microRNA-101在非小细胞肺癌中通过调控EZH2表达而发挥肿瘤抑制功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:非小细胞肺癌是一种发病率高、死亡率高、和对放化疗不敏感的常见恶性肿瘤,急需寻找新的治疗方法改善其预后。EZH2基因被证实在包括非小细胞肺癌在内的多种恶性肿瘤中呈高表达,与肿瘤攻击性和预后不佳相关,然而我们对EZH2高表达的机制知之甚少。miRNA是一种单链非编码小分子RNA,通过转录后水平调控基因的表达,是近年肿瘤学领域的研究热点。本研究旨在阐明miR-101调节非小细胞肺癌中EZH2表达,并观察miR-101和EZH2对肺癌细胞生物学特性的影响,为非小细胞肺癌治疗提供新方法和新策略。
     方法:应用实时定量PCR和免疫组化方法检测20对非小细胞肺癌组织及其癌旁正常肺组织中miR-101和EZH2蛋白的表达。应用荧光素酶报告基因系统验证EZH2是miR-101的靶基因。为了观察miR-101和EZH2对非小细胞肺癌细胞生物学行为的影响,在肺癌细胞转染miR-101 mimics或特异沉默EZH2的siRNA后,我们用CCK-8法检测细胞增殖、transwell穿膜小室检测细胞侵袭和流式细胞学annexin V/PI双染法检测紫杉醇诱导的细胞凋亡
     结果:在非小细胞肺癌组织中,miR-101低表达和EZH2过表达显著相关。在非小细胞肺癌细胞系中,miR-101显著抑制包含野生型而非突变型EZH2-3'UTR质粒的荧光素酶活性和减少EZH2 mRNA和蛋白的表达。增强miR-101表达或沉默EZH2基因能抑制肺癌细胞增殖和侵袭,并能通过诱导Bim表达而促进紫杉醇诱导肺癌细胞凋亡
     结论:miR-101通过负性调节EZH2表达而抑制非小细胞肺癌细胞增殖和侵袭并增强紫杉醇诱导细胞凋亡。增强miR-101表达或沉默EZH2基因的治疗策略有望使非小细胞肺癌患者受益。
Purpose:Overexpression of the enhancer of zeste homolog 2 (EZH2) protein has been found in broad range of cancer types, including non small cell lung cancer (NSCLC). However, the mechanisms by which EZH2 becomes over-expressed in NSCLC remain unclear. microRNAs (miRNAs) can regulate target gene expression through translational control. With the present study we investigated whether microRNA (miR-101) regulates EZH2 expression in NSCLC.
     Methods:We evaluated the expression of miR-101 and EZH2 in 20 matched NSCLC and adjacent non-tumor lung tissues by qRT-PCR and Immunohistochemistry, respectively. Luciferase reporter assay was used to determine whether miR-101 directly targets EZH2. To assess the effect of miR-101 on NSCLC biological behavior, cell proliferation, invasion and response to chemotherapy were analyzed using NSCLC cells transfected with miR-101 mimics or transfected with specific siRNA to deplete EZH2 (siRNA-EZH2).
     Results:Reduced expression of miR-101 is associated with overxpression of EZH2 in NSCLC tumor tissues. Transfection of miR-101 mimics significantly suppressed the activity of the luciferase reporter containing wild type but not mutant EZH2 3'-UTR and decreased EZH2 mRNA and protein levels in NSCLC cell lines. Furthermore, enforced expression of miR-101 or knockdown of EZH2 led to reduced NSCLC cell proliferation and invasion and sensitized cancer cells to paclitaxel (PTX)-mediated apoptosis through inducing expression of the pro-apoptotic protein Bim.
     Conclusions:miR-101 inhibits cell proliferation and invasion and enhances PTX-induced apoptosis in NSCLC cells, at least in part, by directly repressing EZH2 expression. Therapeutic strategies to rescue miR-101 expression or slience EZH2 may be beneficial to patients with NSCLC in the future.
引文
1. Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010. CA Cancer J Clin 2010;60:277-300.
    2. Ponn RB, Lo Cicero Ⅲ J, Daly BDT. Surgical treatment of non-small cell lung cancer.
    3. In:Shields TW, Lo Cicero Ⅲ J, Ponn R, Rusch VW, editors. General thoracic surgery.
    4.6th ed. Philadelphia:Lippincott Williams & Wilkins; 2005; p.1548-87.
    5. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006;6:846-56.
    6. Otte AP and Kwaks TH. Milne TA, Sinclair DA, Brock HW. The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci, and interacts specifically with Polycomb and super sex combs.Mol Gen Genet 1999;261:753-761.
