用户名: 密码: 验证码:
重组蛛丝蛋白支架材料生物相容性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组蛛丝蛋白作为一种新型的生物材料在组织工程领域得到广泛关注。利用本室先期已构建含有细胞黏附位点RGD的基因工程菌pNSR-32/BL21(DE3)pLysS进行高密度发酵,建立适合pNSR-32基因工程菌表达蛋白的纯化方法。确定的最终纯化方案为:按1:5(m/v)的比例混悬湿菌体和磷酸盐缓冲液,70%功率冰浴超声10min,脉冲9s,脉停2s。80℃加热超声液10min,调节pH至5.5。离心,上清用15%饱和度硫酸铵溶液沉淀1.5h,调上清液pH至蛋白等电点6.5。离心后收集沉淀,透析冻干保存。按上述方法进行纯化,目的蛋白纯度达到85%以上,得率约在1.5~2.5mg/g湿菌体。
     将纯化的重组蛛丝蛋白作为原料,按本室所建立的方法制备支架材料,评价其细胞相容性。采用MTT的方法讨论重组蛛丝蛋白支架材料的细胞毒性,并通过NIH-3T3细胞与支架材料复合培养研究支架材料对细胞黏附、生长和分化的影响。MTT实验结果表明,重组蛛丝蛋白支架材料浸提液对NIH-3T3细胞的生长和增殖影响较小,根据细胞毒性实验毒性评定标准,判定重组蛛丝蛋白支架材料毒性等级在1级以下,符合合格生物材料的要求。电子扫描电镜(SEM)和常规HE染色观察发现,含有RGD三肽的重组蛛丝蛋白支架材料更利于NIH-3T3细胞黏附,细胞在材料表面形成多层结构且深入材料内部生长。碱性成纤维生长因子(bFGF)免疫组化实验结果说明复合培养的NIH-3T3细胞可以表达bFGF因子。
     通过建立大鼠背部深度烫伤模型,研究重组蛛丝蛋白支架材料—细胞复合物对深度烫伤创面愈合的影响。用pNSR-16和pNSR-32两种材料与NIH-3T3细胞复合物修复烫伤创面,两者的羟脯氨酸含量均高于其余各组。HE染色结果显示,在创面愈合初期,pNSR-16和pNSR-32两种材料与细胞复合物的创面修复情况比其余各组活跃。免疫组化结果发现,bFGF因子在细胞增殖活跃的创面修复部位均有较高表达,pNSR-16和pNSR-32两种材料与细胞复合物组比其余组表达bFGF明显。以上结果初步表明,重组蛛丝蛋白支架材料—细胞复合物组优于单纯材料组和烫伤对照组,对促进深度烫伤创面愈合有一定作用。
The recombinant spider silk protein as a new biomaterial had caused wide attention in tissue engineering. In our previous work, a new plasmid pNSR-32 containing RGD cell adhesion sites was constructed to express the higher molecular weight recombinant spider silk protein by E. coli BL21(DE3)pLysS. We optimized the purification conditions of the recombinant spider silk protein in this study. The conditions are ultrasound broken cells for 10min, heating for 10min at 80℃, adjusted to pH 5.5, sulfates saturation at 15%. The final purity of protein was above 85% and yield 1.5~2.5mg/g wet cells.
     The recombinant spider silk protein were made the scaffolds and evaluated the cytocompatibility. MTT assay was used to investigate the scaffolds cytotoxicity. The effects of cell growing, adhesion and differentiation on the scaffolds were discussed by culturing NIH-3T3 cells on scaffolds. The MTT experimental results were shown that the toxic rank of scaffolds below 1 level, were the qualified biomaterials. The SEM and HE staining showed the scaffolds with RGD had the better cell adhesion Cells can grow in the scaffolds and form the multi-layered cells on the surface of scaffolds. Immunohistochemistry results showed the cells on the scaffolds can proliferate and secret bFGF.
