磺化聚芳醚质子交换膜材料的设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年,人们一直致力于磺化聚芳醚质子交换膜的研究工作,研究发现当磺化度较低时,虽然膜的力学性能和阻醇性能较好,但是质子传导率不能满足燃料电池使用要求;当磺化度增加时,膜的质子传导率相应的会有很大提高,但是这时膜的机械性能及阻醇性能迅速下降。本论文主要围绕怎样解决这一矛盾进行开展的。对于低磺化度的情况,我们通过从分子结构设计的角度出发,制备出了一系列嵌段型的磺化聚芳醚材料,经研究发现,通过改变分子内部的序列分布可以改善膜的微观结构,从而在质子交换容量(IEC)相对较低的情况下也有比较好的质子传导率;对于高磺化度的情况我们采用了三种手段对其进行改性研究。首先,我们利用酸碱相互作用用高性能的氨基聚醚萘酮作为复合材料中的支撑骨架对常见的部分含氟的磺化聚芳醚酮进行改性,使材料的力学性能及抗溶胀和抗氧化性都得到了很大提高;其次,利用含氨基的磺化聚芳醚酮与自制的含联苯结构的环氧树脂进行原位交联,热处理后形成三维网络结构实现降低膜的溶胀及甲醇渗透的目标;最后,研究了极性基团氰基在磺化聚芳醚质子交换膜中的作用,发现含氰基的磺化聚芳醚在降低膜的溶胀率、阻醇性、抗氧化稳定等方面都有很好效果。
Proton exchange membranes (PEMs) are aroused researchers’interests, for its environmental friendliness as well as other advantages, such as high energy conversion efficiency, low temperature start, no electrolytic cell leakage, no corrosion, long life and so on. PEMs are considered as the most promising choice for power supply in aerospace, military, electric vehicles and regional power plant. At present, almost all commercial available membranes are perfluorinated sulfonic acid membrane. However, the high price, limited operating temperature (dehydration and loss of proton conductivity above 80 oC) and high methanol crossover (in the case of direct methanol fuel cells) have prevented the perfluorinated sulfonated membranes’applications in some fields. So, to find a relatively inexpensive proton exchange membrane materials with high performance is urgent.
     Sulfonated poly (arylene ether) materials have been widely studied as one of the potential to become alternative to perfluorinated sulfonic acid membrane due to its good thermo-chemical stability, high resistance methanol and hydrolysis properties and structural diversity, etc.. The study indicated that main-chain type sulfonated poly(arylene ether)s containing high levels of sulfonic group easily lead to excessive swelling and lost the dimensional stability as a consequence. To solve this problem, several attempts have been made in our work, such as designing block structure, introducing polar groups, acid-base complex and covalent cross-linking. And the effects in thermal stability, mechanical properties, water absorption, dimensional stability, methanol permeability and proton conducting properties were thoroughly investigated.
     First, we designed and prepared novel block polymers as precursors, who had easily sulfonated segments and toughly sulfonated segments. And then side-chain type sulfonated polymers containing sulfonated and unsulfonated blocks were obtained via a mild postsulfonation of above precursors. Comparing the random copolymer with the block copolymers with the similar IEC value, the hydrophilic region were isolated in random copolymers, and the connectivity improved in block membranes, especially in block2 membranes, the continuous hydrophilic region formed. Meanwhile, the side-chain type sulfonated poly(arylene ether) block copolymer could much easily form micro-phase separation structure comparing with the main-chain-type proton exchange membrane materials, and thus when the IEC is not very high, this series of block proton exchange membrane materials have shown a good proton conductivity, especially at 80 oC, the proton conductivity of some sulfonated membranes was higher than Nafion 117. All the membranes exhibited excellent thermal and dimensional stability, high proton conductivity and low methanol permeability. The results indicated that the property of proton exchange membranes could be improved by changing the chemical architecture, and the side-chain block sulfonated membranes may be potential proton exchange membrane for fuel cells applications.
