(MTT) assay. Number of CD4+and CD8+subsets in4immunization groups were more than control by flowcytometry(FCM). The level of IFN-γ, IL-12, TNF-αand IL-10in the culturesupernatants were markedly elevated by ELISA. If so, the protectiveimmunologic mechanism of BALB/c mice induced the recombinantBb-OprF vaccine in acute pneumonia of PAO1strain could be preliminarilyexplained and a kind of helpful vaccine to control Pseudomonas aeruginosa pneumonia would be provided.
     Methods
     OprF coding coding gene was respectively amplified by RT-PCR fromthe total RNA of PAO1strain. oprF27-1032DNA fragment was cloned intoE.coli-Bifidobacterium shuttle expressing plasmid pGEX-1LambdT toconstruct pGEX-OprF. The recombinant plasmid was introduced into E.coliBL21(DE3) and the oprF gene was expressed in the presence ofisopropyl-β-D-thiogalactopyranosid(IPTG). The recombinant plasmidpGEX-OprF was transformed into Bifidobacterium bifidum(Bb) byelectroporation. The recombinant OprF protein was analyzed and identifiedby sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE)and Western blot.
     To investigate protective immunity mechanisms induced in BALB/cmice by inoculation with the recombinant Bb vaccine, and subsequentlychallenged with PAO1strain. Fifty-six female BALB/c mice aged12-14weeks were randomly divided into seven groups, eight in each group. GroupA: rBb-OprF was subcutaneously injected per capita5×10~6CFU. Group B:rBb-OprF was intramuscularly injected per capita5×10~6CFU. Group C:rBb-OprF was intranasally injected per capita5×10~6CFU. Group D:rBb-OprF was orally inoculated per capita5×10~8CFU. Group E:Bb(pGEX-1LambdaT) was subcutaneously injected per capita5×10~6CFU.Group F: Bb was subcutaneously injected per capita5×10~6CFU. Group G: 100μLMRS served subcutaneously as control. All the mice were challengedwith5.0×106CFU PAO1of Pseudomonas aeruginosa strain8th week aftervaccination and sacrificed on9th week after infection. The number of viablebacteria in lung homogenate was counted. Sera were collected to determinethe levels of IgA, IgE, IgG and their subclasses by ELISA. The proliferationof splenocytes was examined by methyltetrazolium(MTT) assay. Thepercent of CD4+and CD8+and apoptosis of splenocytes were detected byflow cytometry. The level of IFN-γ, IL-12, TNF-αand IL-10in the culturesupernatants were markedly elevated by ELISA. The percent of apoptosis ofsplenocytes were detected byAnnexin V-FITC kits.
     Results
     The OprF coding gene was successfully amplified by PCR, thepGEX-OprF plasmid was extracted from the positive clone selected andtestified by an agarose electroporation after restriction endonucleasedigestion were the same as expected (1016bp oprF gene and4947bppGEX-1LambdT). The oprF gene fragment was amplified by PCR fromthe template of pGEX-OprF extracted from rBb vaccine and sequenceanalysis. The oprF gene fragment was amplified by PCR from the templateof the total of rBb. A relative molecular weight of expressed recombinantprotein at approximately61kDa was determined by SDS-PAGE. Theamount of the expressed protein comprised16%of the total bacterialproteins. The fusion protein could be recognized by the sera of mice produced against the crude outer membrane protein.
     BALB/c mice were vaccinated with the rBb-OprF vaccinesubcutaneously, intramuscularly, intranasally and orally. Then the mice werechallenged with5.0×10~6CFU PAO1strain on8thweek after vaccination andkilled9thweek after infection. The bacteria count of the4immunizationgroups decreased evidently as compared with control. The levels of IgG,IgG1, IgG2a and IgG2b increased markedly while those of IgE wasinvariability, IgG3increased in subcutaneous and oral groups, IgAincreasedin subcutaneous group. The proliferation of splenocytes was significantlyincreased by MTT assay. Number of CD4~+and CD8~+subsets in4immunization groups were more than control by flow cytometry(FCM). Thelevel of IFN-γ, IL-12, TNF-αand IL-10in the culture supernatants weremarkedly elevated by ELISA. Apoptotic rate of all vaccine group wasdeclined.
     Conclusion
     OprF coding gene was successfully cloned by RT-PCR. Therecombinant Bb-OprF vaccine of Pseudomonas aeruginosa wassuccessfully constructed. BL21(pGEX-OprF) could express recombinantGST-OprF fusion protein and the expression efficiency was lower. Theantigenicity of the recombinant GST-OprF fusion protein was the same asnative OprF. The recombinant Bb-OprF vaccine could induce moreeffectively protective immune resposes in BALB/c mice. subcutaneous inoculation and intramuscular vaccination are two better immune routes.Mixed Th1/Th2type immune responses may be producted in micevaccinated with the recombinant Bb-OprF vaccine of Pseudomonasaeruginosa.
引文
[1] EI Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosapneumonia[J]. JAntimicrob Chemother,2009,64(2):229-238.
    [2] Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of thepost-antibiotic era?[J]. Int JAntimicrob Agent,2007,29:630-636.
    [3]马越,李景云,张新妹,等.2002年临床常见细菌耐药性监测[J].中华检验医学杂志,2004,27(1):38-45.
    [4]朱佑明,王利亚,黄永红,等.不同医疗机构医院获得性肺炎转归及病原构成的回顾性分析[J].第三军医大学学报,2011,33(18):1986-1990.
    [5] Niederman MS, Sarosi GA, Glassroth J主编,纪霞,张为忠,主译.呼吸系统感染
    [M].人民卫生出版社,2005(第2版),p352-365.
    [6] Pier GB, DesJardin D, Grout M, et al. Human immune response to Pseudomonasaeruginosa mucoid exopolysaccharide (alginate) vaccine[J]. Infect Immun,1994,62(9):3972-3979.
    [7] Theilacker C, Coleman FT, Mueschenborn S, et al. Construction andcharacterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginateconjugate vaccine [J]. Infect Immun,2003,71(7):3875-3884.
    [8] Johansen HK, Hoiby N, Pedersen SS. Experimental immunization Pseudomonasaeruginosa alginate induces IgA and IgG antibody responses[J]. APMIS,1991,99(12):1061-8.