     By the back depth scalded of rat model, we studied the depth scald wound healing using scaffolds with NIH-3T3 cells. When the scald wound was repaired with pNSR-16 or pNSR-32 protein scaffold-NIH-3T3 cell complexes,the hydroxyproline contents of these two groups were more than others. HE staining showed that the scald wound repair of these two groups were more active than others in the initial wound healing. Immunohistochemistry showed that bFGF had the high expression on cell reproduction active areas during the scald wound healing. The bFGF expression of these two groups were higher than others. The preliminary results indicated that the recombinant spider silk protein scaffold-cell complexes group were better than simple material group and the control group. It had effect on promoting the deep scald wound healing.
引文
[1]顾汉卿,徐国风.生物医学材料学.天津:科技翻译出版公司,1993:1-500
    [2]杨志明.组织工程基础与临床.成都:四川科学技术出版社,2000:14,215
    [3]Takezawa T.A strategy for the development of tissue engineering scaffolds that regulate cell behavior.Biomaterial,2003,24:2267-2275
    [4]陈远达,崔磊,刘伟,等.溶剂浇铸/颗粒沥滤技术制备组织工程支架材料.中国生物工程杂志.2003(8):32-35
    [5]Nair L S,Bhattacharyya S,Laurencin C T,et al.Development of novel tissue engineering scaffolds via electrospinnig.Experr Opin Biol Ther.2004,4(5):659-668
    [6]Huang Z M,Zhang Y Z,Kotaki M,et al.A review on polymer nanofibers by electrospinnig applications in nanocomposites.Composites Science and Technology,2003,63:2223-2253
    [7]Li D,Xia Y N.Electrospinnig of nanofibers:Reinventing the wheel Adv Mater.2004,16(14):1151-1170
    [8]裴国献主编.组织工程学实验技术.人民军医出版社.北京:2006
    [9]中华人民共和国国家标准.医疗器械生物学评价.GB/T 16886:1-1997
    [10]戴建国.生物材料生物相容性的分子生物学研究进展.国外医学生物医学工程分册,2004,27(6):360-364
    [11]Maneesh K.Gupta,Shama K.Khokhar,David M.Phillips,Laura A.Sowards,Lawrence F.Drummy,Madhavi P.Kadakia,and Rajesh R.Naik,Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth,Langmuir 2007,23:1315-1319
    [12]Sandra Hofmanna,Henri Hagenmu llera,b,Annette M.Kocha,Ralph Mu llerb,Gordana Vunjak-Novakovicc,d,David L.Kaplane,Hans P.Merklea,Lorenz Meinel.Control of in vitro tissue-engineered bone-like structures using humanmesenchymal stem cells and porous silk scaffolds.Biomaterials.2007,28(6):l152-1162
    [13]李长文,郑启新,郭晓东,全大萍,赵洁.RGD多肽修饰的改性PLGA仿生支架材料对骨髓间充质干细胞粘附性影响的研究.华中医学杂志,2005,29(6):439-441
    [14]秦辉,许建中,王序全,罗飞,周强.何清义.不同接种密度体外构建组织工程骨的实验观察.重庆医学2004,33(10):1480-1482
    [15]周娟,张其清.一种可提高成纤维细胞在三维支架上种植效率和均匀性的简单方法.第二军医大学学报,2006,27(1):101-104
    [16]丁春梅,周燕,谭文松.接种方式对细胞在三维材料中接种率和分布的影响.生物工程学报,2005,21(4):649-653
    [17]Darj Marolt,Alexander Augst,Lisa E.Freed,Charu Vepari,Robert Fajardod,Nipun Pateld,Martha Gray,Michelle Farley,David Kaplan,Gordan Vunjak-Novakovi.Bone and cartilage tissue constructs grown using human bone marrow stromal cells,silk scaffolds and rotating bioreactors.Biomaterials,2006,27:6138-6149
    [18]Augst A,Marolt D,Freed LE,Vepari C,Meinel L,Farley M,Fajardo R,Patel N,Gray M,Kaplan DL,Vunjak-Novakovic G.Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells,silk scaffolds and bioreactors.2008,Jan,29