     A series of sulfonated fluorinated poly(aryl ether ketone) copolymers (6FSPEEK) have been prepared previously by Guiver et al.. Although these membranes have high proton conductivity, the excess dimensional deformation often existed especially at high level of sulfonic acid content (SC) in hot water. In our study, a novel kind of aminated poly(aryl ether ketone) with naphthane (AmPEEKK-NA) having good mechanical strength, high chemical and thermal stabilities is synthesized as basic component. And a series of acid-base composite membranes were prepared by solution casting. They exhibited high mechanical properties, thermal stabilities and reduce excess swelling while maintained high proton conductivity values. Because of the distribution and framework of AmPEEKK-NA in 6FSPEEK matrix, microphase separation in composite membrane became more obvious, which allowed the proton conductivities of composite membranes to be close to 6FSPEEK. Similarly, we have prepared a series composite membranes with a high degree of sulfonation SPEEKCN40 and AmPEEKK-NA, and the result showed that adding a suitable amount of second component, the composite membrane can reduce the swelling ratio while maintaining good proton conductivity, such as the proton conductivity of SPEEKCN40-1 at 80 oC was higher than Nafion 117.
     Covalent cross-linking is another method for decreasing swelling ratio. First, we synthesized a copolymer with amino (AP6FSPEEK), and then a series of composite membranes based on AP6FSPEEK and DGBP were prepared and cured at two different temperatures. After cured, the membrane formed three-dimensional network structure. The crosslinked composite membranes after treatment at either 120 oC or 200 oC have improved oxidative, dimensional stability and low methanol permeability. All the results exhibited that these crosslinked composite membranes could be promising membranes for fuel cell applications.
     Polar groups are known to have strong interaction by forming hydrogen bonds. In order to further examine the role of polar groups in the sulfonated membrane, we synthesized two types of side-chain containing nitrile and amino sulfonated PAEK materials. Due to nitrile and amino film can form strong intermolecular interaction, so both of these materials can maintain a good dimensional stability. And even with the similar IEC to other sulfonated membrane with no polar groups, they could have higher water uptake, and lower swelling ratio. As a result, the polar groups could maintain a good dimensional stability in PEMs.
引文
[1].肖刚.燃料电池技术[M].北京:电子工业出版社,2009.
    [2].陈振兴.高分子电池材料[M].北京:化学工业出版社,2006.
    [3]. K. Dircks. Recent Advances in Fuel Cell for Transportation Application [M]. Proc. Evs., 1998.
    [4].詹姆斯·拉米尼,安德鲁·迪克斯(美).燃料电池系统[M].北京:科学出版社, 2006.
    [5].衣宝廉.燃料电池高效环境友好的发电方式[M].北京:化学工业出版社,2000.
    [6].衣宝廉.燃料电池[M].北京:化学工业出版社, 2003.
    [7]. J. Larminie. A. Dicks. Fuel Cell Systems Explained [M]. Chichester, John Wiley & Sons Ltd., 2000.
    [8]. W.R. Grove. London and Edinburgh Philosophical Magazine and Journal of Science [M]. Series 3, 1839, 14: 127.
    [9]. L. Mond, C. Langer. Proceeding of Royal Society of London [M]. 1889, 46: 296.
    [10]. K. Kordesch. Power Source for Electric Vehicles. Modern Aspects of Electrochemistry [M]. New York: Plenum Press, 1975.
    [11].于婕,申万.从中国石油贸易现状看发展氢经济的必要性.第六届全国氢能学术会议论文集[C].上海:上海交通大学, 2005.
    [12].沈骥如.论“氢经济”产业革命-中国和平发展的能源战略[J].世界经济与政治, 2005.1.
    [13]. T. Sharon, Z. Marcia. Fuel Cells-Green Power [M]. Los Alamos National Laboratory, 1999.
    [14]. A. Grimaud, L. Rouge. Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies [J]. Journal of Environmental Economics and Management, 2003, 45: 433-453.
    [15].许世森.燃料电池发电技术的现状和发展趋势[J].电力设备, 2001, 2: 35.
    [16].黄莎华,刘之景,王克逸.燃料电池发展现状及其发展趋势[J].化学通报, 2004, 67: 1.
