小檗碱抗心肌肥厚的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌肥厚(cardiac hypertrophy)与重塑(remodeling)是心脏在多种神经体液因素刺激下发生的一种适应性反应,以此来补偿心功能的需求。但心肌肥厚发生时,心脏结构与形态的改变将导致心功能障碍,增加心血管危险事件的发生率,因此心肌肥厚又被称为心血管系统疾病的独立危险因素。深入研究心肌肥厚与重塑的病理演变过程及机制,积极发现并使用药物干预心功能不全和损伤后的重建与修复,对于降低心血管疾病的发病率、死亡率,改善患者生存质量具有重要意义。
     心肌肥厚的发生与发展的过程中有多种因素参与,如交感神经系统、肾素-血管紧张素系统以及其他多种神经内分泌的激活、细胞因子的活化、血管活性肽、细胞内信息分子及传导通路的改变、基因表达异常以及多种基因之间的相互作用等。而抑制交感神经活性对于改善心衰患者症状,逆转心衰患者的心肌肥厚和心室重构具有积极作用。
     小檗碱(berberine)是中药清热药黄连所含的主要生物碱。黄连味苦,性寒,归心、脾、胃等经。中药药性理论的现代药理研究结果认为:寒凉药物多具有抗交感-肾上腺系统的作用。有报道显示,小檗碱具有抗心律失常、降压、强心等作用,并对难治性心衰及病毒性心肌炎后出现的心律失常有积极治疗作用。但小檗碱是否对心肌肥厚与重塑有抑制作用尚缺乏研究资料报道。
     本研究以目前公认的具有抑制心肌肥厚作用的药物——血管紧张素转化酶抑制剂(卡托普利)、β-肾上腺素受体阻滞剂(美托洛尔)、血管紧张素受体阻滞剂(氯沙坦)为阳性对照药,探讨小檗碱对心肌肥厚的抑制作用及相关机制,对药物作用靶标的形态、结构、功能进行了组织病理学、细胞和分子生物学的研究,结果如下:
     1.小檗碱对压力超负荷致心肌肥厚模型大鼠心脏结构的影响
     1.1 小檗碱对腹主动脉结扎模型大鼠心肌肥厚的影响
     目的:研究小檗碱对压力超负荷型大鼠心肌肥厚的抑制作用。
     方法:结扎大鼠腹主动脉使之外径缩窄至0.6mm,导致心脏后负荷增高,形成心肌肥厚。造模后2周给予治疗药物:小檗碱5、10、20mg/kg,卡托普利45mg/kg,美托洛尔10mg/kg,氯沙坦10mg/kg。连续给药10周。分别于造模后2周、给药后4周、10周测定心脏重量,并计算心重指数。
     结果:①结扎大鼠腹主动脉使之缩窄致心脏后负荷增高可诱发心肌肥厚,2周后心脏重量及心重指数即明显高于假手术组,但造模时间延长心重指数有所下降。②小檗碱连续给药对结扎腹主动脉诱发的大鼠心肌肥厚有一定抑制作用,使心重指数有所下降,作用与各阳性对照药相似。
     结论:小檗碱对腹主动脉结扎所敛的大鼠心肌肥厚有一定抑制作用,作用强度与阳性对照药卡托普利、美托洛尔及氯沙坦无显著差异。其抗肥厚作用还需从改善心脏形态、
Background
    Cardiac hypertrophy is an important and fundamental adaptive response to a requirement for increased contractile power. It is not only a factor intimately associated with chronic heart failure(CHF), but also an important cause of increased morbidity and mortality of cardiac diseases. Hence, cardiac hypertrophy is regarded as a major risk factor of heart disease.
    Berberine is an alkaloid from Hydrastis canadensis L.,Berberidaceae. It is also the basic chemical component of Coptis chinensis Franch(coptis). In China, some Chinese physicians succeeded by using coptis or berberine in the treatment of cardiac diseases, like hypertension and CHF. In the present project, the effects of berberine on attenuating the development of cardiac hypertrophy in both pressure-overload induced cardiac hypertrophy rat model and cell culture were studied, and the underline mechanism of its action was revealed to a certain extent.
    Methods and Results
    1. Pretective effects of berberine on myocardial hypertrophy and remodelling in established cardiac pressure-overload hypertrophy in rats with aortic banding
    1.1 Effect of berberine on inhibiting the development of cardiac hypertrophy in rat with aortic banding
    Objective: To learn the inhibitory effect of berberine on the development of cardiac hypertrophy in pressure overload induced cardiac hypertrophy in rats.
    Methods: Pressure overload cardiac hypertrophy was induced by abdominal aorta constriction(banding) in rats. The drugs were orally administered for 10 wks starting from 2 weeks after surgery at dosage of berberine 5, 10, 20mg/kg, captopril 45 mg/kg, metoprolol 10mg/kg and losartan 10mg/kg. The heart weight and cardiac index were measured for three times at 2 wks after surgery, and 4 or 10 wks after treatment with drugs.
    Results: (1)2 weeks after aorta constriction surgery, the heart weight and cardiac index of
引文
1.谭学仁,曲毓敏.左室肥厚及其相关因素的探讨.中国慢性病预防与控制,1999:7(1):9-11
    2.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:494-542
    3. Peter H. Sugden, Angela Clerk. Cellular mechanisms of cardiac hypertrophy. J Mol Med, 1998; 76:725-746
    4. Marcus C. Schaub, Martin A. Hefti, Beatrice A. Harder, et al. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med, 1997; 75:901-920
    5. Jutta Schaper, Albrecht Elsasser, Sawa Kostin. The role of cell death in heart failure. Circulation Research, 1999; 85:867-869
    6. Markus Mundhenke. Bodo Schwartzkopff. Structural analysis of arteriolar and myocardial remodeling in the subendocardial region of patients with hypertensive heart disease and hypertrophic cardiomyophthy. Virchows Arch, 1997; 431: 265-273
    7. Kitamura M., Shimizu M., Ino H., et al. Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type Ⅲ and Ⅵ collagens. Clin Cardiol, 2001; 24(2): 325-329
    8. Dixon I.M., Ju H., Reid N.L., et al. Cardiac collagen remodeling in the cardiomyopathic Syrian hamster and the effect of losartan. J Mol Cell Cardiol, 1997; 29(7): 1837-1850
    9. Abdul M Mansoor, Masaaki Honda, Takehiko Kuramochi, et al. Effects of ACE inhibition and beta-blockade on collagen remodeling in the heart of Bio 14.6 hamsters. Clinical and Experimental Pharmacology and Physiology, 1996; 23:43-49
    10. Angela J. Woodiwiss, Tanja Oosthuyse, Gavin R. Norton. Reduced cardiac stiffness following ecercise is associated with preserved myocardial collagen characteristics in the rat. Eur J Appl Physiol, 1998; 78" 148-154
    11.邓珏琳,莫德嘉,承永明,等.高血压左室肥厚与血清ACE水平及动态血压的关系.高血压杂志,1999;7(2):138-140
    12.谢良地,陈达光,王华军,等.不同状态下血压值与左心室肥厚的相关性.中国高血压杂志,1994;2(4):240-243
    13.赖沙毅.高血压病血液流变学变化对心功能的影响.华夏医学,1999;12(2):152-153
    14.张廷芳,张木坤,班兴敏.高血压患者血液流变学危险指标的分析.医用生物力学,2000;15(1):63-65
    15.郭知学.高血压病左室肥厚与血压昼夜节律及血液流变学的关系.中国医学物理学杂志,1998:15(2):112-113
    16. K. Swedberg, P. Eneroth, J. Kjekshus, et al. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation, 1990; 82:1730-1736
    17. Brijesh Bhambi, Mahboubeh Eghbali. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathology, 1991; 139(1): 1131-1142
    18. Abdul Jalil, Masahisa Horiuchi, Masahiro Nomoto, et al. Catecholamine metabolism inhibitors and receptor blockades only partially suppress cardiac hypertrophy of Juvenile Visceral Steatosis mice with systemic camitine deficiency. Life Sciences, 1999; 64(13): 1137-1144