    7. Schoorlemmer J, Marcos-Gutierrez C, Were F, et al. RinglA is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J 1997; 16:5930-5942.
    8. Bardos JI, Saurin AJ, Tissot C, et al. HPC3 is a new human polycomb orthologue that interacts and associates with RING1 and Bmil and has transcriptional repression properties. J Biol Chem 2000;275:28785-28792.
    9. Furuyama T, Tie F, Harte PJ. Polycomb group proteins ESC and E(Z) are present in multiple distinct complexes that undergo dynamic changes during development. Genesis 2003;35:114-124
    10. Simon JA, Tamkun JW. Programming off and on states in chromatin:mechanisms of polycomb and trithorax group complexes. Curr Opin Genet Dev 2002;12:210-218.
    11. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008;647:21-9.
    12. Karanikolas BD, Figueiredo ML, Wu L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate 2010;70:675-688
    13. Collett K, Eide GE, Arnes J, et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer.Clin Cancer Res 2006; 12:1168-74.
    14. Toll AD, Dasgupta A, Potoczek M, et al. Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma.Hum Pathol 2010;41:1205-9.
    15. Wagener N, Macher-Goeppinger S, Pritsch M, et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 20104;10:524.
    16. Takeshita F, Minakuchi Y, Nagahara S, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005;102:12177-12182.
    17. Yu J, Cao Q, Yu J, et al. The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer.Oncogene 2010;29:5370-80
    18. Hinz S, Kempkensteffen C, Christoph F, et al. Expression of the polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J Cancer Res Clin Oncol 2008;134:331-6.
    19. Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006;24:268-273.
    20. Yonemitsu Y, Imazeki F, Chiba T, et al. Distinct expression of polycomb group proteins EZH2 and BMI1 in hepatocellular carcinoma.Hum Pathol 2009;40:1304-11.
    21. Choi JH, Song YS, Yoon JS, et al. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and metastasis in gastric cancer. APMIS 2010;118:196-202.
    22. Toll AD, Dasgupta A, Potoczek M, et al. Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma. Hum Pathol 2010;41:1205-1209.
    23. He LR, Liu MZ, Li BK, et al. High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Int J Cancer 2010;127:138-147.
    24. Kikuchi J, Kinoshita I, Shimizu Y, et al. Distinctive expression of the polycomb group proteins Bmil polycomb ring finger oncogene and enhancer of zeste homolog 2 in non small cell lung cancers and their clinical and clinicopathologic significance. cancer 2010;116:3015-3024.
    25. Kunderfranco P, Mello-Grand M, Cangemi R, et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010;5:e10547.
    26. Bracken AP, Pasini D, Capra M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003;22:5323-5335.
    27. Tang X, Milyavsky M, Shats I, et al. Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 2004; 23:5759-5769.
    28. Olejniczak M, Galka P, Krzyzosiak WJ. Sequence-non-specific effects of RNA interference triggers and microRNAregulators.Nucleic Acids Res 2010;38:1-16.
    29. Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009;21:452-60
    30. Marin RM, Vanicek J.Efficient use of accessibility in microRNA target prediction.Nucleic Acids Res 2011;39:19-29
    31. DP Bartel. MicroRNAs:target recognition and regulatory functions. Cell 2009;136:215-233.
    32. Y Tay, J Zhang, AM Thomson, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124-1128.
    33.18. Johnson SM, Lin SY, Slack FJ. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 2003;259:364-79
    34. Zhao Z, Boyle TJ, Liu Z, et al.A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans.PLoS Genet 2010;6, pii: e1001089
    35. M Lagos-Quintana, R Rauhut, W Lendeckel, et al. Identification of novel genes coding for small expressed RNAs, Science 2001; 294:853-858.
    36. Rossi S, Sevignani C, Nnadi SC, et al. Cancer-associated genomic regions (CAGRs) and noncoding RNAs:bioinformatics and therapeutic implications. Mamm Genome 2008; 19:526-540.
    37. Jay C, Nemunaitis J, Chen P, et al. miRNA profiling for diagnosis and prognosis of human cancer.DNA Cell Biol 2007;26:293-300.
    38. Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer 2010; 103:1144-8.
    39.37.J Lu, G Getz, EA Miska, et al. MicroRNA expression profiles classify human cancers, Nature 2005; 435:834-838.
    40. Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010;10:543-50.
    41. GA Calin, CD Dumitru, M Shimizu, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99:15524-15529.
    42. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
    43. Wu ZL, Zheng SS, Li ZM, et al. Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression. Cell Death Differ 2010;17:801-810.