    [9] Anderson TR, Montie TC. Flagellar antibody stimulated opsonophagocytosis ofPseudomonas aeruginosa associated with response to either a-or b-type flagellarantigen[J]. Can J Microbiol,1989,35(9):890-4.
    [10] D ring G, Meisner C, Stern M, et al. A double-blind randomizedplacebo-controlled phase Ⅲ study of a Pseudomonas aeruginosa flagella vaccine incystic fibrosis patients [J]. Proc NatlAcad Sci USA,2007,104(26):11020-25.
    [11] Kao DJ, Hodqes RS. Advantages of a synthetic peptide immunogen over a proteinin the development of an anti-pilus vaccine for Pseudomonas aeruginosa[J]. ChemBiol Drug Des,2009,74(1):33-42.
    [12] Kintz E, Scarff JM, Digiandomenico A, et al. Lipoplysaccharide O-Antigen chainlength regulation in Pseudomonas aeruginosa serogroup O11strain PA103[J]. JBacteriol.2008,190(8):2709-2716.
    [13] Pier GB. Promises and pitfalls of Pseduomonas aeruginosa lipopolysaccharide as avaccine antigen[J]. Carbohydr Res,2003,338(23):2549-56.
    [14]朱佑明,罗永艾.铜绿假单胞菌疫苗研究进展中国人兽共患病学报,2010,26(12):1157-1159.
    [15] Pier GB, Meluleni G, Goldberg JB. Clearance of Pseduomonas aeruginosa fromthe murine gastrointestinal tract is effectively mediated by O-antigen-specificcirculating antibodies[J]. Infect Immun,1995,63(8):2818-2825.
    [16] Straatsma TP, Soares TA. Characterization of the outer membrane protein OprF ofPseudomonas in a lipopolysaccharide membrane by computer simulation[J].Proteins,2009,74:475-488.
    [17] Duchene M, Schweizer A, Lottspeich F, et al. Sequence and Transcriptional startsite of the Pseudomonas aeruginosa outer membrane porin protein F gene[J]. JBacteriol,1988,170(1):155-62.
    [18] Ullstrom CA, Siehnel R, Woodruff W, et al. Conservation of the gene for outermembrane protein OprF in the family Pseudomonadaceae: sequence of thePseudomonas Syringae oprF gene[J]. J Bacteriol,1991,173(2):768-775.
    [19] Sugawara E, Nestorovich EM, Bezrukov SM, et al. Pseudomonas aeruginosa porinOprF exists in two different conformations[J]. J Biol Chem,2006,281:16220-16229.
    [20] Straatsma TP, Soares TA. Characterization of the outer membrane protein OprF ofpseudomonas in a lipopolysaccharide membrane by computer simulation[J].Proteins,2009,74:475-488.
    [21] Meyer JM. Exogenous siderophore-mediated iron uptake in pseudomonasaeruginosa: possible involvement of porin OprF in iron translocation. J GenMicrobiol,1992,138:951-958.
    [22] Azghani AO, Idell S, Bains M, et al. Pseudomonas aeruginosa outer membraneprotein F is an adhesion in bacterial binding to lung epithelial cells in culture.Microb Pathog,2002,33:109-114.
    [23] Rawling EG, Brinkman FSL, Hancock REW. Roles of the carboxy-terminal half ofPseudomonas aeruginosa major outer membrane protein in cell shape, growth inlow-osmolarity medium, and peptidoglycan association[J]. J Bacteriol,1998,180(14):3556-3562.
    [24] Hughes EE, Gilleland LB, Gilleland HE JR. Synthetic peptides representingepitopes of outer membrane protein F of Pseudomonas aeruginosa that elicitantibodies reactive with whole cells of heterologous immunotype strains of P.aeruginosa[J]. Infect Immun,1992,60(9):3497-503.
    [25]VONSpecht BU, Knapp B, Muth G, et al. Protection of immunocompromised miceagainst lethal infection with Pseudomonas aeruginosa by active or passiveimmunization with recombinant P. aeruginosa outer membrane protein F and outermembrane protein I fusion proteins[J]. Infect Immun,1995,63(5):1855-62.
    [26] Worgall S, Krause A, Rivara M, et al. Protection against Pseudomonas aeruginosawith an adenovirus vector containing an OprF epitope in the capsid[J]. Clin Invest,2005,115(5):1281-9.
    [27]朱佑明,罗永艾.铜绿假单胞菌外膜蛋白F(OprF)疫苗研究进展.中华生物医学工程杂志,2011,17(3):277-279.
    [28] Sekine K, Ohta J, Onishi M, et al. Analysis of antiumor properties of effector cellsstimulated with a cell wall preparation(WPG) of Bifidobacterium infantis[J]. BiolPharm Bull,1995,18(1):148-153
    [29] Agren J, Thuemermann C, Foster SJ, et al. Cytokine responses to CpG DNA inhuman leukocytes[J]. Scand J Immunol,2006,64(1):61-68.
    [30]安蔚,赵苗青,李雅林,等.含有非甲基化CpG的双歧杆菌DNA对小鼠骨髓树突状细胞成熟的影响[J].第四军医大学学报,2006,27(2):113-116.
    [31] Li Y, Qu X, Tang H, et al. Bifidobacterial DNA induces murine macrophagesactivation in vitro[J]. Cell Mol Immunol,2005,2(6):473-478.
    [32]李文桂,陈雅棠.重组双岐杆菌疫苗研究进展[J].中国人兽共患病学报,2008,24(8):768-770.
    [33] Nakamura T, Sasaki T, Fujimori M, et al. Cloned cytosine deaminase geneexpression of Bifidobacterium longum and application to enzyme/pro-drug therapyof hypoxic solid tumors[J]. Biosci Biotechnol Biochem,2002,66(11):2362-2366.
    [34] Takata T, Shirakawa T, Kawasaki Y, et al. Genetically engineered Bifidobacteriumanimals expressing the Salmonella flagellin gene for the mucosal immunization ina mouse model[J]. J Gene Med,2006,8(11):1341-1346.