    19. Petra Schnabel, Michael Bohm. Sympathetic activation in heart failure: a target of therapeutic approaches. Z. Kardiol, 1999; 88(3): 5-11
    20. Graeme Eisenhofer, Peter Friberg, Bengt Rundqvist, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation, 1996; 93:1667-1676
    21. Kaushik P. Patel, Kun Zhang, Pamela K. Carmines. Norepinephrine turnover in peripheral tissues of rats with heart failure. Am J Physiol. Regulatory Integrative Comp. Physiol, 2000; 278:R556-R562
    22. Weinong Guo, Kaichiro Kamiya, Kenji Yasui, et al. α1-Adrenoceptor agonists and IGF-1, myocardial hypertrophic factors, regulate the K1.5K+ channel expression differentially in cultured newborn rat ventricular cells. Eur J Physiol, 1998; 436-26-32
    23. Howard E. Morgan, Kenneth M. Baker. Cardiac hypertrophy: mechanical, neural, and endocrine dependence. Circulation, 1991; 83(1): 13-25
    24. Michael Bohm, Markus Flesch, Petra Schnabel. β-Adrenergic signal transduction in the failing and hypertrophied myocardium. J Mol Med, 1997; 75:842-848
    25. Youichi Kawahira, Yoshiki Sawa, Motonobu Nishimura, et al. Gene transfection of beta 2-adrenergic receptor into the normal rat heart enhances cardiac response to beta-adrenergic agonist. J Thorac Cardiovasc Surg, 1999; 118:446-451
    26. Ulrich Schotten, Karsten Filzmaier, Britta Borghardt, et al. Changes of β-adrenergic signaling in compensated human cardiac hypertrophy depend on the underlying disease. Am J Physiol Heart Circ Physiol, 2000; 278:H2076-2083
    27. Kai C. Wollert, Helmut Drexler. The rennin-angiotensin system and experimental heart failure. Cardiovascular Research, 1999; 43:838-849
    28. R. Dietz, R. von Harsdorf, M. Gross, et al. Angiotensin Ⅱ and coronary artery disease, congestive heart failure, and sudden cardiac death. Basic Res Cardiol, 1998; 93(Suppl 2): 101-108
    29. Dostal D. E. The cardiac rennin-angiotensin system: conceptual, or a regulator of cardiac function? Circulation Research, 1999; 85:643-650
    30. Cathy J Beinlich, Gloria J. White,Kenneth M. Baker et al. Angiotensin Ⅱ and left ventricular growth in newborn pig heart. J Mol Cell Cardiol, 1991; 23:1031-1038
    31. Jun-ichi Sadoshima, Yuhui Xu, Henry S. Slayter, et al. Autocrine release of angiotensin Ⅱ mediates stretch-induced hypertrophy of cardiac muocytes in vitro. Cell, 1993; 75:977-984
    32. David L.Geenen, Ashwani Malhotra, James Scheuer. Angiotensin Ⅱ increases cardiac protein synthesis in adult rat heart. Am. J. Physiol. 1993;265(Heart Circ. Physiol 34):H238-H243
    33. Guopin Zhou, Jagannadha C. Kandala, Suresh C. Tyagi, et al. Effects of angiotensin Ⅱ and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Molecular and Cellular Biochemistry, 1996;154:174-178
    34. Thomas A. Fischer, Dan Ungureani-Longrois, Kfishna Singh, et al. Regulation of Bfgf expression and ANG Ⅱ secretion in cardiac myocytes and microvascular endothelial cells. Am J. Physijol. 1997; 272(Heart Circ. Physiol.41): H958-H968
    35. H.S.Sharma, H.A.A. van Heugten, M.A. Goedbloed, et al. Angiotensin Ⅱ induced expression of transcription factors precedes increase transforming growth factor-β1 mRNA in neonatal cardiac fibroblasts, Biochemical and Biophysical Research Communications, 1994;205(1): 105-112
    36. Yao Sun, John Q. Zhang, Jiakun Zhang, et al. Angiotensin Ⅱ, transforming growth factorβ 1 and repair in the infracted heart. Journal Molecular Cellular Cardiology, 1998; 30: 1559-1569
    37. Gian Gastone Neri Serneri, Pietro Amedeo Modesti, Maria Boddi, et al. Gardiac growth factors in human hypertrophy: relations with myocardial contractility and wall stress. Circulation Research, 1999; 85:57-67
    38. Ito H., Hiroe M., Himta Y., et al. Insulin-like growth factor-1 induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation, 1993; 87:1715-1721
    39. Ebensperger R., Acevedo E., Melendez J., et al. Selective increase in cardiac IGF-1 in a rat model of ventricular hypertrophy. Biochem Biophys Res Commun, 1998; 243:20-24
    40. Wollert K.C., Taga T., Saito M., et al. Cardiotroophin-1 activates a distinct form of cardiac hypertrophy. Assembly of sarcomeric units in series via a gp130/leukaemia inhibitory factor receptor dependent pathways. J Biol Chen, 1996; 271:9535-9545
    41. Brijesh Bhambi, Mahboubeh Eghbali. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathology, 1991; 139(1): 1131-1142
    42. Augustine Agocha, Andress V. Sigel, Mahboubeh Eghbali-Webb. Characterizaton of adult human heart fibroblasts in culture: a comparative study of growth, proliferation and collagen production in human and rabbit cardiac fibroblasts and their response to transforming growth factor-betal. Cell Tissue Research, 1997; 288:87-93
    43. Mimi Tamamori, Hiroshi ito, Michiaki Hiroe, et al. Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides. Cell Biology International. 1997; 21 (3): 175-180
    44.余国膺译.左室肥厚的消退:垂死心脏的新希望.中国南方心血管杂志,1998;4(4):272
    45.汤健,唐朝枢.心、脑血管疾病研究的发展趋势.北京大学学报(医学版),2001;33(4):289-291
    46.戴闰柱.慢性心力衰竭治疗的现代概念.中华心血管病杂志,2002;28(1):75-78
    47. G Emilien, J. M. Maloteaux. Current therapeutic uses and potential of β-adrenoceptor agonists and antagonists. Eur J Clin Pharmacol, 1998; 53:389-404
    48. P. Schnabel, M. Bohm. Sympathetic activation in heart failure: a target of therapeutic approaches. Z Kardiol, 1999; 88(suppl 3):5-11
    49. O. Chung, T. Unger. Pharmacology of angiotensin receptors and AT1 receptor blockers. Basic Res Cardiol, 1998; 93(suppl 2): 15-23
    50.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:271-286
    51.严灿,邓中炎,潘毅,等.活血祛痰法逆转高血压左心室肥厚的实验研究.中国中医基础医学杂志,1999;5(4):25-27