    [17].梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用[J].研究综述,电网技术, 2003, 27: 71.
    [18].冯玉全,杨颖.燃料电池21世纪电力行业的主力军—从国家安全及可持续发展出发积极发展燃料电池发电技术[J].中国能源, 1999, 11: 21.
    [19]. S.M. Haile. Fuel cell materials and components [J]. Acta Materialia, 2003, 51: 5981-6000.
    [20]. Motorola press release. Motorola Researchers Report Progress in Miniaturizing Fuel Cell Power Source for Consumer Electronic Decvices [R]. 2000.
    [21]. S.D. Knights, K.M. Colbow, J.S.Pierre, et al. Aging mechanisms and lifetime of PEFC and DMFC [J]. Journal of Power Sources, 2004, 127: 127-134.
    [22]. M.C. Williams, J.P. Strakey, S.C. Singhal. U.S. distributed generation fuel cell program [J]. Journal of Power Sources. 2004, 131: 79-85.
    [23]. D.J. White. Hybrid gas turbine and fuel cell systems in perspective review [R]. Indianapolis, Indiana, USA: ASME Turbo Expo, 1999.
    [24]. S.R. Vosen, J.O. Keller. Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies [J]. Int. J. Hydrogen Energy, 1999: 24: 1139-1156.
    [25].毛宗强等.燃料电池[M].北京:化学工业出版社, 2005.
    [26]. K.A. Kerry, P. Perter. Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions [J]. J. Power Sources. 2000, 86: 548-555.
    [27]. J.H. Jiang, B. Yi. Thickness effects of a carbon-supported platinum catalyst layer on the electrochemical reduction of oxygen in sulfuric acid solution [J]. J. Electro-analytical Chemistry, 2005, 557: 107-115.
    [28]. M. Lin, Y. Cheng, M. Lin, et al. Evaluation of PEMFC power systems for UPS base station applications [J]. J. Power Sources, 2005, 140: 346-349.
    [29]. A. Kuver, W. Vielstich. Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system [J]. J. Power Sources, 1998, 74: 211-218.
    [30]. A.K. Shulka, P.A. Christensen, A.J. Dickinson et al. A liquid-feed solid polymer electrolyte direct methanol fuel cell operating at near-ambient conditions [J]. J. Power Sources, 1998, 76: 54-59.
    [31]. A.A. Kulikovsky. Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells [J]. J. Electrochemical Society, 2003, 150: A1432-A1439.
    [32]. M. Wakizoe, A. Watanabe. Study of asahi aciplex’s membrane for highly durable PEMFCs [R]. Portland Oregon: 2000 fuel cell seminar, 2000.
    [33]. T. Ishisaki, K. Umemura, E. Yanagsawa, et al. Flemion membranes for PEMFC [R]. Portland, Oregon: 2000 fuel cell seminar, 2000.
    [34]. J. Roziere, D.J. Jones. Non-fluorinated polymer materials for proton exchange membrane fuel cells [J]. Annual Review of Materials Research, 2003, 33: 503-505.
    [35]. K. Miyatake, Y. Chikashige, M. Watanabe. Novel sulfonated poly(arylene ether): a proton conductive polymer electrolyte designed for fuel cells [J]. Macromolecules, 2003, 36: 9691-9693.
    [36]. T.D. Gierke, G.E. Munn, F.C. Wilson. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies [J]. J. Polym. Sci, Polym Phys. Ed., 1981, 19: 1687-1704.
    [37]. E.J. Roche, M. Pineri, R.Duplessix, et al. Small-angle scattering studies of nafion membranes [J]. J. Polym. Sci, Polym Phys. Ed., 1981, 19: 1-11.
    [38]. G. Gebel. Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes [J]. Macromolecules, 1997, 30: 7914-7920.
    [39]. G. Gebel, R.B. Moore. Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes [J]. Macromolecules, 2000, 33: 4850-4855.
    [40]. G. Gebel. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution [J]. Polymer, 2000, 41: 5829-5838.
    [41]. A. Eisenberg. Clustering of Ions in Organic Polymers. A Theoretical Approach [J]. Macromolecules, 1970, 3: 147-154.