    [35] Li X, Fu GF, Fan YR, et al. Bifidobacterium adolescentis as a delivery system ofendostain for cancer gene therapy: selective inhibitor of angiogenesis and hypoxictumour growth[J]. Cancer Gene Therapy,2003,10(2):105-111.
    [36] Yazawa K, Fujimori M, Nakamura T, et al. Bifidobacterium longum as a deliverysystem for gene therapy of chemically induced rat mammary tumors[J]. Breast CanRes Treatment,2001,66(2):165-170.
    [37]云雪霞,胡静,陈清.霍乱弧菌肠毒素B亚单位基因在大肠杆菌和双歧杆菌的表达[J].中国人兽共患病学报,2007,23(2):168-171.
    [38]谢婷,李文桂.结核分支杆菌重组Bb-MPT64疫苗的构建、鉴定及表达[J].重庆医科大学学报,2008,33(6):657-660,729.
    [1] EI Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginospneumonia[J]. J. Antimicrobial Chemotherapy,2009,64(6):229-238.
    [2] Gilleland HE JR,Parker MG, Matthews JM, et al. Use of a purified outer membraneprotein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccinein mice[J]. Infect Immun,1984,44(1):49-54.
    [3] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J Clin Invest,2005,115(5):1281-1289.
    [4] D ring G, Pier GB. Vaccines and immunotherapy against Pseudomonasaeruginosa[J].Vaccine,2008,26(8):1011-1024
    [5] Holder IA. Pseudomonas immunotherapy: a historical overview[J]. Vaccine,2004,22(7):831-839.
    [6] Guido Grandi主编,马贤凯,王嘉玺,梁龙,等译.基因组学、蛋白质组学疫苗
    [M].化学工业出版社,2006,9-12.
    [7] Jang IJ, Kim IS, Park WJ, et al. Human immune response to a Pseudomonasaeruginosa outer membrane protein vaccine[J].Vaccine.1999,17(2):158-168.
    [8] Duchene M, Schweizer A, Lottspeich F, et al. Sequence and Transcriptionalstart site of the Pseudomonas aeruginosa outer membrane porin protein F gene[J]. JBacteriol,1988,170(1):155-162.
    [9] Hughes EE, Gilleland LB, Gilleland HE JR. Synthetic peptides representingepitopesof outer membrane protein F of Pseudomonas aeruginosa that elicitantibodiesreactive with whole cells of heterologous immunotype strains of P.aeruginosa[J]. Infect Immun,1992,60(9):3497-3503.
    [10]VONSpecht BU, Knapp B, Muth G, et al. Protection of immunocompromised miceagainst lethal infection with Pseudomonas aeruginosa by active or passiveimmunization with recombinant P. aeruginosa outer membrane protein F and outermembrane protein I fusion proteins[J]. Infect Immun,1995,63(5):1855-1862.
    [11] Worgall S, Krause A, Rivara M, et al. Protection against Pseudomonas aeruginosawith an adenovirus vector containing an OprF epitope in the capsid[J]. Clin Invest,2005,115(5):1281-1289.
    [12] Azghani AO, Idell S, Bains M, et al. Pseudomonas aeruginosa outer membraneprotein F is an adhesion in bacterial binding to lung epithelial cells in culture[J].Microb Pathog,2002,33(3):109-114.
    [13] Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence ofPseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature,2000,406(6799):959-964.
    [1]朱佑明,罗永艾.铜绿假单胞菌疫苗研究进展中国人兽共患病学报,2010,26(12):1157-1159.
    [2] Missich R, Sgorbati B, Le Blanc DJi M. Transformation of Bifidobacterium longumwith pRM2a constructed E.coil-B longum shuttle vector[J]. Plasmid,1994,32(2):208-211.
    [3]彭俊铭,曾位森,罗艺洪.基因工程双歧杆菌的研究及其应用[J].中国微生态学杂志,2009,21(5):474-476.
    [4] Sekine K, Ohta J, Onishi M, et al. Analysis of antiumor properties of effector cellsstimulated with a cell wall preparation(WPG) of Bifidobacterium infantis[J]. BiolPharm Bull,1995,18(1):148-153
    [5] Agren J, Thuemermann C, Foster SJ, et al. Cytokine responses to CpG DNA inhuman leukocytes[J]. Scand J Immunol,2006,64(1):61-68.
    [6]安蔚,赵苗青,李雅林,等.含有非甲基化CpG的双歧杆菌DNA对小鼠骨髓树突状细胞成熟的影响[J].第四军医大学学报,2006,27(2):113-116.
    [7] Li Y, Qu X, Tang H, et al. Bifidobacterial DNA induces murine macrophagesactivation in vitro[J]. Cell Mol Immunol,2005,2(6):473-478.
    [8] Takata T, Shirakawa T, Kawasaki Y, et al. Genetically engineered Bifidobacteriumanimals expressing the Salmonella flagellin gene for the mucosal immunization ina mouse model[J]. J Gene Med,2006,8(11):1341-1346.
    [9]朱佑明,罗永艾.铜绿假单胞菌疫苗研究进展[J].中国人兽共患病学报,2010,26(12):1157-1159.
    [10] Nakamura T, Sasaki T, Fujimori M, et al. Cloned cytosine deaminase geneexpression of Bifidobacterium longum and application to enzyme/pro-drug therapyof hypoxic solid tumors[J]. Biosci Biotechnol Biochem,2002,66(11):2362-2366.
    [11] Li X, Fu GF, Fan YR, et al. Bifidobacterium adolescentis as a delivery system ofendostain for cancer gene therapy: selective inhibitor of angiogenesis and hypoxictumour growth[J]. Cancer Gene Therapy,2003,10(2):105-111.
    [12] Yazawa K, Fujimori M, Nakamura T, et al. Bifidobacterium longum as a deliverysystem for gene therapy of chemically induced rat mammary tumors[J]. Breast CanRes Treatment,2001,66(2):165-170.
    [13]云雪霞,胡静,陈清.霍乱弧菌肠毒素B亚单位基因在大肠杆菌和双歧杆菌的表达[J].中国人兽共患病学报,2007,23(2):168-171.