    44. Tan TT, Degenhardt K, Nelson DA, et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 2005;7:227-238
    45.43 Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 2006;25:6202-10
    46. Sevignani C, Calin GA, Nnadi SC, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci.Proc Natl Acad Sci U S A 2007; 104:8017-22.
    47. Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008;322:1695-1699.
    48. Friedman JM, Liang G, Liu CC, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 2009;69:2623-2629.
    49. Yang Y, Li X, Yang Q, et al. The role of microRNA in human lung squamous cell carcinoma. Cancer Genet Cytogenet 2010;200:127-133.
    50. Wang QZ, Xu W, Habib N, et al. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 2009;9:572-594.
    51. Lee Y, Samaco RC, Gatchel JR, et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 2008;11:1137-1139.
    52. Strillacci A, Griffoni C, Sansone P, et al. MiR-101 down-regulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 2009;315:1439-1447.
    53. Li S, Fu H, Wang Y, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) onco-gene in human hepatocellular carcinoma. Hepatology 2009;49:1194-1202.
    54. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.Cancer Res 2009;69:1135-1142.
    55. Gime'nez-Bonafe'P, Tortosa A, Pe'rez-Toma's R. Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets 2009;9:320-340.
    56. Okouoyo S, Herzer K, Ucur E, et al. Rescue of death receptor and mitochondrial apoptosis signaling in resistant human NSCLC in vivo. Int J Cancer 2004;108:580-587.
    57. Denlinger CE, Rundall BK, Jones DR. Inhibition of phosphatidylinositol 3-kinase/Akt and histone deacetylase activity induces apoptosis in non-small cell lung cancer in vitro and in vivo. J Thorac Cardiovasc Surg 2005;130:1422-1429.
    58. Li R, Moudgil T, Ross HJ, et al. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 2005;12:292-303.
    1. Yekta S, Shih I H,& Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304:594-596.
    2. Novotny GW, Sonne SB, Nielsen JE, et al. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death and Differentiation 2007; 14:879-882.
    3. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation. Science 2007; 318:1931-1934.
    4. HeL, He X, Lowe, et al. microRNAs join the p53 network—Another piece in the tumour-suppression puzzle. Nature Reviews Cancer 2007; 7:819-822.
    5. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer 2006; 94:776-780.
    6. Cho WC. OncomiRs:The discovery and progress of microRNAs in cancers. Molecular Cancer 2007; 6:60.
    7. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nature Reviews Cance r2006;6:259-269.
    8. Lee DY, Deng Z, Wang CH, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:20350-20355.
    9. Hebert C, Norris K, Scheper MA, Nikitakis N, et al. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Molecular Cancer 2007,6,5.
    10. O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839-843.
    11. Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemiazinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Research 2008; 68:2745-2754.
    12. Mercatelli N, Coppola V, Bonci D, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE,3, e4029.
    13. Wickramasinghe NS, Manavalan TT, Dougherty SM, et al. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Research 2009; 37:2584-2595.
    14. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene 2007:26: 2799-2803.
    15. Yang Y, Chaerkady R, Beer MA., et al. Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 2009; 9:1374-1384.
    16. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9:189-198.
    17. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, et al. Circulating microRNAs as stable blood-based markers for cancer detection.Proceedings of the National Academy of Sciences of the United States of America 2008; 105:10513-10518.
    18. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology 2008; 110:13-21.
    19. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research 2008; 18: 997-1006.
    20. Hanahan D, Weinberg RA. The hallmarks of cancer. Cel 12000; 100:57-70.
    21. Khosravi-Far R, Esposti MD. Death receptor signals to mitochondria. Cancer Biology and Therapy 2004; 3:1051-1057.
    22. Holbro T, Beerli RR, Maurer F, et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit:ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:8933-8938.
    23. Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry 2007; 282:1479-1486.
    24. Weiss GJ, Bemis LT, Nakajima E, et al. EGFR regulation by microRNA in lung cancer:Correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Annals of Oncology 2008; 19:1053-1059.
    25. Webster RJ, Giles KM, Price KJ, et al. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry 2009; 284:5731-5741.
    26. La Rocca G, Badin M, Shi B, et al. Mechanism of growth inhibition by MicroRNA 145:The role of the IGF-Ⅰ receptor signaling pathway. Journal of Cellular Physiology 2009; 220:485-491.
    27. Eberhart JK, He X, Swartz ME, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nature Genetics 2008; 40:290-298.
    28. Bos JL. ras oncogenes in human cancer:A review. Cancer Research 1989; 49:4682-4689.
    29. Downward J. Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer 2003; 3:11-22.
    30. Zajac-Kaye M. Myc oncogene:A key component in cell cycle regulation and its implication for lung cancer. Lung Cancer 2001; 34(Suppl 2):S43-S46.