    [42]. M. Fujimura, T.J. Hashimoto, H. Kawai. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima [J]. Macromolecules, 1981, 14: 1309-1315.
    [43]. M. Fujimura, T.J. Hashimoto, H. Kawai. Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum [J]. Macromolecules, 1982, 15: 136-144.
    [44]. B.B. Sauer, R.S. Mclean. AFM and X-ray Studies of Crystal and Ionic Domain Morphology in Poly(ethylene-co-methacrylic acid) Ionomers [J]. Macromolecules, 2000, 33: 7939-7949.
    [45]. Y.S. Yang, Z.Q. Shi, S. Holdcroft. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange CapacityMembranes [J]. Macromolecules, 2004, 37: 1678-1681.
    [46]. K.D. Kreuer. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. J. Membr.Sci., 2001, 185: 29-39.
    [47]. Y.S. Kim, L. Dong, M.A. Hickner, et al. Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes [J]. Polymer, 2003, 44: 5729-5736.
    [48]. L. Jia, X. Xu, H. Zhang, et al. Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor [J]. J. Appl. Polym. Sci., 1996, 60: 1231-1237.
    [49]. X. Jin, M.T. Bishop, T.S. Ellis, et al. A Sulphonated Poly(aryletherketone) [J]. British Polymer Joural, 1985, 17, 4.
    [50]. A. Alomran, J.B. Rose. Synthesis and Sulfonation of Poly(Phenylene Ether Ether Sulfone)S Containing Methylated Hydroquinone Residues [J]. Polymer, 1996, 37: 1735-1743.
    [51]. J. Lee, C.S. Marvel. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines [J]. J. Polym. Sci. Polym. Chem. Ed., 1984, 22: 295-301.
    [52]. P. Genova-Dimitrova, D. Baradie, C. Foscallo, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. J. Membr. Sci., 2001, 185: 59-71.
    [53]. B.C. Johnson, I. Ylgor, M. Iqbal, et al. Synthesis and characterization of sulfonated poly(acrylene ether sulfones) [J]. J. Polym. Sci. Polym. Chem. Ed., 1984, 22: 721-737.
    [54]. A. Noshay, L.M. Robeson. Sulfonated polysulfone [J]. J. Appl. Polym. Sci., 1976, 20: 1885-1903.
    [55]. M.I. Litter, C.S. Marvel. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4 -dichloroformyldiphenyl ether [J]. J. Polym. Sci. Polym. Chem. Ed., 1985, 23: 2205-2223.
    [56]. J. Roziere, D.J. Jones. NON-FLUORINATED POLYMER MATERIALS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS [J]. Annu. Rev. Mater. Res., 2003, 33: 503-555.
    [57]. G. Alberti, M. Casciola, L. Massinelli, et al. Polymeric proton conducting membranesfor medium temperature fuel cells (110–160°C) [J]. J. Membr. Sci., 2001, 185: 73-81.
    [58]. S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications [J]. Journal of Membrane Science, 2000, 173: 17–34.
    [59]. P. Genova-Dimitrova, B. Baradie, D. Foscallo, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. J. Membr. Sci., 2001, 185: 59-71
    [60]. K. Miyatake, A.S. Hay. Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings [J]. J. Polym. Sci. Part A: Polym. Chem., 2001, 39: 3211-3217.
    [61]. M. Ueda, H. Toyota, T. Ochi, et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups [J]. J. Polym. Sci. Polym. Chem. Ed., 1993, 31: 853-858.
    [62]. F. Wang, T.L. Chen, J.P. Xu. Sodium sulfonate-functionalized poly(ether ether ketone)s [J]. Macromol. Chem. Phys., 1998, 199: 1421-1426.
    [63]. H.Y. Jiang, T.L. Chen, S.Q. Bo, et al. Synthesis and polymerization of some macrocyclic (arylene ether sulfone) containing cardo groups and macrocyclic (arylene ether ketone sulfone) oligomers [J]. Polymer, 1998, 39: 6079-6083.