    52.李建平,严灿,邓中炎,等.活血祛痰治法及其组方预防自发性高血压大鼠心肌纤维化的实验研究.中医研究,1999:12(6):9-11
    53.江伟.活血化瘀降粘降压逆转左心室肥厚的研究.辽宁中医杂志,1999;26(12):576-577
    54.赵习德,孔祥梅,张凯,等.大黄蛰虫丸治疗左室心肌肥厚的临床研究.河南中医,1996:16(5):296-297
    55.孙敏,王增泮.补肾填精法治疗肾虚型高血压病及心室肥厚.山东中医学院学报,1995;19(2):124
    56.陆曙,吴新欲,翁晓生,等.降防保心片对高血压左室肥厚影响的临床研究.南京中医药大学学报,1998;14(1):16-18
    57.秦泰春,顾振纶,刘世增.降脂灵片对压力超负荷所致大鼠心肌肥厚的影响.中成药,1999:21(增刊):37-41
    58.杨宁,汤益明.中医药防治高血压左心室肥厚.中西医结合实用临床急救,1999;6(2):95-96
    59.曾加雄,刘惟莞,石明健,等.水杉总黄酮对压力超负荷大鼠左室肥厚的作用.中国中药杂志,2000;25(10):622-624
    60.李倜,迟晓玲.黄连素治疗高血压临床及机理研究概述.中医药信息,2003;20(4):12-14
    61. Y.Hong, et al. Effect of berberine on catecholamine levels in rats with experimental heart hypertrophy. Life Science, 2003, 72: 2499-2507
    62. Y.Hong, et al. Effect of Berberine on Regression of Pressure-Overload Induced Cardiac Hypertrophy in Rats. Am J Chin Med, 2002; 30 (4). 1-11
    63.洪缨,解欣然,谢俊大,等.小檗碱对压力超负荷致心肌肥厚模型大鼠心脏结构的影响.北京中医药大学学报,2006;29(6):409-412
    64.洪缨,王晶,赵海节,等.小檗碱对二肾一夹致心肌肥厚大鼠心室重构的影响.北京中医药大学学报,2005;28(6):28-31
    65.杨静,周祖玉,徐建国.黄连素对L-甲状腺素诱发大鼠心肌肥厚的保护作用.四川大学学报(医学版),2004;35(2):223-225
    66.郭自强,牛福玲,朱陵群,等.丹参素对血管紧张素致心肌肥大的影响.北京中医药大学学报,2000;23(增):30-31
    67.李明,张军,陈燕,等.丹参抑制异丙肾上腺素引起的小鼠心肌肥厚和纤维化及其作用机制.中国药科大学学报,2003;34(6):565-568
    68.吴珂,欧阳静萍,王保华,等.苦参碱对血管紧张素诱导新生大鼠心肌成纤维细胞增殖和胶原合成的影响.武汉大学学报(医学版),2003;24(3):235-238
    69.赵树进,韩丽萍,李俭洪.知母皂苷及其苷元对动物模型β肾上腺素受体的调整作用.中国医院药学杂志,2000:20(2):70-73
    70.刘洁,翁世艾,曹永舒.知母对甲亢模型β受体-cAMP系统的调节作用.中药药理与临床.1996:(4):16-18
    1.谭学仁,曲毓敏.左室肥厚及其相关因素的探讨.中国慢性病预防与控制,1999;7(1):9-11
    2. Lijnen P., Petrov V. Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol, 1999; 31: 949-970
    3. Kai C. Wollert, Helmut Drexler. The rennin-angiotensin system and experimental heart failure. Cardiovascular Res, 1999; 43:838-849
    4. R. Dietz, R. von Harsdorf, M. Gross, et al. Angiotensin Ⅱ and coronary artery disease, congestive heart failure, and sudden cardiac death. Basic Res Cardiol, 1998; 93(Suppl 2): 101-108
    5. Ian M. C. Dixon, Haisong Ju, Davinder S. Jassal, et al. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem, 1996; 165:31-45
    6. Wadi N. Suki. Renal hemodynamic consequences of angiotensin-converting enzyme inhibition in congestive heart failure. Arch Intern Meal, 1989; 149:669-673
    7. Masakazu Obayashi, Masafumi Yano, Michihiro Kohno, et al. Dose-dependent effent of ANG Ⅱ-receptor antagonist on myocyte remodeling in rat cardiac hypertrophy. Am J Physiol, 1997; 273(Heart Circ Physiol. 42): H1824-H1831
    8. Wesiley W. Brooks, Oscar H. L. Bing; Marvin O. Boluyt, et al. Altered inotropic responsiveness and gene expression of hypertrophid myocardium with captopril. Hypertension, 2000; 35: 1203(abstract)
    9. Christine Richer, Paul Fomes, Catherine Cazaubon, et al. Effects of long-term angiotensin Ⅱ AT1 receptor blockade on survival, hemodynarnics and cardiac remodeling in chronic heart failure in rats. Cardiovascular Research, 1999; 41:100-108
    10. Grimm D., Holmer S. R., Riegger G A., et al. Effects of beta-receptor blockade and angiotensin Ⅱ type Ⅰ receptor antagonism in isoproterenol-induced heart failure in the rat. Cardiovasc Pathol, 1999; 8(6): 315-323
    11. Mark J. Clair, Stephen R. Krombach, Mysti L. Coker, et al. Angiotension AT1 receptor inhibition in pacing induced heart failure: effects on left ventricular myocardial collagen content and composition. J Mol Cell Cardiol, 1998; 30:2355-2364
    12. Dostal D. E., Baker K. M. The cardiac rennm-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res, 1999; 85:643-650
    13. C.A.M. van Kesteren, H. A. A. van Heugten, J. M. Lamers, et al. Angiotensin Ⅱ-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblaste. J Mol Cell Cardiol, 1997; 29:2147-2157
    14. Cathy J Beinlich, Gloria J. White,Kenneth M. Baker et al. Angiotensin Ⅱ and left ventricular growth in newborn pig heart. J Mol Cell Cardiol, 1991; 23:1031-1038
    15. Jun-ichi Sadoshima, Yuhui Xu, Henry S. Slayter, et al. Autocrine release of angiotensin Ⅱ mediates stretch-induced hypertrophy of cardiac muocytes in vitro. Cell, 1993; 75:977-984
    16. David L.Geenen, Ashwani Malhotra, James Scheuer. Angiotensin Ⅱ increases cardiac protein synthesis in adult rat heart. Am. J. Physiol. 1993;265(Heart Circ. Physiol 34):H238-H243
    17. Guopin Zhou, Jagannadha C. Kandala, Suresh C. Tyagi, et al. Effects of angiotensin Ⅱ and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Molecular and Cellular Biochemistry, 1996;154:174-178
    18. Thomas A. Fischer, Dan Ungureani-Longrois, Krishna Singh, et al. Regulation of Bfgf expression and ANG Ⅱ secretion in cardiac myocytes and microvascular endothelial cells. Am J. Physijol. 1997; 272(Heart Circ. Physiol.41): H958-H968
    19. H.S.Sharma, H.A.A. van Heugten, M.A. Goedbloed, et al. Angiotensin Ⅱ induced expression of transcription factors precedes increase transforming growth factor-β 1 mRNA in neonatal cardiac fibroblasts, Biochemical and Biophysical Research Communications, 1994;205(1):105-112
    20. Francisco J. Villarreal, Noel N. Kim, Gilanthony D. Ungab, et al. Identification of functional angiotensin Ⅱ receptors on rat cardiac fibroblasts. Circulation, 1993; 88:2849-2861
    21. Ryoji Ozono, Toshiyuki Matsumoto, Tetsuji Shingu, et al. Expression and localization of angiotensin subtype receptor proteins in the hypertensive rat heart. Am J Physiol. Regulatory Integrative Comp. Physiol, 2000; 278:R781-R789
    22. Sechi L. A., Griffin C. A., Grady E. E, et al. Characterization of angiotensin Ⅱ receptor subtypes in rat heart. Circulation Research, 1992, 71: 1482-1489