    [19]姚康德,尹玉姬.组织工程相关生物材料.化学工业出版社.2003
    [20]AltmanGH,DiazF,JakubaC,et al.Silk-based biomaterials.Biomaterials,2003,24(3):401-416
    [21]Ming zhong Li,Masayo Ogiso,Norihiko Minoura.Enzymatic degradation behavior of porous silk fibroin sheets.Biomaterials,2003,24(2):357-365
    [22]Rebecca L,Horan,Kathryn Antle,Adam L,et al.In vitro degradation of silk fibroin.Biomaterials,2005,26(17):3385-3393
    [23]Ilaria Dal Pra,Giuliano Freddi,Jasminka Minic,et al.De novo engineering of reticular connective tissue in vivo by silk fibroin nonwovenmaterials.Biomaterials,2005,26(14):1987-1999
    [24]Yamada H,Igarashi Y,Takasu Y,et al.Identification of fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts.Biomaterials,2004,25(3):467-472
    [25]Ungera RE,Wolfa M,Petersa K,et al.Growth of human cells on a non-woven silkfibroinnet:Apotentialforuseintissueengineering.Biomaterials,2004,25(6):1069-1075
    [26]Altman G H,Horan R L,Lu H H,et al.Silk matrix for tissue engineered anterior cruciate ligaments.Biomaterials,2002,23(20):4131-4141
    [27]Tamada Y.Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity.Biomaterials,2004,25(3):377-383
    [28]Koji Yamamoto K,Naohide Tomitaa,Yusuke Fukuda,et al.Time-dependent changes in adhesive force between chondrocytes and silk fibroin substrate.Biomaterials,2007,28(10):1838-1846
    [29]Lorenz Meinela,Robert Fajardod,Sandra Hofmanna,et al.Silk implants for the healing of critical size bone defects.Bone.2005,37(5):688-698
    [30]Sandra Hofmann,Henri Hagenmuller,Annette M,Koch,Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds.Biomaterials,2007,28(6):l152-1162
    [31]Yumin Yang,Xuemei Chen,Fei Ding,et al.Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro.Biomaterials,2007,28(9):1643-1652
    [32]Maneesh K,Gupta,Shama K,Khokhar,David M,et al.Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth.Langmuir,2007,23(3):1315-1319
    [33]K.Hu,Q.Lv,F.Z.Cui,et al.Biocompatible Fibroin Blended Films with Recombinant Human-like Collagen for Hepatic Tissue Engineering.Journal of bioactive and compatible polymers,2006,21(1):23-37
    [34]Meinel L,Hofmann S,Karageorgiou V,et al.The inflammatory responses to silk film in vitro and in vivo.Biomaterials,2005,26(2):147-155
    [35]Haifeng Liu,Zigang Ge,Yue Wang,et al.Modification of sericin-free silk fibers for ligament tissue engineering application.J Biomed Mater Res B Appl Biomater,2007,82(1):129-138
    [36]Gobin Andrea S,Charles E.Butler,Anshu B,et al.Repair and Regeneration of the Abdominal Wall Musculofascial Defect Using Silk Fibroin-Chitosan Blend.Tissue Engineering,2006,12(12):3383-3394
    [37]吴徵宇.丝素蛋白作为生物医用材料的研究.材料导报,2000,14(9):62-64
    [38]吴徵宇.丝素创面保护膜的性能和应用.第三届中国国际丝绸会议论文集,1996:79
    [39]黄伯高,朱德安,吴徵宇等.一种新的创面覆盖物-丝素膜.中华整形烧伤外科杂志,1998,14(4):270
    [40]张幼珠,吴徵宇,田保中等.抗菌药物丝素膜的研制及应用.蚕业科学,1999,25(4):242-245
    [41]张幼珠,丁悦,吴徵宇.复层药物丝素膜中药物的释放.丝绸,2001,(8)10-11