    [64]. F. Wang, J. Li, T.L. Chen, et al. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics [J]. Polymer, 1999, 40: 795-799.
    [65]. S.Z. Liu, F. Wang, T.L. Chen. Synthesis of Poly(ether ether ketone)s with High Content of Sodium Sulfonate Groups as Gas Dehumidification Membrane Materials [J]. Macromol. Rapid Commun., 2001, 22: 579-582.
    [66]. H.K. Shobha, G.R. Smalley, M. Sankarapandian, et al. Synthesis and characterization of sulfonated poly(arylene ether)s based on functionalized triphenyl phosphine oxide for proton exchange membranes [J]. Polymer Preprints, 2000, 41: 180.
    [67]. F. Wang, M.H. Hickner, Q. Ji, et al. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization [J]. Macromol. Symp. 2001, 175: 387-396.
    [68]. K.B. Wiles, V.A. Bhanu, F. Wang, et al. Synthesis and characterization of sulfonatedpoly(arylene sulfide sulfone) copolymers as candidates for proton exchange membranes Synthesis and characterization of sulfonated poly(arylene sulfide sulfone) copolymers as candidates for proton exchange membranes [J]. Polymer Preprints, 2002, 43: 993.
    [69]. P.X. Xing, G.P. Robertson, M.D. Guiver, et al. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes [J]. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 2866-2876.
    [70]. Y. Gao, G.P. Robertson, M.D. Guiver, et al. Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials [J]. Macromolecules, 2004, 37: 6748-6754.
    [71]. D.K. Kim, B.J. Liu, M.D. Guiver. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application [J]. Polymer, 2006, 47: 7871-7880.
    [72]. X.F. Li, Z. Wang, H. Lu, et al. Electrochemical properties of sulfonated PEEK used for ion exchange membranes [J]. J. Membr. Sci., 2005, 254: 147-155.
    [73]. X.F. Li, C.J. Zhao, H. Lu, et al. Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application [J]. Polymer, 2005, 46: 5820-5827.
    [74]. M. Gil, X.L. Ji, X.F. Li, et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J]. J. Membr. Sci.2004, 234: 75-81.
    [75].刘晨光,那辉,赵成吉等.一种新型磺化聚醚醚酮的合成、表征和性能[J].高等学校化学学报,2004, 25: 2359-2362.
    [76]. A. Roy, M.A. Hickner, X. Yu, et al. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes [J]. J. Polym. Sci. PtB: Polym.Phys., 2006, 44: 2226-2239.
    [77]. J. Meier-Haack, A. Taeger, C. Vogel, et al. Membranes from sulfonated block copolymers for use in fuel cells [J]. Sep. Purif. Technol. 2005, 41: 207-220.
    [78]. N.W. Deluca, Y.A. Elabd. Polymer electrolyte membranes for the direct methanol fuel cell: A review [J]. J. Polym. Sci. B: Polym. Phys. 2006, 44: 2201-2225.
    [79]. Y.S. Yang, Z.Q. Shi, S. Holdcroft. Synthesis of poly[arylene ether sulfone-b-vinylidenefluoride block copolymers [J]. Euro. Polym. J., 2004, 40: 531-541.
    [80]. Y.S. Yang, Z.Q. Shi, S. Holdcroft. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes [J]. Macromolecules, 2004, 37: 1678-1681.
    [81]. X.P. Zhang, S.Z. Liu, J. Yin. Synthesis and characterization of a new block copolymer for proton exchange membrane [J]. J. Membr. Sci., 2005, 258: 78-84.
    [82]. A. Taeger, C. Vogel, D. Lehmann, et al. Sulfonated multiblock copoly(ether sulfone)s as membrane materials for fuel cell applications [J]. Macromol. Symp.2004, 210: 175-184.
    [83].赵成吉.嵌段型磺化聚芳醚类质子交换膜材料的结构与性能研究[D].长春:吉林大学化学学院,2007.
    [84]. C.J. Zhao, H.D. Lin, K. Shao, et al. Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes [J]. Journal of Power Sources, 2006, 162: 1003–1009.