    23. Nozawa Y., Haruno A., Oda N., et al. Angiotensin Ⅱ receptor subtypes in bovine and human ventricular myocardium. J Pharmacol Exp Ther, 1994; 270" 566-571
    24. Lopez J. J., Lorell B. H., Ingelfinger J. R., et al. Distributijon and function of cardiac angiotensin AT1 and AT2- receptor subtypes in hypertrophied rat hearts. Am J Physiol, 1994; 267:H844-H852
    25. Lutz Herin. Genetic deletion and overexpression of angiotensin Ⅱ receptors. J Mol Med, 1998; 76:756-763
    26. László Hunyady, Kevin J. Catt, Adrian J. L. Clark, et al. Mechanisms and functions of AT1 angiotensin receptor intemalization. Regulatory Peptides, 2000; 91:29-44
    27. Leonardo A. Sechi, Chandi A. Griffin, Eileen F. Grady, et al. Characterization of angiotensin Ⅱ receptor subtypes in rat heart. Circulation Research, 1992; 71: 1482-1489
    28. Ryoji Ozono, Toshiyuki Matsumoto, Tetsuji Shingu, et al. Expression and localization of angiotensin subtype receptor proteins in the hypertensive rat heart. Am J Physiol Regulatory Intergrative Comp Physiol, 2000; 278:R781-789
    29. Leonardo A. Sechi, Chandi A. Griffin, Eileen E Grady, et al. Characterization of angiotensin Ⅱ receptor subtypes in rat heart. Circulation Research, 1992; 71:1482-1489
    30. Allen D. Everett, Audrey Fisher, Alda Tufro-McReddie, et al. Developmental regulation of angiotensin type 1 and 2 receptro gene expression and heart growth. J Mol Cell Cardiol, 1997; 29:141-148
    31. Hiroaki Matsubara, Mikihiko Kanasaki, Satoshi Murasawa, et al. Differential gene expression and regulation of angiotensin Ⅱ receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J. Clin. Invest, 1994; 93:1592-1601
    32. Hiroaki Matsubara, Mikihiko Kanasaki, Satoshi Murasawa, et al. Differential gene expression and regulation of angiotensin Ⅱ receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture, J. Clin. Invest. 1994;93:1592-1601
    33. Vera Regita-Zagrosek, Jens Fielitz, Mantled Hummel, et al. Decreased expression of ventricular angiotensin receptor type 1 mRNA after human heart transplantation. J Mol Med, 1996; 74:777-782
    34. Christina Wamecke, Daniel Surder, RenéCurth, et al. Analysis and functional characterization of alternatively spliced angiotensin Ⅱ type 1 and 2 receptor transcripts in the human heart. J Mol Med, 1999; 77:718-727
    35. Raffi R. Kaprielian, Emmanuel Dupont, Sassan Hafizi, et al. Angiotensin Ⅱ receptor type 1 mRNA is upregulated in atria of patients with end-stage heart failure. J Mol Cell Cardiol, 1997; 29:2299-2304
    36. Toshiyuki Matsumoto, Ryoji Ozono, Tetsuya Oshima, et al. Type 2 angiotensin Ⅱ receptor is downregulated in cardiomyocytes of patients with heart failure. Cardiovascular Research, 2000; 46:73-81
    37. John Wharton, Kevin Morgan, Richard A. D. Rutherford, et al. Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. The Journal of Pharmacology and Experimental Therapeutics, 1998; 284(1): 323-336
    38. Francisco J. Villarreal, Noel N. Kim, Gilanthony D. Ungab, et al. Identification of functional angiotensin Ⅱ receptors on rat cardiac fibroblasts, Circulation, 1993;88:2849-2861
    39. Junichi Suzuki, Hiroaki Matsubara, Masaya Urakami, et al. Rat angiotensin Ⅱ(type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circulation Research, 1993;73:439-447
    40. Allen D. Everett, Felice Heller, Audrey Fisher. AT1 Receptor gene regulation in cardiac myocytes and fibroblasts, J Mol Cell Cardiol, 1996;28:1727-1736
    41. Sheri B. Parker, Anca D. Dobrian, Suzanne S. Wade, et al. AT1 receptor inhibition does not reduce arterial wall hypertrophy or PDGF-A expression in renal hypertension. Am J Physiol Heart and Circulatory Physiology, 2000; 278(2): H613-H622
    42. Harada M., Itoh H., Nakagawa O., et al. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertroophic factor from cardiac nonmyocytes. Circulation, 1997; 96: 3737-3744
    43. Booz G W., Baker K. M. Role of type 1 and type 2 angiotensin receptors in angiotensin Ⅱ-induced cardiomyocyte hypertrophy. Hypertension, 1996; 28:635-640
    44. Hiroya Masaki, Tatsuya Kurihara, Akira Yamaki, et al. Cardiac-specific overexpression of angiotensin Ⅱ AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest, 1998; 101:527-535
    45. Utsunomiya H., Eguchi S., Matsumoto T., et al. Anti-hypertophic role of type 2 angiotensin receptor (AT2) in heart. Hypertensin, 1997; 30: 485. abstract
    46. Liu Y. H., Yang X. P., Sharov V. G, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin Ⅱ type 1 receptorantagonists in rats with heart failure. Role of kinins and angiotensin Ⅱ type 2 receptors. J Clin Invest, 1997; 99:1926-1935
    47. Stoll M., Steckenlings M., Paul M., et al. The angiotensin AT-2 receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest, 1995; 95:651-657
    48. Maric C., Aldred G P., Harris P. J., et al. Angiotensin Ⅱ inhibits growth of cultured embryonic renomedullary interstitial cells through the AT2 receptor. Kid Int, 1998, 53: 92-99
    49. Yamada T., Horiuchi M., Dzau V. J. Angiotensin Ⅱ type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA, 1996; 93: 156-160
    50. Hiroshi Sugino, Ryoji Ozono, Satoshi Kurisu, et al. Apoptosis is not increased in myocardium overexpressing type 2 angiotensin Ⅱ receptor in transgenic mice. Hypertensin, 2001: 37:1394-1398
    51. Dostal D, E., Booz G W., Baker K. M. Angioteusin Ⅱ signaling pathways in cardiac fibroblass: conventional versus novel mechanisms in mediating cardiac growth and function. Mol Cell Biochen, 1996; 157:15-21
    52. Dostal D. E., Hunt R. A., Kule C. E., et al. Molecular mechanisms of angiotensin Ⅱ in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol, 1997; 29:2893-2902