    [42]Elisabetta Bini,Cheryl Wong Po Foo,Jia Huang,et al.RGD-Functionalized Bioengineered Spider Dragline Silk Biomaterial.Biomacromolecules.2006,7(11):3139-3145
    [43]黄曦,张秋轩,李敏等.重组蛛丝蛋白支架材料的细胞相容性.第五届亚洲国际生物材料学术会议摘要.2006:405-406
    [44]VolIrath F,Knight DP.Liquid crystalline spinning of spider silk.Nature,2001,410(6828):541-548
    [45]Tirrell,David A.Putting a new spin in spider silk.Science,1996,271(5245):39-40
    [46]Hinman M B,Jones J A,Lewis R V.Synthetic spider silk:a modular fiber.TIBTECH SEPTEMBER,2000,(18):374-379
    [47]Fahnestock S R,Bedzyk L A.Production of synthetic spider dragline silk protein in Pichia pastoris.Appl Microbiol Biotech,1997,(47):33-37
    [48]Fritz V.Biology of spider silk.International Journal of Biological Macromolecules,1999,24:81-88
    [49]刘海洋,王伟霞,刘长军等.纺织新材料-蜘蛛丝.纤维技术,2004,(1):28-31
    [50]Weisshart K.Silk biotechnology.Reviews in Molecular Biotechnology,2000,74:65-66
    [51]Wong Po Foo C,Kaplan D L.Genetic engineering of fibrous proteins:spider dragline silk and collagen.Adv Drug Deliv Rev,2002,54(8):1131-1143
    [52]Kubik S.High-Performance Fibers from Spider Silk.Angew.Chem.Int.Ed,2002,41(15):2721-2723
    [53]Ming Xu & Lewis R.V.Structure of protein superfiber:Spider dragline silk,Proc.Acad.Sci.USA,1990,87:7120-7124
    [54]HinmanM.B.& Lewis R.V.Isolation of a clone encloding a second dragline silk fibroin,The Journal of Biological Chemistry,1992,267(27):19320-19324
    [55]Fahnestock,S.R.Irwin,S.L.Synthetic spider dragline silk proteins and their production in Escherichia coli,Appl.Microbiol.Biotechnol,1997,47:23-32
    [56]Lewis R.V,HinmanM,Kothakota,S.and Fournier,M.J.Expression and purification of a spider silk protein:A new stratege for production repetitive proteins,Protein Expression and Purification,1996,7:400-405
    [57]Hayashi Cheiyl Y.& Lewis R.V.Evidence from Flagelliform silk cDNA for the structueal basis of elasticity and modular nature of spider silks,J.Mol.Biol.,1998,275:773-784
    [58]张立树,马鹤雯等.蜘蛛牵引丝蛋白 cDNA 的扩增、克隆与序列分析,生物工程学报,2002,18(5):641-643
    [59]任洪林,柳增善,潘风光,等.大腹圓蛛主壶腹腺cDNA文库构建和丝蛋白基因筛选.生物技术,2002,12(5):1-3
    [60]李敏,David L.Kaplan.蜘蛛基因组DNA Cosmid文库构建和拖丝蛋白基因的克隆.动物学报,2001,47(6):713-714
    [61]牛恒尧,王义琴,萨其拉等.在大肠杆菌中表达蜘蛛拖丝融合蛋白.高技术通讯,2001,11:5-7
    [62]Miao Y,Zhang Y,Nakagaki K.Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system.Appl Microbiol Biotechnol,2005,(13):1-8
    [63]李敏,章文贤,黄智华等.蜘蛛拖丝蛋白基因的构建及在大肠杆菌中的表达.生物工程学报,2002,18(3):331-334
    [64]章文贤,李敏等.组织工程新材料蜘蛛拖丝蛋白的重组培养.中国临床康复,2003,20(7):2782-2784
    [65]李敏,黄建坤等.RGD-蜘蛛拖丝蛋白聚合物的生物合成与纯化,生物医学工程学杂志,2004,21(6):1006-1010
    [66]Stark M,Grip S,Rising A,Hedhammar M,Engstrom W,Hjalm G,Johansson J.Macroscopic fibers self-assembled from recombinant miniature spider silk proteins.Biomacromolecules.2007,May,8(5):1695-1701
    [67]Cheryl Wong Po Foo,Siddharth V.Patwardhan,David J.Belton,Brandon Kitchel,Daphne Anastasiades,Jia Huang,Rajesh R.Naik,Carole C.Perry,and David L.Kaplan.Novel nanocomposites from spider silk - silica fusion(chimeric)proteins.PNAS June 2006,103(25):9428 -9433