    [85]. H. Ghassemi, J.E. McGrath, T.A. Zawodzinski. Multiblock sulfonated–fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell [J]. Polymer, 2006, 47: 4132-4139.
    [86]. C. Genies, R. Mercier, B. Sillion, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J]. Polymer, 2001, 42: 359-373.
    [87]. C. Genies, R. Mercier, B. Sillion, et al. Polymer, 2001, 42: 5097.
    [88]. H. Lee, A.S. Badami, A. Roy, et al. Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cells. I. Copolymer synthesis and fundamental properties [J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 4879-4890.
    [89]. B. Lafitte, M. Puchner, P. Jannasch. Proton Conducting Polysulfone Ionomers Carrying Sulfoaryloxybenzoyl Side Chains [J]. Macromol. Rapid Commun. 2005, 26: 1464-1468.
    [90]. B. Lafitte, L.E. Karlsson, P. Jannasch Sulfophenylation of polysulfones for proton-conducting fuel cell membranes [J]. Macromol. Rapid Commun., 2002, 23: 896–900.
    [91]. K. Tsuruhara, K. Hara, M. Kawahara, et al. Ion conductivity of poly(ethylene oxide): ligand complexes with the hydrogen-bond interaction [J]. Electrochim Acta, 2000, 45: 1223-1226.
    [92]. M. Kawahara, M. Rikukawa, K. Sanui. Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole) [J]. Polym. Adv. Technol., 2000, 11: 544-547.
    [93].庞金辉.侧链型磺化聚芳醚质子交换膜材料的制备及其性能研究[D].吉林大学博士学位论文[D].长春:吉林大学化学学院,2008.
    [94]. J.H. Pang, H.B. Zhang, X.F. Li, et al. Novel Wholly Aromatic Sulfonated Poly(arylene ether) Copolymers Containing Sulfonic Acid Groups on the Pendants for Proton Exchange Membrane Materials [J]. Macromolecules, 2007, 40: 9435-9442.
    [95]. J.H. Pang, H.B. Zhang, X.F. Li, et al. Low water swelling and high proton conducting sulfonated poly(arylene ethe) with pendant sulfoalkyl groups for proton exchange membranes [J]. Macromolecular rapid communications, 2007, 28: 2332-2338.
    [96]. J.H. Pang, H.B. Zhang, X.F. Li, et al. Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes [J]. Journal of Membrane Science, 2008, 318: 271–279.
    [97]. J.H. Pang, H.B. Zhang, X.F. Li, et al. Poly(arylene ether)s with pendant sulfoalkoxy groups prepared by directcopolymerization method for proton exchange membranes [J]. Journal of Power Sources, 2008, 184: 1-8.
    [98]. S. Chen, Y. Yin, K. Tanaka, et al. Synthesis and properties of novel side-chain sulfonated polyimides from bis[4-(4-aminophenoxy)-2-(3-sulfobenzoyl)]phenyl sulfone [J]. Polymer, 2006, 47: 2660-2669.
    [99]. Y. Yin, J. Fang, H. Kita, et al. Novel Sulfoalkoxylated polyimide membrane for polymer electrolyte fuel cells [J]. Chemistry Letters, 2003, 32: 238-239.
    [100]. Y. Gao, G.P. Robertson, M.D. Guiver, et al. Synthesis of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Groups for PEM Application [J]. Macromolecules 2005, 38: 3237-3245.
    [101]. Y. Zhang, Z.M. Cui, C.J. Zhao, et al. Synthesis and characterization of novel sulfonated poly(arylene ether ketone)copolymers with pendant carboxylic acid groups for proton exchange membranes [J]. Journal of Power Sources, 2009, 191: 253–258.
    [102]. D.S. Kim, K.H. Shin, H.B. Park, et al. Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells [J]. Journal of Membrane Science, 2006, 278: 428–436.
    [103]. I. Honma, S. Hirakawa, K. Yamada. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes [J]. Solid State Ionics, 1999, 118: 29-36.
    [104]. I. Honma, Y. Takada, J.M. Bae. Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules [J]. Solid State Ionics, 1999, 120: 255-264.