    53. Berk B. C. Angiotensin Ⅱ signal transduction in vascular smooth muscle: pathways activated by specific tyrosine kinases. J Am Soc Nephrol, 1999; 10:S62-S68
    54. Pelech S. L., Sanghere J. S. MAP kinase: charting the regulatory pathways. Science, 1991; 257:1355-1356
    55. Guan K. L. The mitogen activated protein kinase signal transduction pathway: from the cell surface to the mucleus. Cellular Signalling, 1994; 6:581-589
    56. Yamazaki T., Tobe K., Hoe E., et al. Mechanical loading activates MAP kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem, 1993; 268:12069-12076
    57. Rabkin S. W., Sunga E S., Sanghera J. S., et al. Reduction of angiotensin Ⅱ-induced activation of mitogen-activated protein kinase in cardiac hypertrophy. Cell Mol Life Sci, 1997; 53:951-959
    58. Peter H. Sugden, Angela Clerk. Cellular mechanisme of cardiac hypertrophy. J Mol Med, 1998; 76:725-746
    59. Marcus C. Schaub, Martin A. Hefti, Beatrice A. Harder, et al. Various hypertrophic stimuli induce distince phenotypes in cardiomyocytes. J Mol Med, 1997; 75:901-920
    60. Yamamoto T., Cui X. M., Shuler C. E, Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion. Dev Bio, 2003; 260(2): 512-521
    61. Guadaulupe Sabio, Suzana Reuver, Carmen Feijoo, et al. Stress- and mitogen- induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38γ and ERK1/ERK2. Biochemical Journal, 2004; 380:19-30
    62. Hamaguchi A., Kim S., Izumi Y., et al. Contribution of extrecellular signal-regulated kinase to angiotensin Ⅱ-induced transforming growth factor-1 expression in vascular smooth muscle cells. Hypertension, 1999; 34:126-131
    63.何昆仑,郑秋甫,牟善仞,等.自发性高血压大鼠心肌肥大与心肌MAPK及AngⅡ的实验研究.解放军医学杂志,1998;23(2):119-121
    64. S. W. Rabkin, P. S. Sunga, J. S. Sanghere, et al. Reduction of angiotensin Ⅱ-induced activation of mitogen-activated protein kinase in cardiac hypertrophy. Cell Mol Life Sci, 1997; 53:951-959
    65. Laurent R Audoly, Michael I. Oliverio, Thomas M. Coffman. Insights into the functions of type 1 (AT1) angiotensin Ⅱ receptors provided by gene targeting. Tem, 2000; 11 (7): 263-269
    66. Pan J., Fukuda K., Kodama H., et al. Role of angiotensin Ⅱ in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res, 1997; 81: 611-617
    67. McWhinney C. D., Hunt R. A., Conrad K. M., et al. The typeⅠ angiotensin Ⅱ receptor couples to Statl and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol, 1997; 29:2513-2524
    68. MeWhinney C. D., Dostal D. E., Baker K. M. Angiotensin Ⅱ activates Stat5 through Jak2 kinase in cardiac myocytes. J Mol Cell Cardiol, 1998; 30:751-761
    69. Mascareno E., Dhar M., Siddiqui A. Q. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci USA, 1998; 95:5590-5594
    70. Pan J., Fukuda K., Kodama H., et al. Role of angiotensin Ⅱ in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res, 1997; 81: 611-617
    71. Aoki H, Izumo S., Sadoshima J. Angiotensin Ⅱ activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin Ⅱ-induced premyofibril formation. Circ Res, 1998; 82: 666-676
    72. Masatsugu Horiuchi, Jukka Y. A. Lehtonen, Laurent Daviet. Signaling mechanism of the AT2 angiotensin Ⅱ receptor: crosstalk between AT1 and AT2 receptors in cell growth. Tem, 1999; 10(10): 391-396
    73. Huang X. C., Richards E. M., Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin Ⅱ type 1 receptors and inhibited by angiotensin Ⅱ type 2 receptors. J Biol Chem, 1996; 271:15635-15641
    74. Siragy H. M., Carey R. M. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3',5'-monophosphate and AT1 receptor mediated prostaglandin E2 production in conscious rats. J Clin Invest, 1996; 97: 1978-1982
    75. Siragy H. M., Carey R. M. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest, 1997; 100:264-269
    76. Seyedi N., Xu X., Nasjletti A.,et al. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension, 1995; 26:164-170
    1. Hiroya Kawai, Amy Mohan, Jason Hagen, et al. Alterations in cardiac adrenergic terminal function and β-adrenoceptor density in pacing-induced heart failure. Am J Physiol Heart Circ Physiol, 2000, 278: H1708-H1716
    2. Kaushik P.Patel, Kun Zhang, Pamela K.Carmines. Norepinephrine turnover in peripheral tissues of rats with heart failure. Am.J.Physiol. Regulatory Integrative Comp.Physiol, 2000, 278:R556-R562
    3.张道亮、张晓星等.心脏病患者心阴虚、心气虚证植物神经功能的研究.中国中西结合杂志,1995;15(10):586-588
    4.沈建平、王德春等.CHF患者心气虚和心阳虚有血浆NE和E的关系.辽宁中医杂志,1997;24(7):296-298
    5.洪缨、侯家玉等.黄芪注射液对慢性心衰大鼠心肌肥厚的逆转作用.中成药,2002;24(7):525-529
    6.洪缨、侯家玉等.实验性心肌肥厚大鼠血浆与心肌几茶酚胺含量变化及黄芪的影响.基础医学与临床,2002;22(4):368-371
    7.赵树进、韩丽萍、李俭洪.知母皂及其苷元对动物模型β肾上腺素受体的调整作用,中国医院药学杂志,2000:20(2):70-73
    8.刘洁、翁世艾、曹永舒等.知母对甲亢模型β-受体-cAMP系统的调节作用.中药药理与临床,1996:(4):16-18
    9.焦霞、沈其昀.苦参生物碱的临床及药理研究进展.中药新药与临床药理,2002;13(3):192-194
    10.吴珂,欧阳静萍,王保华,等.苦参碱对血管紧张素诱导新生大鼠心肌成纤维细胞增殖和胶原合成的影响.武汉大学学报(医学版),2003;24(3):235-238
    11.李璇.黄连素治疗病毒性心肌炎后遗症疗效观察.上海预防医学杂志,1994:6(7):33
    12.李倜,迟晓玲,黄连素治疗高血压临床及机理研究概述.中医药信息,2003:20 (4):12-14
    1.徐叔云主编,药理实验方法学(第3版),人民卫生出版社,2002:1082
    2. Schunkert .H, Weinberg EO, Bruckschlegel B, et al. Altemation of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J. Clin. Invest, 1995, 96:2768-2774
    3. Ian M. C. Dixon, Haisong Ju, Davinder S. Jassal, et al. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Molecular and Cellular Biochemistry, 1996; 165:31-45
    4. Emilien G, Maloteaux J. M. Current therapeutic uses and potential of-adrenoceptor agonists and antagonist. Eur J. Clin Pharmacol, 1998; 53:389-404
    5.戴闰柱.慢性心力衰竭治疗的现代概念.中华心血管病杂志,2000;28(1):75-78