    [68]王重庆等.人工器官与材料.天津:天津科学技术出版社,1981
    [69]付小兵,王德文主编。现代创伤修复学.北京:人民军医出版社,1999
    [70]黄康,陈玉林.创面愈合评价指标进展.中国修复重建外科杂志,2001,15(2):126-128
    [71]秦益民.创面用敷料的测试方法.产业用纺织品,2006,187(4):32-36
    [72]中华人民共和国医药行业标准,接触性创面敷料试验方法,国家食品药品监督管理局发布,YY/T 0471.1-2004
    [73]Yannes IV et al.U S patent 4,060,081,1977
    [74]Yannas IV et al.J.Biomat.Mater.Res,1980(14):65
    [75]Burke J F.Surg.Sci.Ser,1984,2:311
    [76]Delalande S A.BE.1984:896
    [77]Groot J H DE et al.Triple-layer artificial skin:Porous 50/50 copoly (1-lactide/e-caprolactone)template for neoderm is regeneration.J.M at SciLett,1997,16:153
    [78]Bello YM,Falabella AF,Eaglstein WH.Tissue-engineered skin.Current status in wound healing.Am J Clin Dermatol.2001,2(5):305-313
    [79]Kristina Lindberg,Stephen F.Badylak.Porcine small intestinal submucosa(SIS):a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins.Burns.2001(27):254 -266
    [80]Matouskova E,Broz L,Stolbova V,Klein L,Konigova R,Vesely P Human allogeneic keratinocytes cultured on acellular xenodermis:the use in healing of burns and other skin defects.Biomed Mater Eng.2006,16(4):63-71
    [81]Abdoelwaheb E1 Ghalbzouria,B.Evert N.Lammeb,Clemens van Blitterswijkb,Jaap Koopmanc,Maria Poneca,The use of PEGT/PBT as a dermal scaffold for skin tissue engineering.Biomaterials,2004(25):2987-2996
    [82]谢举临,利天增.组织工程皮肤的种子细胞-表皮干细胞的生物学行为研究进展.国外医学生物医学工程分册,2001,24(6):252-256
    [83]张群.组织工程化皮肤的新种子细胞-毛囊干细胞.国外医学·生理病理科学与临床分册,2005,25(1):94-95
    [84]Pellegrini G,Ranno R,Stracuzzi G,et al.The control of ep idermal stem cells (holoclones)in the treatment of massive full thickness burns with autologous keratinocytes cultured on fibrin.Trans-plantation,1999,68(6):868-879
    [85]Rheinwald JG,GreenH.Serial cultivation of strains of human keratinocytes:the formation of keratinizing colonies from single cells.Cells,1975,6:331-334
    [86]Boyce ST,Ham RC.Calcium-regulated differentiation of normal epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture.J Invest Dermatol,1983,81:33-40
    [87]O.Connor NE,Mulliken JB,Banks-Schlegel S,Kehide O,GreenH.Grafting of burns with culrured epithelium prepared from autologous epidermal cells.Lancet,1981,1:75-78
    [88]Hefton JM,Ambershon JB,Bizes DG,et al.Loss of HLADR expression by human epidermal cells after growth in culture.J Invest Dermatol.1984,83:48-50
    [89]PhillipsTJ,Gilchrest BA.Clinical applications of cultured epithelium.Epithelial Cell Bio.1992,1:39-46
    [90]Sefton MV,WoodbouseKA.Tissue engineering.J Cut Med Surg.1998,3(1):18-23
    [91]Truong AT,Kowal-Vern A,Latenser BA,Wiley DE,Walter RJ.Comparison of dermal substitutes in wound healing utilizing a nude mouse model.J Burns Wounds.2005,14(4):4
    [92]Hansbrough JF,Dore C,Hasbrough WB.Clinical trials of a living dermal tissue replacement placed beneathed meshed split-thickness skin grafts on excised burn wound.J Bum Care Rehabil,1992,3(5):519-529
    [93]FalangaV,Margolis D,AlvarezO,et al.Healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent.Arch Dermatol.