    [14]谢婷,李文桂.结核分支杆菌重组Bb-MPT64疫苗的构建、鉴定及表达[J].重庆医科大学学报2008,33(6):657-660,729.
    [15]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗的构建及鉴定[J].中国人兽共患病学报,2007,23(10):1026-1029.
    [16]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合基因疫苗构建及鉴定[J].中国人兽共患病学报,2009,25(6):208-211.
    [17] Matteuzzi D, Brigidi P, Rossi M, et al. Characterization and molecular clonging ofBifidobacterium longum cryptic plasmid pMB1[J]. Lett Appl Microbiol,1990,11(4):220-223.
    [18]韩庆旺,徐叶芬,傅更锋,等.大肠杆菌-双歧杆菌穿梭表达载体的构建及内皮抑素基因的表达[J].生物技术通讯,2006,17(1):18-21.
    [19]安丽娜,李著华,岳扬,等.婴儿双歧杆菌介导的CD和UPRT联合5-FC基因疗法对黑色素瘤的体外治疗实验研究[J].四川大学学报(医学版),2007,38(1):27-30.
    [20] Yi C, Huang Y, Guo ZY, et al. Antitumor effect of cytosinedeaminase/5-fluorocytosine suicide gene therpy system mediated byBifidobacterium infantis on melanoma[J]. Acta pharmacologica sinica,2005,26(5):629-634.
    [21] Yi C, Huang Y, Guo ZY, et al. Construction of Bifidobacterium infantis/CDtargeting gene therpy system[J]. Chin Germ J Clin Oncol,2005,4(4):244-247.
    [22] Rhim SL, Park MS, Ji GE. Expression and secretion of Bifidobacteriumadolescentis amylase by Bifidobacterium longum[J]. Biotech Lett,2006,28(3):163-168.
    [23]毛淑华,姬玲玲,刘洪,等.婴儿双歧杆菌介导的sKDR原核克隆表达及其对血管内皮细胞增殖的影响[J].四川大学学报(医学版),2009,40(5):784-786
    [24]侯鑫,刘俊娥.大肠杆菌-长双歧杆菌穿梭载体的构建及PTEN在长双歧杆菌中的表达[J].微生物学报,2006,46(3):347-352.
    [25]石屹,杨业鹏,李载权,等.一种含双歧杆菌种属特异性复制子的新型大肠杆菌-双歧杆菌穿梭质粒的构建[J].中国生物化学与分子生物学报,2010,26(9):871-877.
    [1]马越,李景云,张新妹,等.2002年临床常见细菌耐药性监测[J].中华检验医学杂志,2004,27(1):38-45.
    [2] Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of thepost-antibiotic era?[J]. Int JAntimicrobAgent,2007,29(6):630-6.
    [3] Gilleland HE JR, Parker MG, Matthews JM, et al. Use of a purified outer membraneprotein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccine inmice[J]. Infect Immun,1984,44(1):49-54.
    [4] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. Clin Invest,2005,115(5):1281-9.
    [5] Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonasaeruginosa PAO1, an opportunistic pathogen[J]. Nature,2000,406(6799):959-64.
    [6] Duchene M, Schweizer A, Lottspeich F, et al. Sequence and transcriptional start siteof the Pseudomonas aeruginosa outer membrane porin protein F gene[J]. JBacteriol,1988,170(1):155-62.
    [7] Straatsma TP, Soares TA. Characterization of the outer membrane protein OprF ofPseudomonas in a lipopolysaccharide membrane by computer simulation[J].Proteins,2009,74:475-488.
    [8] Sugawara E, Nestorovich EM, Bezrukov SM, et al. Pseudomonas aeruginosa porinOprF exists in two different conformations[J]. J Biol Chem,2006,281:16220-16229.
    [9] Meyer JM. Exogenous siderophore-mediated iron uptake in Pseudomonasaeruginosa: possible involvement of porin OprF in iron translocation[J]. J GenMicrobiol,1992,138:951-958.
    [10] Azghani AO, Idell S, Bains M, et al. Pseudomonas aeruginosa outer membraneprotein F is an adhesion in bacterial binding to lung epithelial cells in culture[J].Microb Pathog,2002,33(3):109-14.
    [11]安丽娜,李著华,岳扬,等.婴儿双歧杆菌介导的CD和UPRT联合5-FC基因疗法对黑色素瘤的体外治疗实验研究[J].四川大学学报(医学版),2007,38(1):27-30.
    [12]郭志英,易成,王树人,等.婴儿双歧杆菌胞嘧啶脱氨酶肿瘤靶向性基因治疗系统的构建[J].中国肺癌杂志,2004,7(2):95-98.
    [13] Yi C, Huang Y, Guo ZY, et al. Antitumor effect of cytosinedeaminase/5-fluorocytosine suicide gene therpy system mediated byBifidobacterium infantis on melanoma[J]. Acta pharmacologica sinica,2005,26(5):629-634.
    [14] Yi C, Huang Y, Guo ZY, et al. Construction of Bifidobacterium infantis/CDtargeting gene therpy system[J]. Chin Germ J Clin Oncol,2005,4(4):244-247.
    [15]庸建国,茹炳椹,德长洁,等.蛋白质工程的研究[J].北京大学学报(自然科学版),1998,34(2):342-348.
    [16] Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned mediumsupports differentiation of embryonic stem cells into ovarian structures containingoocytes[J]. Stem Cells,2006,24(2):266-273.
    [17]张万山,陈燕,曹郁生.铜绿假单胞菌外膜蛋白OprF和OprH基因扩增、融合、克隆及原核表达[J].江西医学院学报,2004,44(2):5-9.
    [18]廖立新,曹郁生,李国辉,等.一种快速粗提铜绿假单胞菌外膜蛋白的方法[J].江西医学院学报,2003,143(1):60-1.
    [19]廖立新,曹郁生,李国辉,等.铜绿假单胞菌外膜蛋白疫苗的制备[J].中华烧伤杂志,2005,21(3):218-219.
    [1] Gilleland HE Jr, Parker MG, Matthews JM, et al. Use of a purified outer membraneprotein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccinein mice[J]. Infect Immun,1984,44(1):49-54.