    6.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:338-369;271-304
    1.陈修等主编,心血管药理学(第3版),人民卫生出版社,2002:492~494
    2. Peter H. Sugden, Angela Clerk. Cellular mechanisms of cardiac hypertrophy. J Mol Med, 1998;76:725-746
    3. Campbell S. E., Korecky B., Rakkusan K. Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ Res, 1991 ;68:984-996
    4. Calderone A., Takahashi N., Izzo N J, et al. Pressure- and volume-induced left ventricular hypertrophies are associated with distinct myocytes phenotypes and differential induction of peptide growth factor mRNAs. Circulation, 1995;92:2385-2390
    1. Weber KT, Brilla C, Janicki JS. Structural remodeling of myocardial collagen in systemic hypertension: functional consequences and potential therapy. Heart Failure,1990, 6:129-137
    2. Doering CW, Jalil JE, Janicki JS,et al. Collagen network remodeling and diastolic stiffness of rat left ventricle with pressure overload hypertrophy. Cardiovasc Res. 1988,22:686-695
    3. Weber KT, Brilla CG Pathological hypertrophy and cardiac interstitium. Circulation, 1991,83:1849-1865
    4. Robinson TF, Cohen LG, Factor SM, et al. Structure and function of connective tissue in cardiac muscle: collagen type Ⅰ and type Ⅲ in endomyosial struts and pericellular fibers. Scanning Microsc, 1988,2:1005-1015
    5. Medugorac Ⅰ, Jacob R. Characterization of left ventricular collagen in the rat. Cardiovasc Res. 1983,17:15-21
    6. Chapman D, Weber KT, Egbali M. Regulation of fibrillar collagen types Ⅰ and Ⅲ and basement membrane type Ⅳ collagen gene expression in pressure overloaded rat myocardium. Circ Res, 1990,67:787-794
    7. Weber KT, Janicki JS, Pick R, et al. Myocardial fibrosis and pathologic hypertrophy in the rat with renovascular hypertension, Am J Cardiol, 1990, 65:1-7
    1.许增禄.显示胶原及其类型的苦味酸天狼星红-偏振光方法.基础医学与临床,1996;16(1):75~76
    2. Abdul M Mansoor; Masaaki Honda, Takehiko Kuramochi, et al. Effects of ACE inhibition and beta-blockade on collagen remodelling in the heart of Bio 14.6 hamsters. Clinical and Ecperimental Pharmacology and Physiology, 1996; 23:43-49
    3. Angela J. Woodiwiss, Tanja Oosthuyse, Gavin R. Norton. Reduced cardiac stiffness following exercise is associated with preserved myocardial collagen characteristics in the rat. Eur J Appl Physiol, 1998; 78:148-154
    4. Douglas Chapman, Karl T. Weber, Mahboubeh Eghbali. Regulation of fibrillar collagen typer Ⅰ and Ⅲ and basement membrane type Ⅳ collagen gene expression in pressure overloaded rat myocardium. Circulation Research, 1990; 67:787-794
    5.王华军,谢良地,姚恩辉,等.通心络治疗对自发性高血压大鼠心肌纤维化的影响.中 西医结合心脑血管病杂志,2003;1(4):189-190
    6.孙庆怡,陈润芬,李洪波,等.腹主动脉结扎大鼠心肌胶原网络重塑的实验研究.中华心血管病杂志,2000;28(2):128-131
    1.张卓然主编.培养细胞学与细胞培养技术.上海科学技术出版社,2004
    2.陈勇兵,陈如坤.乳鼠心肌成纤维细胞培养方法的改进.江苏医药,2005;31(3):189-190
    3.王涛,余志斌,谢满红,等.新生大鼠心肌细胞培养技巧.第四军医大学学报,2003;24(2):256
    4. Y. Maeno, M. Iwasa, H. Inoue, et al. Methamphetamine induces an increase in cell size and reorganization of myofibrils in cultured adult rat cariomyocytes. International Journal of Legal Medicine, 2000; 113(4): 201-207
    5. Weinong Guo, Kaichiro Kamiya, Kenji Yasui, et al.α_1-Adrenoceptor agonists and IGF-1, myocardial hypertroophic tactors, regulate the kv1.5 k~+ channel expression differentially in cultured newborn rat ventricular cells. Eur J Physiol, 1998; 436:26-32
    6.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:272-308
    7. Michael Bohm, Markus Flesch, Petra Schnabel.β-Adrenergic signal transduction in the failing and hypertrophied myocardium. J Mol Med, 1997; 75:842-848
    8. Hardeep K. Ranu, Judith C. W. Mak, Peter J. Barnes, et al. Gi-dependent suppression of β_1-adrenocepter effects in ventricular myocytes from NE-treated guinea pigs. Am J Physiol Heart Circ Physiol, 2000; 278: H1807-H1814
    9. Li Li, Jaime Desantiago, Guoxiang Chu, et al. Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxatior. Am J Physiol Heart Circ Physiol, 2000; 278:H769-H779
    10. Peter H. Sugden, Angela Clear. Cellular mechanisms of cardiac hypertrophy. J Mol Meal, 1998;76:725-746
    11. Anvecsa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res, 1998;83:1-24
    1.陈明哲主编,心脏病学,人民卫生出版社,1999:468-488
    2.陈修主编,心血管药理学(第3版),人民卫生出版社,2002:494-495
    3. Ying Hong, Siu-Chun Hui, Tak-Yuen Chan, et al. Effect of berberine on regression of pressure-overload induced cardiac hypertrophy in rats. Am J Chinese Medicine, 2002;30(4):589-599
    4. Schunkert H, Weinberg EO, Bruckschlegel B, et al. Alternation of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J. Clin. Invest, 1995,96:2768-2774
    5. Masaaki Kiode, Blase A. Carabello, Chester C. Conrad, et al. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation. Am J Physiol, 276(Heart Circ Physiol. 45): H350-H358
    1. David L. Geenen, Ashwani Malhotra, James Scheuer. Angiotensin Ⅱ increases cardiac protein synthesis in adult rat heart. Am. J. Physiol. 1993;265 (Heart Circ. Physiol. 34) : H238-H243
    2. Cathy J. Beinlich, Gloria J White, Kenneth M. Baker, et al. Angiotensin Ⅱ and left ventricular growth in newborn pig heart. J Mol Cell Cardiol, 1991; 23:1031-1038
    3. Guoping Zhou, Jagannadha C. Kandala, Suresh C. Tyagi, et al. Effects of angiotensin Ⅱ and aldosterone on collagen gene expression and protein remover in cardiac fibroblasts. Molecular and Cellular Biochemistry, 1996; 154:171-178
    4. H. S. Sharma, H. A. A. van Heugten, M. A. Goedbloed, et al. Angiotensin Ⅱ induced expression of transcription factors precedes increase in transforming growth factor-β_1 mRNA in neonatal cardiac fibroblasts. Biochemical and Biophysical Research Communications, 1994; 205 (1): 105-112