    31. Johnson SM, Grosshans H, Shingara J, B, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120:635-647.
    32. Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family.Proceedings of the National Academy of Sciences of the United States of America 2008; 105:3903-3908.
    33. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315:1576-1579.
    34. Sampson VB, Rong NH, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research 2007; 67:9762-9770.
    35. Muntoni A, Reddel RR. The first molecular details of ALT in human tumor cells. Human Molecular Genetics 2005; 14 (Spec No.2):R191-R196.
    36. Mitomo S, Maesawa C, Ogasawara S, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Science 2008; 99:280-286.
    37. Gonzalo S, Jaco I, Fraga MF, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology 2006;8:416-424.
    38. Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rb12-dependent regulation of DNA methyltransferases. Nature Structural & Molecular Biology 2008; 15:268-279.
    39. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:15805-15810.
    40. Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. New England Journal of Medicine 2009; 361:1570-1583.
    41. Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Research 2007; 67:6130-6135.
    42. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 2005; 102:13944-13949.
    43. Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology 2005; 204:280-285.
    44. Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007; 26:6133-6140.
    45. Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine 2005; 353:1793-1801.
    46. Cummins J M, He Y, Leary RJ, et al. The colorectal microRNAome. Proceedings of the National Academy of Sciences of the United States of America2006; 103:3687-3692.
    47. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research 2005; 65:6029-6033.
    48. Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proceedings of the National Academy of Sciences of the United States of America 2009; 106:12085-12090.
    49. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death and Differentiation 2010; 17:193-199.
    50. Tarasov V, Jung P, Verdoodt, B, et al. Differentialregulationof microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and Gl-arrest. Cell Cycle 2007; 6:1586-1593.
    51. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447:1130-1134.
    52. le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO Journal 2007; 26:3699-3708.
    53. Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. Journal of Biological Chemistry 2007; 282:23716-23724.
    54. Gillies JK, Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007e; 6:2005-2009.
    55. Whang-Peng J, Kao-Shan CS, Lee EC, et al. Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14-23). Science1982; 215:181-182.
    56. Zabarovsky ER, Lerman MI,& Minna JD. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 2002; 21: 6915-6935.
    57. Ji L, Nishizaki M, Gao B, Burbee, et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Research 2002; 62:2715-2720.
    58. Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3:Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Research 2000; 60:6116-6133.
    59. Du L, Schageman JJ, Subauste MC, et al. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Molecular Cancer Research 2009; 7:1234-1243.
    60. Prudkin L, Behrens C, Liu DD, et al. Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clinical Cancer Research 2008,14:41-47.
    61. Kondo M, Ji L, Kamibayashi C, et al. Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene 2001; 20:6258-6262.
    62. Horn L, Sandler AB. Angiogenesis in the treatment of non-small cell lung cancer. The Proceedings of the American Thoracic Society 2009; 6:206-217.
    63. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86:353-364.
    64. Kerbel RS. Tumor angiogenesis. New England Journal of Medicine 2008; 358:2039-2049.
    65. Yang WJ, Yang DD, Na S, et al. Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry 2005; 280:9330-9335.
    66. Suarez Y, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research 2007; 100:1164-1173.
    67. Bernstein E, Kim SY, Carmell MA, Murchison EP, et al. Dicer is essential for mouse development. Nature Genetics 2003; 35:215-217.
    68. Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research 2007; 101:59-68.
    69. Otsuka M, Zheng M, Hayashi M, et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. Journal of Clinical Investigation 2008; 118:1944-1954.
    70. Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 2008; 105:14082-14087.
    71. Shilo S, Roy S, Khanna S, Sen CK. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2008; 28:471-477.
    72. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15:261-271.
    73. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15:272-284.
    74. Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNAmiR-126. Development 2008; 135:3989-3993.
    75. Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66:169-175.
    76. Fish JE, Srivastava D. MicroRNAs:Opening a new vein in angiogenesis research. Science Signaling 2009;2:pe1.
    77. Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 2006; 1:e116.
    78. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics 2006; 38:1060-1065.
    79. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006; 108:3068-3071.
    80. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangio-genic homeobox genes GAX and HOXA5. Blood 2008; 111:1217-1226.
    81. Ruan K, Fang X, Ouyang G. MicroRNAs:Novel regulators in the hallmarks of human cancer. Cancer Letters 2009; 285:116-126.