    [2] Peluso L, de Luca C, Bozza S, et al. Protection against Pseudomonas aeruginosalung infection in mice by recombinant OprF-pulsed dendritic cell immunization[J].BMC Microbiol,2010,10:9-14.
    [3] Price BM, Golloway DR, Baker NR, et al. Protection against Pseudomonasaeruginosa chronic lung infection in mice by genetic immunization against outermembrane protein (OprF) of P. aeruginosa[J]. Infect Immun,2001,69(5):3510-3515.
    [4]朱佑明,罗永艾,李文桂.铜绿假单胞菌重组Bb-OprF疫苗构建及鉴定[J].中国人兽共患病学报,2011,27(4):303-306.
    [5]朱佑明,罗永艾,李文桂.铜绿假单胞菌重组质粒pGEX-OprF构建及其表达[J].中国病原生物学杂志,2011,6(6):420-423.
    [6]蔡柏蔷主编.第三届北京协和呼吸病学峰会论文集[M].中国协和医科大学出版社,2008, p80-86.
    [7]VONSpecht BU, Knapp B, Muth G, et al. Protection of immunocompromised miceagainst lethal infection with Pseudomonas aeruginosa by active or passiveimmunization with recombinant P. aeruginosa outer membrane protein F and outermembrane protein I fusion proteins[J]. Infect Immun,1995,63(5):1855-1862.
    [8] Weimer ET, Lu H, Kock ND, et al. A fusion protein vaccine containing OprFepitope8, OprI, and type A and B flagellins promotes enhanced clearance ofnonmucoid Pseudomonas aeruginosa[J]. Infect Immun,2009,77(6):2356-2366.
    [9] Arnold H, Bumann D, Felies M, et al. Enhanced immunogenicity in the murineairway mucosa with an attenuated Salmonella live vaccine expressing OprF-OprIfrom Pseudomonas aeruginosa[J]. Infect Immun,2004,72(11):6546-6553.
    [10] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J clin Invest,2005,115(5):1281-1289.
    [11] Priebe GP, Meluleni GJ, Coleman FT, et al. Protection against fatal Pseudomonasaeruginosa pneumonia in mice after nasal immunization with a live, attenuatedaeroAdeletion mutant [J]. Infect Immun,2003,71(3):1453-1461.
    [12] DiGiandomenico A, Rao J, Goldberg JB. Oral vaccination of BALB/c mice withSalmonella enterica serovar typhimurium expressing Pseudomonas aeruginosa Oantigen promotes increased survival in an acute fatal pneumonia model [J]. InfectImmun,2004,72(12):7012-7021.
    [13]陈建国,苏兆亮,柳迎昭等. MyD88-铜绿假单胞菌表位核酸疫苗的构建及其生物学作用的研究[J].江苏大学学报(医学版),2008,18(6):454-490.
    [14]谢婷,李文桂,曾莉蓉.结核分枝杆菌重组Bb-ESAT-6疫苗的构建、鉴定和表达及其保护力[J].中国人兽共患病学报,2008,24(6):555-561.
    [15]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31疫苗诱导BALB/c小鼠的保护力观察[J].中国病原生物学杂志,2010,5(2):111-114.
    [16] Cripps AW, Peek K, Dunkley M, et al. Safety and immunogenicity of an oralinactivated whole-cell Pseudomonas aeruginosa vaccine administered to healthyhuman subjects [J]. Infect Immun,2006,74(2):968-974.
    [17] Weimer ET, Ervin SE, Wozniak DJ, et al. Immunization of young African greenmonkeys with OprF epitope8-OprI-TypeA-and B-flagellin fusion proteinspromotes the production of protective antibodies against nonmucoid Peudomonasaeruginosa[J]. Vaccine,2009,27(48):6762-6769.
    [1] Kamei A, Coutinho-Sledge YS, Goldberg JB, et al. Mucosal vaccination with amultivalent, live-attenuated vaccine induces multifactorial immunity againstPseudomonas aeruginosa acute lung infection[J]. Infect Immun,2011,79(3):1289-1299.
    [2] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J clin Invest,2005,115(5):1281-1289.
    [3]朱佑明,罗永艾,李文桂.铜绿假单胞菌重组Bb-OprF疫苗构建及鉴定[J].中国人兽共患病学报,2011,27(4):303-306.
    [4]朱佑明,罗永艾,李文桂.铜绿假单胞菌重组质粒pGEX-OprF构建及其表达[J].中国病原生物学杂志,2011,6(6):420-423.
    [5]章晓联.感染免疫学.北京:人民卫生出版社,2007
    [6]谢婷,李文桂,曾莉蓉.结核分枝杆菌重组Bb-ESAT-6疫苗的构建、鉴定和表达及其保护力[J].中国人兽共患病学报,2008,24(6):555-561.
    [7]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31疫苗诱导小鼠免疫应答的动态观察[J].细胞与分子免疫学杂志,2010,26(2):99-102.
    [8]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合蛋白诱导小鼠免疫应答[J].免疫学杂志,2010,26(3):232-237.
    [1] Kamei A, Coutinho-Sledge YS, Goldberg JB, et al. Mucosal vaccination with amultivalent, live-attenuated vaccine induces multifactorial immunity againstPseudomonas aeruginosa acute lung infection[J]. Infect Immun,2011,79(3):1289-1299.
    [2] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J clin Invest,2005,115(5):1281-1289.
    [3]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31疫苗诱导小鼠脾细胞亚群变化的研究[J].中国人兽共患病学报,2010,26(3):211-214.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合蛋白诱导小鼠免疫应答[J].免疫学杂志,2010,26(3):232-237.
    [5] Peluso L, de Luca C, Bozza S, et al. Protection against Pseudomonas aeruginosalung infection in mice by recombinant OprF-pulsed dendritic cell immunization[J].BMC Microbiology,2010,10:9.
    [6] Weimer ET, Lu H, Kock ND, et al. A fusion protein vaccine containing OprFepitope8, OprI, and type A and B flagellins promotes enhanced clearance ofnonmucoid Pseudomonas aeruginosa[J]. Infect Immun,2009,77(6):2356-2366.
    [1] Belardelli F. Role of interferons and other cytokines in the regulation of the immuneresponse[J]. APMIS,1995,103(3):161-179.