    [94]雷万军,崔正军,王肖蓉.皮肤组织工程的现状与展望.河南科技大学学报(医学版),2007,25(1):76-78
    [95]Wang HJ,Chou TD,Tsou TL,Chen TM,Chen SL,Chen SG,Wei LG,Yeh KJ,Ko YH,Wang CS,Lee WH.The application of new biosynthetic artificial skin for long-term temporary wound coverage Burns.2005,31(8):1-7
    [96]Ring A,Langer S,Homann HH,Kuhnen C,Schmitz I,Steinau HU,Drucke D.Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb/c-mice.Burns.2006,32(1):35-41
    [97]Tanihara M,Kajiwara K,Ida K,Suzuki Y,Kamitakahara M,Ogata SIJ The biodegradability of poly(Pro-Hyp-Gly)synthetic polypeptide and the promotion of a dermal wound epithelialization using a poly(Pro-Hyp-Gly)sponge.Biomed Mater Res A.2007,9
    [98] Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials. 2007, 28(24):3478-3478
    
    [99] Kim IY, Yoo MK, Seo JH, Park SS, Na HS, Lee HC, Kim SK, Cho CS. Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm. 2007,16(1-2):35-43
    
    [100] Chiarini A, Dal Pra I, Armato U. In vitro and in vivo characteristics of frozen/thawed neonatal pig split-skin strips: a novel biologically active dressing for areas of severe, acute or chronic skin loss.Int J Mol Med.2007,19(2):245-255
    
    [101] Gravante G, Delogu D, Giordan N, Morano G, Montone A, Esposito G. The use of Hyalomatrix PA in the treatment of deep partial-thickness burns. J Burn Care Res. 2007, 28(2):269-274
    
    [102] Schwarze H, Kuntscher M, Uhlig C, Hierlemann H, Prantl L, Noack N, Hartmann B. Suprathel((R)),a new skin substitute, in the management of donor sites of split-thickness skin grafts: Results of a clinical study. Burns. 2007,33(7):850-854
    
    [103] Burd A. Evaluating the use of hydrogel sheet dressings in comprehensive burn wound care. Ostomy Wound Manage. 2007, 53(3):52-62
    
    [104] Phan TT, Lim IJ, Tan EK, Bay BH, Lee ST. Evaluation of cell culture on the polyurethane-based membrane (Tegaderm):implication for tissue engineering of skin. Cell Tissue Bank. 2005,6(2):91-97
    
    [105] Perng CK, Kao CL, Yang YP, Lin HT, Lin WB, Chu YR, Wang HJ, Ma H, Ku HH, Chiou SH. uring adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration. J Biomed Mater Res A. 2007,16
    