    82. Hurst, DR., Edmonds MD, Welch DR. Metastamir:The field of metastasis-regulatory microRNA is spreading. Cancer Research 2009; 69:7495-7498.
    83. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:Pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology 2004; 15:1-12.
    84. Savagner P, Kusewitt DF, Carver EA, et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. Journal of Cellular Physiology 2005; 202:858-866.
    85. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer 2002;2:442-454.
    86. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449:682-688.
    87. Ma L, Weinberg RA. Micromanagers of malig- nancy:Role of microRNAs in regulating metastasis. Trends in Genetics 2008; 24:448-456.
    88. Clark EA, Golub TR, Lander ES, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406:532-535.
    89. Ciafre SA, Galardi S, Mangiola A, et al.2005Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications 2005; 334:1351-1358.
    90. Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297:1901-1908.
    91. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology 2006;24:4677-4684.
    92. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology 2008; 10:202-210.
    93. Goodison S, Urquidi, Tarin D. CD44 cell adhesion molecules. Molecular Pathology 1999;52:189-196.
    94. Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development 2008; 22:894-907.
    95. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports 2008; 9:582-589.
    96. Gregory P A, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology 2008; 10:593-601.
    97. Korpal M., Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry 2008; 283:14910-14914.
    98. Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes and Development 2009; 23:2140-2151.
    99. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451:147-152.
    100. Crawford M, Brawner E, Batte K, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications 2008; 373:607-612.
    101. Kobashigawa Y, Sakai M, Naito M, et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nature Structural & Molecular Biology 2007; 14:503-510.
    102. Feller SM. Crk family adaptors-signalling complex formation and biological roles. Oncogene 2001; 20:6348-6371.
    103. Jansen AP, Camalier C, Colburn NH. Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Research 2005; 65:6034-6041.
    104. Mudduluru G, Medved F, Grobholz R, et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition. correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110:1697-1707.
    105. Chen Y, Knosel T, Kristiansen G, Pietas A., et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. Journal of Pathology 2003; 200:640-646.
    106. Talotta F, Cimmino A, Matarazzo MR, et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 2009; 28:73-84.
    107. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development 2007; 21:1025-1030.
    108. Wang Y, Lee CG. MicroRNA and cancer—Focus on apoptosis. Journal of Cellular and Molecular Medicine 2009; 13:12-23.
    109. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research 2005; 65:9628-9632.
    110. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008;133:217-222.
    111. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435:828-833.
    112. Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology 2008; 9:405-414.
    113. Sylvestre Y, De Guire V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop. Journal of Biological Chemistry 2007; 282:2135-2143.
    114. Chen RW, Bemis LT, Amato CM, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 2008;112:822-829.
    115. Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research 2008;36:5391-5404.
    116. Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine 2008; 14:1271-1277.
    117. Bandi N, Zbinden S, Gugger M, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Research 2009; 69:5553-5559.
    118. Garofalo M, Quintavalle C, Di Leva G, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008; 27:3845-3855.
    119. Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27:4373-4379.
    120. Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry 2008;283:1026-1033.
    121. Calin GA,& Croce CM. MicroRNA signatures in human cancers. Nature Reviews Cancer 2006; 6:857-866.
    122. Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299:425-436.
    123. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research 2004; 64:3753-3756.
    124. Yu SL, Chen HY, Chang GC, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cells 2008; 13:48-57.
    125. Wang QZ, Xu W, Habib N, et al. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Current Cancer Drug Targets 2009; 9:572-594.
    126. Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research 2007; 67:11111-11116.
    127. Ji J, Shi J, Budhu A, Yu Z, et al. MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine 2009; 361:1437-1447.
    128. Ng EK, Chong WW, Jin, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer:A potential marker for colorectal cancer screening. Gut 2009; 58:1375-1381.
    129. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associatedmicroRNAs in serumof patients with diffuse large B-cell lymphoma. British Journal Haematology 2008; 141:672-675.
    130. Lebanony D, Benjamin H, Gilad S, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. Journal of Clinical Oncology 2009; 27:2030-2037.
    131. Liang Y. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med Genomics 2008; 1:61.
    132. Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Critical Reviews in Oncology/Hematology 2005; 54:243-250.
    133. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834-838.
    134. Negrini M, Nicoloso MS, Calin GA. Micro-RNAs and cancer—New paradigms in molecular oncology. Current Opinion in Cell Biology 2009; 21:470-479.
    135. Wu M, Jolicoeur N, Li Z, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 2008; 29:1710-1716.
    136. Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America 2008; 105:5166-5171.
    137. Fontana, Fiori ME, Albini S, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 2008;,3:, e2236.
    138. Krutzfeldt J, Kuwajima S, Braich R, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research 2007; 35:2885-2892.