    [2] Lucey DR, Clerici M, Shearer GM. Type1and type2cytokine dysregulation inhuman infectious, neoplastic and inflammatory diseases[J]. Clin Microbiol Rev.1996,9(4):532-562.
    [3] Peluso L, de Luca C, Bozza S, et al. Protection against Pseudomonas aeruginosalung infection in mice by recombinant OprF-pulsed dendritic cell immunization[J].BMC Microbiology,2010,10:9.
    [4]朱佑明,罗永艾,李文桂.铜绿假单胞菌重组Bb-OprF疫苗构建及鉴定[J].中国人兽共患病学报,2011,27(4):303-306.
    [5]朱佑明,罗永艾.铜绿假单胞菌重组质粒pGEX-OprF的构建及其表达[J].中国病原生物学杂志,2011,6(6):420-423.
    [6] D ring G, Pier GB. Vaccines and immunotherapy against Pseudomonas aeruginosa[J]. Vaccine,2008,26(8):1011–1024.
    [7]朱佑明,罗永艾,李文桂.铜绿假单胞菌外膜蛋白F疫苗的研究进展[J].中华生物医学工程杂志,2011,17(3):277-279.
    [8] Krause A, Whu WZ, Xu Y, et al. Protective anti-Pseudomonas aeruginosa humoraland cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosaprotein OprF[J]. Vaccine,2011,29(11):2131-2139.
    [9] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J clin Invest,2005,115(5):1281-1289.
    [10]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合蛋白诱导小鼠免疫应答[J].免疫学杂志,2010,26(3):232-237.
    [11] Hartl D, Griese M, Kappler M, et al. Pulmonary T(H)2response in Pseudomonasaeruginosa-infected patients with cystic fibrosis[J]. J Allergy Clin Immunol,2006,117(1):204-211.
    [12] Belkaid Y: Regulatory T cells and infection: a dangerous necessity[J]. Nat RevImmunol2007,7(11):875-888.
    [13] Bumann D, Behre C, Behre K, et al. Systemic, nasal and oral live vaccines againstPseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of humanvolunteers[J]. Vaccine,2010,28(3):707-713.
    [14] Kamei A, Coutinho-Sledge YS, Goldberg JB, et al. Mucosal vaccination with amultivalent, live-attenuated vaccine induces multifactorial immunity againstPseudomonas aeruginosa acute lung infection [J]. Infect Immun,2011,79(3):1289-1299.
    [15] Price BM, Golloway DR, Baker NR, et al. protection against Pseudomonasaeruginosa chronic lung infection in mice by genetic immunization against outermembrane protein (OprF) of P. aeruginosa[J]. Infect Immun,2001,69(5):3510-3515.
    [16] Cripps AW, Peek K, Dunkley M, et al. Safety and immunogenicity of an oralinactivated whole-cell Pseudomonas aeruginosa vaccine administered to healthy humansubjects[J]. Infect Immun2006,74(2):968-974.
    [17]安蔚,赵苗青,李雅林,等.含有非甲基化CpG的双歧杆菌DNA对小鼠骨髓树突状细胞成熟的影响[J].第四军医大学学报,2006,27(2):113-116.。
    [1] Schultz MJ, Rijneveld AW, Florquin S, et al. Role of interleukin-1in the pulmonaryimmune response during Pseudomonas aeruginosa pneumonia[J]. Am J PhysiolLung Cell Mol Physiol,2002,282(2):L285-290.
    [2] Nieuwenhuis EE, Matsumoto T, Exley M, et al. CD1d-dependentmacrophage-mediated clearance of Pseudomonas aeruginosa from Lung. NatMed,2002,8(6):588-593.
    [3]杨梅,李文桂,朱佑明.多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗对小鼠脾细胞凋亡的影响[J].中国人兽共患病学报,2008,24(11):1032-1035.
    [4]周必英,陈雅棠,李文桂,等.细粒棘球绦虫重组Bb-Eg95-EgA31融合蛋白诱导小鼠免疫应答[J].免疫学杂志,2010,26(3):232-237.
    [1] Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of thepost-antibiotic era?[J]. Int JAntimicrobAgent,2007,29(6):630-6.
    [2] Morales G, Wiehlmann L, Gudowius P, et al. Structure of Pseudomonas aeruginosapopulations analyzed by single nucleotide polymorphism and pulsed-field gelelectrophoresis genotyping[J]. J Bacteriol,2004,186(13):4228-37.
    [3] Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonasaeruginosa PAO1, an opportunistic pathogen[J]. Nature,2000,406(6799):959-64.
    [4] Ehrlich GD, Hu FZ, Shen K, et al. Bacterial plurality as a general mechanismdriving persistence in chronic infections[J]. Clin Orthop Relat Res,2005,437:20-4.
    [5] Shen K, Sayeed S, Antalis P, et al. Extensive genomic plasticity in Pseudomonasaeruginosa revealed by identification and distribution studies of novel genes amongclinical isolates[J]. Infect Immun,2006,74(9):5272-83.
    [6] Pirnay JP, Bilocq F, Pot B, et al. Pseudomonas aeruginosa population structurerevisited[J]. PLoS One,2009,4(11): e7740.
    [7] Nouwens AS, Cordwell, SJ, Larsen, MR, et al. Complementing genomics withproteomics: the membrance subproteome of Pseduomonas aeruginosa PAO1[J].Electrophoresis,2000,21(17):3797-809.
    [8] Nouwens AS, Beaston SA, Whitchurch CB, et al. Proteome analysis of extracellularproteins regulated by the las and rhl quorum sensing systems in Pseduomonasaeruginosa[J]. Microbiol,2003,149(5):1311-22.
    [9] Wilderman PJ, Vasil AI, Johnson Z, et al. Characterization of an endoprotease(PrpL)encoded by a PvdS-regulated gene in Pseudomonas aeruginosa[J]. Infect Immun,2001,69(9):5385-94.
    [10] Guan P, Doytchinova IA, Zygouri C, et al. MHCPred: a server for quantitativeprediction of peptide-MHC binding[J]. Nucleic Acids Res,2003,31(13):3621-4.