    [106] Drewa T, Nadolski B, Czaplewski A, Drewa L. Application of autologous and allogenic keratynocyte cultures in burn managementPrzegl Lek. 2005, 62(9):934-937
    
    [107] Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007,3(3):321-330
    [108]Rho KS,Jeong L,Lee G,Seo BM,Park YJ,Hong SD,Roh S,Cho JJ,Park WH,Min BM.Electrospinning of collagen nanofibers:effects on the behavior of normal human keratinocytes and early-stage wound healing.Biomaterials.2006,27(8):1452-1461
    [109]Venugopal JR,Zhang Y,Ramakrishna S.In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane.Artif Organs.2006,30(6):440-446
    [110]顾在秋,吕国忠,朱宇刚,杨敏杰.硅胶敷料促进烧伤深Ⅱ度创面愈合的实验与临床研究.中国医药卫生,2004,5(5):37-38
    [111]杨占山,朱南康.PEO/PVA水凝胶伤口敷料的毒性和疗效评价.辐射研究与辐射工艺学报,2000,18(2):113-118
    [112]石桂欣,夏照帆等.皮肤组织工程-细胞支架的构筑及其生物相容性评价.北京生物医学工程,2002,2l(3):222-225
    [113]叶春婷,邹海燕,彭燕豪,梁佩红,戴丽冰.酸性成纤维细胞生长因子复合胶原海绵的制备及其疗效观察.药物生物技术,2005,12(3):171-174
    [114]臧学慧,查振刚,姚平,吴昊,林永新,谭文成.FGF生物蛋白海绵促进创伤性溃疡修复的作用.临床骨科杂志,2005,8(2):110-112
    [115]肖仕初,夏照帆,俞为荣,王广良,杨勇,王永胜,刘志国.含成纤维细胞的胶原膜覆盖物对创面愈合的促进作用.中华整形外科杂志,2003,19(5):390-391
    [116]肖仕初,杨瑁,贲道锋等.含活性细胞的新型创面覆盖物的研制及初步应用.第二军医大学学报,2003,24(10):1120-1123
    [117]刘旺,郇京宁等.人表皮细胞与无细胞异种真皮复合移植的实验研究.中华烧伤杂志,2001,17(5):289-291
    [118]陈刚泉,廖立新,李剑,刘德伍.组织工程皮肤修复动物皮肤缺损的实验研究.江西医学院学报,2006,46(2):28-30
    [119]徐林海,焦向阳等.以胶原海绵为载体培养的人表皮细胞移植.中国修复重建外科杂志,2001,15(2):118-121
    [120]高学军,蔡霞,孙文娟,唐胜建.应用胶原海绵构建组织工程皮肤的实验研究.解剖科学进展,2005,11(4):321-323
    [121]汪滋民,焦向阳,邢新,季正伦.在胶原海绵膜上构建人表皮细胞和成纤维细胞复合移植物的实验研究.中华烧伤杂志,2001,14(2):108-110
    [122]刘晓亮,TipoeGL.组织工程复合皮肤修复大鼠皮肤缺损.中国临床康复,2002,6(8):1127-1128
    [123]刘杰,崔雪梅,张燕等.利用不同支架材料构建人工真皮的研究.中国修复重建外科杂志,2003,17(2):104-107
    [124]许伟榕,王莉,赵涵芳,陈诗书.人血管内皮生长因子基因工程生物膜愈合大鼠皮肤创伤的初步研究.外科理论与实践,2006,11(3):244-247
    [125]赵雷,王莉,姜叙诚等.hVEGF基因工程生物膜对全层皮肤缺损创面愈合的影响.上海交通大学学报:医学版,2006,26(9):1015-1018
    [126]赵雷,王莉,姜叙诚等.hVEGF基因工程生物膜覆盖大鼠全层皮肤缺损创面的模型建立.实验动物与比较医学,2006,26(1):19-22
    [127]胡昭华,陈绍宗,金岩等.微囊化基因修饰细胞复合组织工程真皮构建及其对创面愈合的影响.中国修复重建外科杂志,2005,19(12):1024-1028
    [128]刘亚玲,金岩,聂鑫,胡大海.人组织工程全层活性皮肤在深度烧伤创面的临床应用.第四军医大学学报,2004,25(3):224-228
    [129]ROSSBERG S,Stadardverfahren fur die zytotoxizitatsprufung:der MTT-test.Z Zahnarztl Implantol,1988,4(2):251-259
    [130]吕晓迎,Kappert H F.牙科材料细胞毒性评定的新方法.中华口腔医学杂志,1995,30(6):377-379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700