    [105].张海博.磺化聚芳醚酮聚合物系列质子交换膜材料的合成及性能研究[D].长春:吉林大学化学学院,2005.
    [106]. H.B. Zhang, J.H. Pang, D. Wang, et al. Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes [J]. Journal of Membrane Science, 2005, 264: 56–64.
    [107]. M. Geormezi, V. Deimede, N. Gourdoupi, et al. Novel Pyridine-Based Poly(ether sulfones) and their Study in High Temperature PEM Fuel Cells [J]. Macromolecules, 2008, 41: 9051-9056.
    [108]. J.C. Woong, S. Venkataramani, S.C. Kim. Modification of Nafion membrane using poly(4-vinyl pyridine) for direct methanol fuel cell [J]. Polym. Int., 2006, 55: 491–499.
    [109]. J. Kerres, A. Ullrich, F. Meier, et al. Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells [J]. Solid State Ionics, 1999, 125: 243–249.
    [110]. H.D. Lin, C.J. Zhao, W.J. Ma, et al. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover [J]. International Journa of Hydrogen Energy, 2009, 34: 9795—9801.
    [111]. B.J. Liu, W. Hu, G.P. Robertson, et al. Poly(aryl ether ketone)s with carboxylic acid groups: synthesis, sulfonation and crosslinking [J]. J. Mater. Chem., 2008, 18: 4675–4682.
    [112].付铁柱.直接甲醇燃料电池用磺化聚醚醚酮膜材料的制备与研究[D].长春:吉林大学化学学院,2009.
    [113]. T.Z. Fu, C.J. Zhao, S.L. Zhong, et al. SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages [J]. Journal of Power Sources,2007, 165: 708–716.
    [114]. S.L. Zhong, X.J. Cui, H.L. Cai, et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications [J]. Journal of Power Sources, 2007, 164: 65–72.
    [115]. H. Ghassemi, J.E. McGrath, T.A.Z. Jr. Multiblock sulfonated–fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell [J]. Polymer, 2006, 47: 4132–4139.
    [116]. K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. J. Membr. Sci., 2001, 185: 29-39.
    [117]. T.B.Norsten, M.D. Guiver, J. Murphy, et al. Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design [J]. Adv. Funct. Mater., 2006, 16: 1814–1822.
    [118]. S. TAKAMUKU, K. AKIZUKI, M. ABE, et al. Synthesis and Characterization of Postsulfonated Poly(arylene ether sulfone) Diblock Copolymers for Proton Exchange Membranes [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2009, 47: 700–712.
    [119]. Y.X. Li, A. Roy, A.S. Badami, et al. Synthesis and characterization of partially fluorinated hydrophobic–hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane [J]. J. Power Sources, 2007, 172: 30–38.
    [120]. H.S. Lee, A.S. Badami, A. Roy, et al. Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cells. I. Copolymer synthesis and fundamental properties [J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45:4879–4890.
    [121]. B.J. Liu, W. Hu, C.H. Chen, et al. Synthesis and characterization of trifluoromethylated poly(aryl ether ketone)s [J]. Polym. Adv. Technol., 2003, 14: 221-225.
    [122]. Y. Zhang, B.J. Liu, Y.H. Zhang, et al. Novel high performance poly(aryl ether ketone)s based on symmetrical naphthylene isomers [J]. Polymer Bulletin, 2008.
    [123].庞金辉,张海博,刘佰军等.侧链型磺化聚芳醚酮质子交换膜材料的制备.高等学校化学学报. 2009, 30: 430-432.
    [124].庞金辉.侧链型磺化聚芳醚质子交换膜材料的制备及其性能研究[D].长春:吉林大学化学学院,2008.
    [125]. M.A. Hickner, H. Ghassemi, Y.S. Kim, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chem. ReV., 2004, 104: 4587-4612.
    [126]. R. Borup, J. Meyers, B. Pivovar, et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation [J]. Chem. Rev., 2007, 107: 3904-3951.
    [127]. B.J. Liu, G.P. Robertson, D.S. Kim, et al. Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes [J]. Macromolecules, 2007, 40: 1934-1944.