    [11] Manafi A, Kohanteb J, Mehrabani A, et al. Active immunization using exotoxin Aconfers protection against Pseduomonas aeruginosa infection in a mouse burnmodel[J]. BMC Microbiol,2009,9:23.
    [12] Bever RA, Iglewski BH. Molecular characterization and nucleotide sequence of thePseduomonas aeruginosa elastase structural gene[J]. Bacteriol,1988,170(9):4309-14.
    [13] Schmidtchen A, Holst E, Tapper H, et al. Elastase-producing Pseudomonasaeruginosa degrade plasma proteins and extracelluar products of human skin andfibroblasts, and inhibit fibroblast growth[J]. Microbiol pathogenesis,2003,34(1):47-5.
    [14] Cheluvappa R, Cogger VC, Kwun SY, et al. Reactions of Pseudomonas aeruginosapyocyanin with reduced glutathione[J]. Acta Biochim Pol.2008,55(3):571-80.
    [15] Greenwald J, Zeder-Lutz G, Hagege A, et al. The metal dependence of pyoverdineinteractions with its outer membrane receptor FpvA[J]. Bacteriol,2008,190(20):6548-58.
    [16] Shirley M, Lamont IL. Role of TonB1in pyoverdine-mediated signaling inPseudomonas aeruginosa[J]. J Bacteriol,2009,191(18):5634-40.
    [17] Gacesa P. Bacterial alginate biosynthesis-recent progress and future prospects[J].Microbial,1998,144(5):1133-43.
    [18] Theilacker C, Coleman FT, Mueschenborn S, et al. Construction andcharacterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginateconjugate vaccine [J]. Infect Immun,2003,71(7):3875-84.
    [19] Johansen HK, Hoiby N, Pedersen SS. Experimental immunization Pseudomonasaeruginosa alginate induces IgA and IgG antibody responses[J]. APMIS,1991,99(12):1061-8.
    [20] Rocchetta HL, Lam JS. Identification and functional characterization of an ABCtransport system involved in polysaccharide export of A-band lipopolysaccharide inPseudomonas aeruginosa[J]. Bacteriol,1997,179(15):4713-24.
    [21] Kintz E, Scarff JM, DiGiandomenico A, et al. Lipopolysaccharide O-antigen chainlength regulation in Pseudomonas aeruginosa serogroup O11strainPA103[J].Bacteriol,2008,190(8):2709-16.
    [22] Pier GB. Promises and pitfalls of Pseduomonas aeruginosa lipopolysaccharide as avaccine antigen[J]. Carbohydr Res,2003,338(23):2549-56.
    [23]章喻军,王三英.铜绿假单胞菌外膜亚蛋白质组图谱的建立[J].厦门大学学报(自然科学版),2008,47(1):111-5.
    [24] Tamber S, Ochs MM, Hancock RE. Role of the novel OprD family of porins innutrient uptake in Pseudomonas aeruginosa [J].J Bacteriol,2006,188(1):45-54.
    [25] Ochs MM, Bains M, Hancock RE. Role of putative loops2and3in imipenempassage through the specific porin OprD of Pseudomonas aeruginosa[J].AntimicrobAgents Chemother,2000,44(7):1983-5.
    [26] Duchene M, Schweizer A, Lottspeich F, et al. Sequence and Transcriptional startsite of the Pseudomonas aeruginosa outer membrane porin protein F gene[J]. JBacteriol,1988,170(1):155-62.
    [27] Hughes EE, Gilleland LB, Gilleland HE JR. Synthetic peptides representingepitopes of outer membrane protein F of Pseudomonas aeruginosa that elicitantibodies reactive with whole cells of heterologous immunotype strains of P.aeruginosa[J]. Infect Immun,1992,60(9):3497-503.
    [28]VONSpecht BU, Knapp B, Muth G, et al. Protection of immunocompromised miceagainst lethal infection with Pseudomonas aeruginosa by active or passiveimmunization with recombinant P. aeruginosa outer membrane protein F and outermembrane protein I fusion proteins[J]. Infect Immun,1995,63(5):1855-62.
    [29] Worgall S, Krause A, Rivara M, et al. Protection against Pseudomonas aeruginosawith an adenovirus vector containing an OprF epitope in the capsid[J]. Clin Invest,2005,115(5):1281-9.
    [30] Azghani AO, Idell S, Bains M, et al. Pseudomonas aeruginosa outer membraneprotein F is an adhesion in bacterial binding to lung epithelial cells in culture[J].Microb Pathog,2002,33(3):109-14.
    [31] Price BM, Galloway DR, Baker NR, et al. Protection against Pseudomonasaeruginosa chronic lung infection in mice by genetic immunization against outermembrane protein F(OprF) of P. aeruginosa[J]. Infect Immun,2001,69(5):3510-5.
    [32] Duchene M, Barron C, Schweizer A, et al. Pseudomonas aeruginosa outermembrane lipoprotein I gene: molecular cloning, sequence, and expression inEscherichia coli[J]. J Bacteriol,1989,171(8):4130-7.
    [33] Loots K, Revets H, Goddeeris BM. Attachment of the outer membranelipoprotein(OprI) of Pseudomonas aeruginosa to the mucosal surfaces of therespiratory and digestive tract of chickens[J]. Vaccine,2008,26(4):546-51.
    [34] Lin YM, Wu SJ, Chang TW, et al. Outer membrane protein I of Pseudomonasaeruginosa is a target of cationic antimicrobial peptide/protein[J]. Biol Chem,2010,285(12):8985-94.
    [35] Lim A Jr, De Vos D, Brauns M, et al. Molecular and immunologicalcharacterization of OprL, the18kDa outer-membrane peptidoglycan associatedlipoprotein(PAL) of Pseudomonas aeruginosa[J]. Microbiology,1997,143(Pt5):1709-16.
    [36] Gatypova EV, Zlygostev SA, Kaloshin AA, et al. Immunobiological properties ofrecombinant L peptide from the Pseudomonas aeruginosa outer membrance[J].Vestn Ross Akad Med Nauk,2009,(4):25-28.
    [37]常江,史红艳,李菁华,等.铜绿假单胞菌普通菌毛与耐药性R质粒的关系[J].吉林大学学报(医学版),2004,30(1):100-2.