    5.魏蕾,欧阳静萍,涂淑珍,等.血管紧张素Ⅱ在压力超负荷性心肌肥厚发病学中的意义.中国病理生理杂志,1999;15(11):990-993
    6. Yao Sun, John Q. Zhang, Jiakun Zhang, et al. Angiotensin Ⅱ transforming growth factor-β1 and repair in the infracted heart. J Mol Cell Cardiol, 1998; 30:1559-1569
    7.陈修主编,心血管药理学(第3版),人民卫生出版社,2002:338-368
    8. Ian M. C. Dixon, Haisong Ju, Davinder S. et al. Effect of ranipril and losarta on collagen expression in right and left heart after myocardial infarction. Molecular and Cellular Biochemistry, 1996; 165:31-45
    9. Eduardo Balcells, Qing Meng, Walter H. Johnson, et al. Angiotensin Ⅱ formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol, 1997; 273 (Heart Circ. Physiol. 42) : H1769-H1774
    10. Hiroya Masaki, Tatsuya Kurihara, Akira Yamaki, et al. Cardiac-specific overexpression of angiotensin Ⅱ AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J Clin Invest, 1998; 101 : 527-535
    1. Brijesh Bhambi, Mahboubeh Eghbali. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol, 1991;139:1131-1142
    2. Hasking G J., Esler M. D., Jennings GL., et al. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation, 1986;73:615-621
    3. Graeme Eisenhofer, Peter Ffiberg, Bengt Rundqvist, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation, 1996; 93(3): 1667-1676
    4. Kaushik P. Patel, Kun Zhang, Pamela K. Carmines. Norepinephrine turnover in peripheral tissues of rats with heart failure. Am J Physiol, 2000;278:R556-R562
    5. Hiroya Kawai, Amy Mohan, Jason Hagen, et al. Alterations in cardiac adrenergic terminal function and -adrenoceptor density in pacing-induced heart failure. Am J Physiol Heart Circ Physiol, 2000; 278: H1708-H1716
    6. Yatani A., Felten S. Y., Himure Y., et al. Functional cardiac sympathetic denervation in congestive heart failure. Circulation, 1995;92(Suppl Ⅰ):651-656
    7. Zimmer H. G, Kolbeck-Ruhmkorff C., Zierhut W. Cardiac hypertrophy induced by alphaand beta-adrenergic receptor stimulation(abstract). Cardioscience, 1995; 6(1): 47-57
    8. Weinong Guo, Kaichiro Kamiya, Kenji Yasui, et al. α1-Adrenoceptor agonists and IGF-1, myocardial hypertrophic factors, regulate the K1.5K+ channel expression differentially in cultured newbom rat ventricular cells. Eur J Physiol, 1998; 436-26-32
    9. Petra Schnabel, Michael Bohm. Sympathetic activation in heart failure: a target of therapeutic approaches. Z. Kardiol, 1999; 88(3): 5-11
    10. Howard E. Morgan, Kenneth M. Baker. Cardiac hypertrophy: mechanical, neural, and endocrine dependence. Circulation, 1991;83(1): 13-25
    11. Benedict C. R., Francis G.S., Shelton D. E., et al. Effect of long-term enalapril therapy on neurohormons in patients with left ventficular dysfunction. Am J Cardiol, 1995; 75:1151-1157
    12. Hiroya Kawai, Tai-Hwang M. Fan, Erdan Dong, et al. ACE inhibition improves cardiac NE uptake and attenuates sympathetic nerve terminal abnormalities in heart failure. Am J Physiol, 1999; 277 (Heart Circ Physiol 46) :H1609-H1617
    1.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:28-30
    2.戴闰柱.慢性心力衰竭治疗的现代概念.中华心血管病杂志,2000:28(1):75-78
    3. D. J. Church, M. C. Rebsamen, D. Morabito, et al. Role of cell contractions in cAMP-induced cardiomyocyte atrial natriuretic peptide release. Am J Physiology (Heart and Circulatory Physiology), 2000; 278 (1):H117-H125
    4. Paul H. Goldspink, Brenda Russell. Physiological role of phosphorylation of the cyclic AMP response enement binding protein in rat cardiac nuclei. Cell Tissue Research, 1996; 285:379-385
    1. Jun-Li Liu, Irving H. Zucker. Regulation of sympathetic nerve activity in heart failure: a role for nitric oxide and angiotensin Ⅱ. Circ Res. 1999; 84:417-423
    2. Masatsugu Horiuchi, Jukka Y. A. Lehtonen, Laurent Daviet. Signaling mechanism of the AT2 angiotensin Ⅱ receptor: crosstalk between AT1 and AT2 receptors in cell growth. Tem, 1999; 10 (10): 391-396
    3. David E. Dostal. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regulatory Peptides (Elsevier) , 2000; 91: 1-11
    4.陈修主编,心血管药理学(第3版),人民卫生出版社,2002:192-210
    5. L. M. M. Pereira, G M. M. Vianna, C. C. Mandarim-de-Lacerda. Stereology of the myocardium in hypertensive rats. Differences in relation to the time of inhibition of nitric oxide synthesis. Virchows Arch, 1998; 433:369-373
    1. Andreas Horban, Claudia Kolbeck-Ruhmkorff, Heina-Gerd Zimmer. Correlation between function and proto-oncogene expression in isolated working rat hearts trader various overload conditions. J Mol Cell Cardiol, 1997; 29:2903-2914
    2. Marcus C. Schaub, Martin A. Hefti, Beatrice A. Harder, et al. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med, 1997; 75:901-920
    3.李勇.c-myc基因与心肌重构.心血管病学进展,1999;20(4):244-246
    4. Douglas Chapman, Karl T. Weber, Mahboubeh Eghbali. Regulation of fibrillar collagen types Ⅰ and Ⅲand basement membrane type Ⅳ collagen gene expression in pressure overloaded rat myocardium. Circulation Research, 1990; 67:787-794
    5. Xichun Xu, Marie-Domimique Appay, Didier Heudes Robert Lernoine, et al. Colocalization of collagen overexpression and inflammatory cell infiltration in the two-kidney one-clip rat model from the early days of hypertension onward. Virchows Arch, 1997; 432:267-277
    6. Augustine Agocha, Andreas V. Sigel, Mahboubeh Eghbali-Webb. Characterization of adult human heart fibroblasts in culture: a comparative study of growth, proliferation and collagen production in human and rabbit cardiac fibroblasts and their response to transforming growth factor-beta_1. Cell Tissue Research, 1997;288:87-93