    139. Elmen J, Lindow M, Schutz S, et al. LNA-mediated micro RNA silencing in non-human primates. Nature 2008; 452:896-899.
    140. Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137:1005-1017.
    141. Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry 2007; 282:14328-14336.
    142. Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009; 16:498-509.
    143. Sun F, Fu H, Liu Q, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters 2008;582:1564-1568.
    144. Bommer GT, Gerin I, Feng Y, et al. p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology 2007;17:1298-1307.
    145. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007;26:5017-5022.
    1. D Hanahan, RA Weinberg.The hallmarks of cancer. Cell 2000; 100:57-70.
    2. J Stelling, U Sauer, Z Szallasi, et al. Robustness of cellular functions. Cell 2004; 118:675-685.
    3. A Friedman, N Perrimon. Genetic screening for signal transduction in the era of network biology. Cell 2007; 128:225-231.
    4. EH Chang, ME Furth, EM Scolnick, et al. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus, Nature 1982;297:479-483.
    5. SH Friend, R Bernards, S Rogelj, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma, Nature 1986;323:643-646.
    6. LF Parada, CJ Tabin, C Shih, et al. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene, Nature 1982;297:474-478.
    7. D Eliyahu, A Raz, P Gruss, et al.Participation of p53 cellular tumour antigen in transformation of normal embryonic cells, Nature 1984;312:646-649.
    8. LF Parada, H Land, RA Weinberg, et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation, Nature 1984;312:649-651.
    9. B Vennstrom, D Sheiness, J Zabielski, et al. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avianmyelocytomatosis virus strain 29. J Virol 1982; 42:773-779.
    10. DP Lane. Cell immortalization and transformation by the p53 gene, Nature 1984; 312:596-597.
    11. A Brock, H Chang, S Huang. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours, Nat. Rev Genet 2009; 10: 336-342.
    12. PM Voorhoeve, R Agami. Classifying microRNAs in cancer:the good, the bad and the ugly. Biochim Biophys Acta 2007; 1775:274-282.
    13. Marin RM, Vanicek J.Efficient use of accessibility in microRNA target prediction.Nucleic Acids Res 2011;39:19-29
    14. Trujillo RD, Yue SB, Tang Y, et al. The potential functions of primary microRNAs in target recognition and repression. EMBO J 2010;29:3272-85.
    15. Zhao Z, Boyle TJ, Liu Z, et al.A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans.PLoS Genet 2010;6, pii:e1001089
    16. S Costinean, N Zanesi, Y Pekarsky, et al. PreB cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenicmice, Proc Natl Acad Sci USA 2006; 103:7024-7029.
    17. Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010;10:543-50.
    18. PM Voorhoeve, C le Sage, M Schrier,et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124:1169-1181.
    19. Vilborg A, Wilhelm MT, Wiman KG Regulation of tumor suppressor p53 at the RNA level. J Mol Med 2010;88:645-52.
    20. Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer.J Pathol 2011;223:102-115.
    21. R Visone, CM Croce. MiRNAs and cancer, Am. J. Pathol 2009; 174:1131-1138.
    22. Dykxhoorn DM. MicroRNAs and metastasis:little RNAs go a long way. Cancer Res 2010; 70:6401-6
    23. Davidson-Moncada J, Papavasiliou FN, Tarn W. MicroRNAs of the immune system: roles in inflammation and cancer.Ann N Y Acad Sci 2010; 1183:183-194.
    24. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets.Nat Struct Mol Biol 2010;17:1169-74
    25. Caron MP, Lafontaine DA, Masse E. Small RNA-mediated regulation at the level of transcript stability. RNA Biol 2010;7:140-4.
    26. XC Ding, J Weiler, H Grosshans. Regulating the regulators:mechanisms controlling the maturation of microRNAs. Trends Biotechnol 2009;27:27-36.
    27. G Easow, AA Teleman, SM Cohen. Isolation of microRNA targets by miRNP immunopurification. RNA 2007; 13:1198-1204.
    28. D Hendrickson, D Hogan, D Herschlag, et al. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 2008;3:e2126.
    29. SW Chi, JB Zang, A Mele, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460:479-486.
    30. C Ender, A Krek, MR Friedlander, et al. A human snoRNA withmicroRNA-like functions. Mol Cell 2008;32:519-528.
    31. W Ritchie, S Flamant, JE Rasko. Predicting microRNA targets and functions:traps for the unwary. Nat Methods 2009;6:397-398.
    32. R Sandberg, JR Neilson, A Sarma, et al. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites, Science 2008;320:1643.