    [38] Kao DJ, Hodqes RS. Advantages of a synthetic peptide immunogen over a proteinin the development of an anti-pilus vaccine for Pseudomonas aeruginosa[J]. ChemBiol Drug Des,2009,74(1):33-42.
    [39] Anderson TR, Montie TC. Flagellar antibody stimulated opsonophagocytosis ofPseudomonas aeruginosa associated with response to either a-or b-type flagellarantigen[J]. Can J Microbiol,1989,35(9):890-4.
    [40] D ring G, Meisner C, Stern M, et al. A double-blind randomizedplacebo-controlled phase Ⅲ study of a Pseudomonas aeruginosa flagella vaccine incystic fibrosis patients [J]. Proc NatlAcad Sci USA,2007,104(26):11020-25.
    [41] Goure J, Pastor A, Faudry E, et al. The V antigen of Pseudomonas aeruginosa isfor assemblely of the functional PopB/PopD translocation pore in host cellmembrances[J]. Infect Immun,2004,72(8):4741-50.
    [42] Frank DW, Vallis A, Wiener-Kronish JP, et al. Generation and characterization of aprotective monoclonal antibody to Pseudomonas aeruginosa PcrV[J]. Infect Dis,2002,186(1):64-73.
    [43] Sawa T, Yahr M, Kurahashi K, et al. Active and passive immunization with thePseudomonas V antigen protects against type Ⅲ intoxication and lung injury[J].Nat Med,1999,5(4):392-8.
    [44] Wu WH, Jin SG. PtrB of Pseudomonas aeruginosa suppresses the type Ⅲ secretionsystem under the stress of DNAdamage[J]. Bacteriol,2005,187(17):6058-68.
    [1] Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of thepost-antibiotic era?[J]. Int JAntimicrob Agent,2007,29:630-636.
    [2]王辉.非发酵糖革兰阴性杆菌感染的治疗困境与药物选择[J].中华结核和呼吸杂志,2008,31:728-730.
    [3] Straatsma TP, Soares TA. Characterization of the outer membrane protein OprF ofpseudomonas in a lipopolysaccharide membrane by computer simulation[J]. Proteins,2009,74:475-488.
    [4] Sugawara E, Nestorovich EM, Bezrukov SM, et al. Pseudomonas aeruginosa porinOprF exists in two different conformations[J]. J Biol Chem,2006,281:16220-16229.
    [5] Meyer JM. Exogenous siderophore-mediated iron uptake in pseudomonasaeruginosa: possible involvement of porin OprF in iron translocation[J]. J GenMicrobiol,1992,138:951-958.
    [6] Azghani AO, Idell S, Bains M, et al. Pseudomonas aeruginosa outer membraneprotein F is an adhesion in bacterial binding to lung epithelial cells in culture[J]. MicrobPathog,2002,33:109-114.
    [7] Hughes EE, Gilleland LB, Gilleland HE JR. Synthetic peptides representingepitopes of outer membrane protein F of Pseudomonas aeruginosa that elicit antibodiesreactive with whole cells of heterologous immunotype strains of P. aeruginosa[J]. InfectImmun,1992,60:3497-3503.
    [8]VONSpecht BU, Knapp B, Muth G, et al. Protection of immunocompromised miceagainst lethal infection with Pseudomonas aeruginosa by active or passiveimmunization with recombinant P. aeruginosa outer membrane protein F and outermembrane protein I fusion proteins[J]. Infect Immun,1995,63:1855-1862.
    [9] Worgall S, Krause A, Rivara M, et al. Protection against P. aeruginosa with anadenovirus vector containing an OprF epitope in the capsid[J]. J Clin Invest,2005,115:1281-1289.
    [10] Peluso L, de Luca C, Bozza S, et al. Protection against Pseudomonas aeruginosalung infection in mice by recombinant OprF-pulsed dendritic cell immunization[J].BMC Microbiol,2010,10:9-14.
    [11] Mansouri E, Gabelsberger J, Knapp B, et al. Safety and immunogenicity of aPseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in humanvolunteers[J]. Infect Immun,1999,67:1461-1470.
    [12] Weimer ET, Lu H, Kock ND, et al. A fusion protein vaccine containing OprFepitope8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoidPseudomonas aeruginosa[J]. Infect Immun,2009,77:2356-2366.
    [13] Weimer ET, Ervin SE, Wozniak DJ, et al. Immunization of young African greenmonkeys with OprF epitope8-OprI-TypeA-and B-flagellin fusion proteins promotes theproduction of protective antibodies against nonmucoid Pseudomonas aeruginosa[J].Vaccine,2009,27:6762-6769.
    [14]陈建国,苏兆亮,柳迎昭等. MyD88-铜绿假单胞菌表位核酸疫苗的构建及其真核表达[J].细胞与分子免疫学杂志,2009,25:193-200.
    [15]陈建国,苏兆亮,柳迎昭等. MyD88-铜绿假单胞菌表位核酸疫苗的构建及其生物学作用的研究[J].江苏大学学报(医学版),2008,18:454-490.
    [16] Price BM, Golloway DR, Baker NR, et al. protection against Pseudomonasaeruginosa chronic lung infection in mice by genetic immunization against outermembrane protein (OprF) of P. aeruginosa[J]. Infect Immun,2001,69:3510-3515.
    [17] Gilleland HE Jr, Staczek J, Gilleland LB, et al. Chimeric influenza virusesincorporating epitopes of outer membrane protein F as a vaccine against pulmonaryinfection with Pseudomonas aeruginosa[J]. Behring Inst Mitt,1997,98:291-301.
    [18] Staczek J, Gilleland HE JR,Gilleland LB, et al. A chimeric influenza virusexpressing an epitope of outer membrane protein F of Pseudomonas aeruginosa affordsprotection against challenge with P. aeruginosa in a murine model of chronicpulmonary infection[J]. Infect Immun,1998,66:3990-3994.
    [19] Arnold H, Bumann D, Felies M, et al. Enhanced immunogenicity in the murineairway mucosa with an attenuated salmonella live vaccine expressing Opr-OprI fromPseudomonas aeruginosa[J]. Infect Immun,2004,72:6546-6553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700