    7. Brijesh Bhambi, Mahboubeh Eghbali. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathology, 1991; 139(1): 1131-1142
    8. Guoping Zhou, Jagannadha C. Kandala, Suresh C. Tyagi, et al. Effects of angiotensin Ⅱ and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Molecular and Cellular Biochemistry, 1996; 154:171-178
    9. Abdul M. Mansoor, Masaaki Honda, Takehiko Kuramochi, et al. Effects of ACE inhibition and beta-blockade on collagen remodeling the heart of Bio 14.6 hamsters. Clinical and Experimental Pharmacology and Physiology, 1996; 23:43-49
    1.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:342-369
    2. Francisco J. Villarreal, Noel N. Kim, Gilanthony D. Ungab, et al. Identification of functional angiotensin Ⅱ receptors on rat cardiac fibroblasts. Circulation, 1993; 88:2849-2861
    3. Ryoji Ozono, Toshiyuki Matsumoto, Tetsuji Shingu, et al. Expression and localization of angiotensin subtype receptor proteins in the hypertensive rat heart, Am J Physiol. Regulatory Integrative Comp. Physiol, 2000; 278:R781-R789
    4. Junichi Suzuki, Hiroaki Matsubara, Masaya Urakami, et al. Rat angiotensin Ⅱ (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circulation Research, 1993; 73:439-447
    5. Allen D. Everett, Alda Tufro-McReddie, Audrey Fisher, et al. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-β_1 expression. Hypertension, 1994; 23(5): 587-592
    6. Raffi R. Kaprielian, Emmanuel Dupont, Sassan Hafizl, et al. Angiotensin Ⅱ receptor type 1 mRNA is upregulated in atria of patients with end-stage heart failure. J Mol Cell Cardiol, 1997; 29:2299-2304
    7. Allen D. Everett, Audrey Fisher, Alda Tufro-McReddie, et al. Developmental regulation of angiotensin type 1 and 2 receptro gene expression and heart growth. J Mol Cell Cardiol, 1997; 29:141-148
    8. Hiroaki Matsubara, Mikihiko Kanasaki, Satoshi Murasawa, et al. Differential gene expression and regulation of angiotensin Ⅱ receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J. Clin. Invest, 1994; 93: 1592-1601
    9. Leonardo A. Sechi, Chandi A. Griffin Eileen F. Grady, et al. Characterization of angiotensin Ⅱ receptor subtypes in rat heart. Circulation Research, 1992; 71: 1482-1489
    10. C. A. M. van Kesteren, H. A. A. van Heugten, J. M. Lamers, et al. Angiotensin Ⅱ-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblaste. J Mol Cell Cardiol, 1997; 29:2147-2157
    11. Masatsugu Horiuchi, Jukka Y. A. Lehtonen, Laurent Daviet. Signaling mechanism of the AT_2 angiotensin Ⅱ receptor: crosstalk between AT_1 and AT_2 receptors in cell growth. Tem, 1999: 10(10): 391-396
    12. Hiroya Masaki, Tatsuya Kurihara, Akim Yamaki, et al. Cardiac-specific overexpression of angiotensin Ⅱ AT_2 receptor causes attenuated response to AT_1 receptor-mediated pressor and chronotropic effects. J. Clin. Invest. 1998; 101:527-535
    13. Hiroshi Sugino, Ryoli Ozono, Satoshi Kurisu, et al. Apoptosis is not increased in myocardium overexpressing type 2 angiotensin Ⅱ receptor in transgenic mice. Hypertension, 2001; 37:1394-1395
    1. Kazushi Urasawa, Ichiro Yoshida, Chika Takagi, et al. Enhanced expression of β-adrenergic receptor hinase 1 in the hearts of cardiomyopathic Syrian hamsters, Bio53.58. Biochem Biophys Res Commun, 1996;219(1):26-30
    2. Martin Ungerer, Michael Bohm, John S. Elce, et al. Alered expreddion of β-adrenergic receptor kinase and β_1-adrenergic receptors in the failing human heart. Circulation, 1993;87:454-463
    3. Schnabel E, Bohm M. Sympathetic activation in heart failure: A target of therapeutic approaches. Z Kardiol, 1999;88(Suppl 3):5-11
    4.陈修主编.心血管药理学(第3版).人民卫生出版社,2002:100-117
    5. Michael Bohm, Markus Flesch, Petra Schnabel. β-drenergic signal transduction in the failing and hypertrophied myocardium. J Mol Med, 1997; 75:842-848
    1.陈修主编.心血管药理学.人民卫生出版社,2002:43-46
    2. Peter H. Sugden, Angela Clerk. Cellular mechanisme of cardiac hypertrophy. J Mol Med, 1998; 76:725-746
    3. Marcus C. Schaub, Martin A. Hefti, Beatrice A. Harder, et al. Various hypertrophic stimuli induce distince phenotypes in cardiomyocytes. J Mol Med, 1997; 75:901-920
    4. Yamamoto T., Cui X. M., Shuler C. F., Role of ERK1/2 signaling during EGF-induced inhibition of palatal fusion. Dev Bio, 2003; 260(2): 512-521
    5. Guadaulupe Sabio, Suzana Reuver, Carmen Feijoo, et al. Stress- and mitogen- induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38γ, and ERK1/ERK2. Biochemical Journal, 2004; 380:19-30
    6. Hamaguchi A., Kim S., Izumi Y., et al. Contribution of extrecellular signal-regulated kinase to angiotensin Ⅱ-induced transforming growth factor-1 expression in vascular smooth muscle cells. Hypertension, 1999; 34:126-131
    7.何昆仑,郑秋甫,牟善初,等.自发性高血压大鼠心肌肥大与心肌MAPK及AngⅡ的实验研究.解放军医学杂志,1998:23(2):119-121
    8. S. W. Rabldn, P. S. Sunga, J. S. Sanghere, et al. Reduction of angiotensin Ⅱ-induced activation of mitogen-activated protein kinase in cardiac hypertrophy. Cell Mol Life Sci, 1997; 53:951-959
    9. Wang Y., Huang S., Sah V. R, et al. Cardiac muscle call hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem, 1998; 273:2161-2168
    10. Jenny Papakrivopoulou, Gisela E. Lindahl , Jill E. Bishop , et al. Differential roles of extracellular signal-regulated kinase 1/2 and p38~(MAPK) in mechanical load-induced procollagen (?)1(Ⅰ) gene expression in cardiac fibroblasts. Cardiovascular Research, 2004, 61(4): 736-744
    11. Diana A. Gorog, Masaya Tanno, Xuebin Cao, et al. Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse modal of low-flow ischemia. Cardiovascular Research, 2004; 61(1): 123-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700