    33. H Seitz. Redefining microRNA targets. Curr Biol 2009; 19:870-873.
    34. JJ Forman, A Legesse-Miller, HA Coller. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 2008; 105:14879-14884.
    35. S Gu, L Jin, F Zhang, et al. Biological basis for restriction of microRNA targets to the 3'untranslated region in mammalian mRNAs, Nat. Struct. Mol Biol 2009; 16:144-150.
    36. M Kedde, R Agami. Interplay between microRNAs and RNA-binding proteins determines developmental processes, Cell Cycle 2008;7:899-903.
    37. A Eulalio, F Tritschler, E Izaurralde. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 2009;15:1433-1442.
    38. Y Zhao, S He, C Liu, et al. MicroRNA regulation of messenger-like noncoding RNAs:a network of mutual microRNA control, Trends Genet 2008; 24:323-327.
    39. GA Calin, CG Liu, M Ferracin, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas, Cancer Cell 2007; 12:215-229.
    40. Saito T, Saetrom P. MicroRNAs--targeting and target prediction. N Biotechnol 2010 31;27:243-249.
    41. Li B, Shi XB, Nori D, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 2011;71:567-574.
    42. Q Wang, Y Li, J Wang, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor suppressor Rb2/p130, Proc Natl Acad Sci USA 2008; 105:2889-2894.
    43. Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010;17:F19-36
    44. C Mayr, MT Hemann, DP Bartel. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation, Science 2007;315:1576-1579.
    45. VB Sampson, NH Rong, J Han, et al. MicroRNA let-7a down-regulatesMYC and revertsMYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67:9762-9770.
    46. MS Kumar, SJ Erkeland, RE Pester, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008;105:3903-3908.
    47. WY Choi, AJ Giraldez, AF Schier. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 2007;318:271-274.
    48. Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges.Curr Biol 2010 12;20:R858-861.
    49. R Allada. Circadian clocks:a tale of two feedback loops. Cell 2003;112:284-286.
    50. X Li, JJ Cassidy, CA Reinke, S Fischboeck, et al. A microRNA imparts robustness against environmental fluctuation during development. Cell 2009; 137:273-282.
    51. E Hornstein, N Shomron. Canalization of development by microRNAs, Nat Genet 2006; 38 Supp:S20-S24.
    52. JL Hartman, B Garvik, L Hartwell. Principles for the buffering of genetic variation. Science 2001;291:1001-1004.
    53. R Milo, S Shen-Orr, S Itzkovitz, et al. Network motifs:simple building blocks of complex networks. Science 2002;298:824-827.
    54. J Tsang, J Zhu, A van Oudenaarden. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007;26:753-767.
    55. NJ Martinez, MC Ow, MI Barrasa, et al. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev2008; 22:2535-2549.
    56. SM Cohen, J Brennecke, A Stark. Denoising feedback loops by thresholding—a new role for microRNAs, Genes Dev 2006; 20:2769-2772.
    57. DW Parsons, S Jones, X Zhang, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-1812.
    58. R Wiedemeyer, C Brennan, TP Heffernan, et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell 2008; 13:355-364.
    59. LD Wood, DW Parsons, S Jones, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007;318:1108-1113.
    60. HChang, M Hemberg, M Barahona, et al. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 2008;453:544-547.
    61. SL Spencer, S Gaudet, JG Albeck, et al. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009;459:428-432.
    62. N Slavov, KA Dawson. Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proc Natl Acad Sci USA 2009; 106:4079-4084.
    63. JH Schulte, S Horn, S.Schlierf, et al. MicroRNAs in the pathogenesis of neuroblastoma. Cancer Lett2009; 274:10-15.
    64. S Shell, SM Park, AR Radjabi,et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 2007; 104:11400-11405.
    65. Newman MA, Hammond SM. Emerging paradigms of regulated microRNA processing.Genes Dev 2010;24:1086-92
    66. Georgi SA, Reh TA. Dicer is required for the transition from early to late progenitor state in the developing mouse retina.J Neurosci 2010;30:4048-4061.
    67. KL Stark, B Xu, A Bagchi, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40:751-760.
    68. E Berezikov,WJ Chung, J Willis, et al.Mammalian mirtron genes. Mol Cell 2007;28:328-336.
    69. SP Chan, FJ Slack. And now introducing mammalian mirtrons, Dev Cell 2007; 13:605-607.
    70. BN Davis, AC Hilyard, G Lagna, et al.SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008;454:56-61.
    71. L Zhang, S Volinia, T Bonome, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer, Proc Natl Acad Sci USA 2008;105:7004-7009.