    [128]. P.X. Xing, G.P. Robertson, M.D. Guiver, et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization as Proton Exchange Membranes for Fuel Cell Application [J]. Macromolecules, 2004, 37: 7960-7967.
    [129]. J. Gu, S.C. Narang, E.M. Pearce. Curing of epoxy resins with diphenyliodonium salts as thermal initiators [J]. J. Appl. Polym. Sci., 1985, 30: 2997–3007.
    [130]. R.J. Norgan, E.T. Mones, W.J. Steele. Tensile deformation and failure processes of amine-cured epoxies [J]. Polymer 1982, 23: 295–305.
    [131]. J.Y. Lee, M.J. Shim, S.W. Kim. Autocatalytic cure kinetics of natural zeolite filled epoxy composites [J]. Mater. Chem. Phys., 1997, 48: 36–40.
    [132]. J. Rocks, L. Rintoul, F. Vohwinkel, et al. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy [J]. Polymer, 2004, 45: 6799–6811.
    [133]. X. Ramis, J.M. Salla, C. Mas, et al. Kinetic study by FTIR, TMA, and DSC of the curing of a mixture of DGEBA resin and -butyrolactone catalyzed by ytterbium triflate [J]. J. Appl. Polym. Sci., 2004, 92: 381–393.
    [134]. V.L. Zvetkov. Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines.: I. Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine [J]. Polymer, 2001, 42: 6687–6697.
    [135]. H.E. Kissinger. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702–1706.
    [136]. T. Ozawa. A New Method of Analyzing Thermogravimetric Data [J]. Bull. Chem. Soc. Jpn., 1965, 38: 1881–1886.
    [137]. T.Z. Fu, C.J. Zhao, S.L. Zhong, et al. SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages [J]. J. Power Sources, 2007, 165: 708–716.
    [138]. J. Pang, H. Zhang, X. Li, et al. Novel Wholly Aromatic Sulfonated Poly(arylene ether) Copolymers Containing Sulfonic Acid Groups on the Pendants for Proton Exchange Membrane Materials [J]. Macromolecules, 2007, 40: 9435–9442.
    [139]. M.A. Hickner, H. Ghassemi, Y.S. Kim, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chem. Rev., 2004, 104: 4587–4612.
    [140]. Y.S. Kim, B. Einsla, M. Sankir, et al. Structure–property–performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications [J]. Polymer, 2006, 47: 4026–4035.
    [141]. Y. Gao, G.P. Robertson, M.D. Guiver, et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage [J]. Polymer, 2006, 47: 808–816.
    [142]. P.X. Xing, G.P. Robertson, M.D. Guiver, et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application [J]. Macromolecules, 2004, 37: 7960–7967.
    [143]. H.G. Chen, S.J. Wang, M. Xiao, et al. Novel sulfonated poly(phthalazinone ether ketone) ionomers containing benzonitrile moiety for PEM fuel cell applications [J]. J. Power Sources, 2007, 165: 16–23.
    [144]. Y. Gao, G.P. Robertson, M.D. Guiver, et al. Synthesis of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Groups for PEM Application [J]. Macromolecules, 2005, 38: 3237–3245.
    [145]. W. Jang, S. Sundar, S. Choi, et al. Acid–base polyimide blends for the application as electrolyte membranes for fuel cells [J]. J. Membr. Sci., 2006, 280: 321–329.
    [146]. W. Zhang, V. Gogel, K.A. Friedrich, et al. Novel covalently cross-linked poly(etheretherketone) ionomer membranes [J]. J. Power Sources, 2006, 155: 3–12.
    [147]. S.L. Zhong, T.Z. Fu, Z.Y. Dou, et al. Preparation and evaluation of a proton exchange membrane based on crosslinkable sulfonated poly(ether ether ketone)s [J]. J. Power Sources, 2006, 162: 51–57.
    [148]. B.S. Pivovar, Y.X. Wang, E.L. Cussler. Pervaporation membranes in direct methanol fuel cells [J]. J. Membr. Sci., 1999, 154: 155–162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700