    72. SA Melo, S Ropero, C Moutinho, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 2009;41:365-370.
    73. G Obernosterer, PJ Leuschner, MAlenius, et al. Post-transcriptional regulation of microRNA expression. RNA 2006; 12:1161-1167.
    74. EJ Lee, M Baek, Y. Gusev, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA2008;14:35-42.
    75. FG Wulczyn, L Smirnova, A Rybak, et al.Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J 2007;21:415-426.
    76. S Guil, JF Caceres. The multifunctional RNA-binding protein hnRNP A1 is required for processing ofiniR-18a. Nat Struct Mol Biol2007; 14:591-596.
    77. M Trabucchi, P Briata, M Garcia-Mayoral, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009;459:1010-1014.
    78. G Michlewski, S Guil, CA Semple, et al. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008;32:383-393.
    79. Choudhry H, Catto JW. Epigenetic regulation of microRNA expression in cancer.Methods Mol Biol 2011;676:165-84.
    80. SR Viswanathan, GQ Daley, RI Gregory. Selective blockade of microRNA processing by Lin28. Science 2008;320:97-100.
    81. E Piskounova, SR Viswanathan, M Janas, et al. Determinants ofmicroRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem2008;283:21310-21314.
    82. A Rybak, H Fuchs, L Smirnova, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10:987-993.
    83. I Heo, C Joo, J Cho, et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 2008;32:276-284.
    84. I Heo, C Joo, YK Kim, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138:696-708.
    85. TC Chang, LR Zeitels, HW Hwang, et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA 2006; 106:3384-3389.
    86. S Sakamoto, K Aoki, T Higuchi, et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009;29:3754-3769.
    87. H.W. Hwang, E.A. Wentzel, J.T. Mendell, Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci USA 2009;106:7016-7021.
    88. Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer. J Pathol 2011; 223:102-115.
    89. Y Karube, H Tanaka, H Osada, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96:111-115.
    90. SR Viswanathan, JT Powers, W Einhorn, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41:843-848.
    91. JA. West, SR Viswanathan, A Yabuuchi, et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 2009;460:909-913.
    92. AJ Gillis, HJ Stoop, R Hersmus, et al. High-throughput microRNAome analysis in human germ cell tumours. J Pathol 2007; 213:319-328.
    93. EJ Kort, L Farber, M Tretiakova, et al. The E2F3-Oncomir-1 axis is activated in Wilms't umor. Cancer Res 2008; 68:4034-4038.
    94. MS Kumar, J Lu, KL.Mercer, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007;39:673-677.
    95. A Lujambio, GA Calin, A Villanueva, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105:13556-13561.
    96. Zhang L, Sullivan PS, Goodman JC, et al. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase.Cancer Res 2011;71:645-654.
    97. P Sathyan, HB Golden, RC Miranda. Competing interactions between microRNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 2007; 27:8546-8557.
    98. Liu H, Cao YD, Ye WX, et al. Effect of microRNA-206 on cytoskeleton remodelling by downregulating Cdc42 in MDA-MB-231 cells.Tumori 2010;96:751-5.
    99. N Raver-Shapira, E Marciano, E Meiri, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731-743.
    100. TC Chang, EA Wentzel, OA Kent, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745-752.
    101. N Dumont, T Tlsty. Reflections on miR-ing effects in metastasis. Cancer Cell 2009;16:3-4.
    102. NA Bhowmick, M Ghiassi, A Bakin, et al. Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27-36.
    103. PM Voorhoeve, R Agami. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 2003;4:311-319.
    104. WC Hahn, CM Counter, AS Lundberg, et al. Creation of human tumour cells with defined genetic elements. Nature 1999;400:464-468.
    105. DX Nguyen, PD Bos, J Massague. Metastasis:from dissemination to organ-specific colonization. Nat Rev Cancer 2009;9:274-284.
    106. RJ Webster, KM Giles, KJ Price, et al. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009; 284:5731-5741.
    107. B Kefas, J Godlewski, L Comeau, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68:3566-3572.
    108. G Shan, Y Li, J Zhang, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 2008; 26:933-940.
    109. J Kota, RR Chivukula, KA O'Donnell, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-1017.
    110. R Spizzo, MS Nicoloso, CM Croce, et al. SnapShot:microRNAs in cancer. Cell 2009;137:586-586.el.
    111. JT Mendell. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133:217-222.
    112. F Petrocca, A Vecchione, CM Croce. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 2008;68:8191-8194.
    113. MS Nicoloso, R Spizzo, M Shimizu, et al. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer 2009;9:293-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700