大功率半绝缘GaAs光电导开关瞬态传输特性及其损伤机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半绝缘GaAs光电导开关是利用脉冲激光器与半绝缘GaAs相结合组成的一类新型超快光电器件。与传统开关相比,半导体光电导开关具有触发无晃动、寄生电感电容小、上升时间快、关断时间短、重复频率高等特点,特别是耐高压及大功率容量使其在超高速电子学和大功率脉冲产生与整形技术领域具有广泛的应用前景。用GaAs光电导开关产生高功率高压无晃动超短电脉冲的研究,成为国防建设、超宽带通信、超宽带雷达、电磁武器的实现等领域急需解决的关键问题。本文通过GaAs光电导开关芯片材料特性的研究,分析了散射机制对电脉冲输出特性的影响;总结了线性和非线性模式下的实验规律,用光激发电荷畴模型分析了光电导开关非线性模式下传输特性;对非线性工作模式下的使用寿命问题展开实验研究和理论分析。
     本文着重讨论了半绝缘GaAs的材料特性,对其电阻率、杂质和缺陷、载流子迁移率等几个方面进行了较为全面的分析。研究了半绝缘GaAs材料中的散射机制,并根据散射理论计算了各种散射机制的散射率和散射终态的一般表达式,选择出对半绝缘GaAs光电导开关输出电脉冲产生主要影响的散射机制,并具体讨论了当温度、最大触发光功率、开关缝隙长度等参数发生变化时,散射机制对光电导开关输出特性的影响。对线性模式下的光电延迟、输出电脉冲展宽等实验现象理论分析。研究表明,引起输出电脉冲展宽的主要原因是由于反位As_(Ga)点缺陷能级的俘获作用,并成功地解释了实验结果。
     用光激发电荷畴理论分析了半绝缘GaAs光电导开关在非线性工作模式下的输出特性和光电阈值条件。在总结实验规律的基础上,得到半绝缘GaAs光电导开关非线性模式的光电阈值条件,指出当光能触发使开关满足n0L≥10~(12)cm~(-2)时,达到形成高场畴的必要条件,阈值电场的作用是使材料体内产生电子转移效应。光场、电场的共同作用使开关体内产生高场畴。高场畴的输运决定了光电导开关输出电脉冲的特性。用电荷畴的观点讨论光电导开关在线性区域、非线性区域及阈值区的工作特性。分析了高电压下引起半绝缘GaAs光电导开关的光电延迟的原因,得到与实验测试结果相吻合的结论。
     对开关电极和芯片材料在高电压强电流条件下的退化和损伤分别作了详细的理论分析。指出电极退化和损伤的主要原因是强电场触发时,开关电极金属—半导体材料互扩散、金属电极的电迁移等效应。其中阳极附近由于存在势垒等原因,损坏比阴极严重。芯片材料的损伤主要是由于EL2能级的存在;通过对EL2能级在开关中所起作用的机理分析,提出深能级缺陷及热效应是导致开关击穿的主要原因。通过对光电导开关击穿机理的研究,我们认为改进开关寿命的主要途径是以下几种:(1)选择适当的触发光源;(2)开关芯片两电极之间的间隙长度最优取值;(3)电极形状及位置进行重新设计;(4)选用新的电极材料;(5)改善接触界面。
     本研究得到国家自然科学基金(No.10376025,50477011)的资助。
The Photoconductive Semiconductor Switch (PCSS's) is a new type of super-fast photoelectric device made through combination of the super-fast pulse laser and the semi-conducting GaAs material. Compared with the traditional switch, PCSS is free of jitter in its ignition, small in its parasitic inductance and capacitance, fast in its pulse increase, short in its turn-off delay, and high in its GHz repetition rate. And particularly remarkable are its good resistance to high voltage and its high-powered capacity that enable it to find its wide use in such fields as super-speed electronics, and the technology of generating and reshaping high-powered pulse. The study of the jitter-proof ultra-short pulse by using the GaAs photoconductive switch to generate high-powered voltage, therefore, has become the key problem that calls for prompt solution within the fields like the building of national defense, super-wideband communication, super-wideband radar, and reality of electromagnetic weapon. In this dissertation, through the research into the properties of chip material, an analysis is conducted of the effect of scattering mechanism on the output characteristics of electric pulses. A summary is made of the experimental law under the linear and non-linear modes. Then, by means of optically activated charge domain model, an analysis is" conducted of the transmission characteristics of the switch under the non-linear mode. And an experimental research and a theoretical analysis are pursued with regard to the life-span of the switch under the non-linear mode.
     This dissertation focuses its discussion mainly upon the properties of semi-insulating (SI) GaAs material, in which a fuller analysis is made of its mass resistivity, impurities and defects, and carrier mobility. A study is conducted on the scattering mechanism in the semi-insulating GaAs material. Based on the scattering theory, a general expression is worked out for both the scattering rate and final status of scattering mechanism, thus seeking out the scattering mechanism that produces a major effect on the output electric-pulse of semi-insulating GaAs photoconductive switches; and then a specific discussion is directed toward the effect of scattering mechanism on the output performance of the switch when there is change in such parameters as temperature, maximum power of triggering light, and the gap between switches. A theoretical analysis is made of such experimental phenomena as photo-electric delay under the linear mode, and spreading breadth of electric pulse, the results of which show that the main cause for the spreading breadth of output electric pulse is the capturing effect of anti-site As_(Ga) defect energy level. And a sound explanation is presented for the results of the experiment.
     The theory of optically activated charge domain is adopted to analyze both the output characteristics and the photoelectric threshold condition of the semi-insulating GaAs photoconductive switch under the non-linear operational mode. Based on the conclusion of experimental law, the photoelectric threshold condition is obtained for the semi-insulating GaAs photoconductive switch under the non-linear mode, pointing it out that, when the optic-energy triggers off the switch to meet the prerequisite that n_0L is greater than or equal to 10~(12)cm~(-2), the necessary condition is achieved for high field domain and meanwhile the threshold electric field serves to produce charge transmission effect within the material. The cooperation of optic field and electric field helps create a high-field domain within the switch. The transfer of high-field domain determines the characteristics of the photoconductive switch's output electric pulse. The working characteristics of the photoconductive switch are discussed, from the viewpoint of optically activated charge domain theory, respectively within the linear zone, non-linear zone and threshold zone; and an analysis is conducted of the causes for the photo-electric delay of the semi-insulating GaAs photoconductive switch under high voltage. What is concluded herein matches well with the results of experiments.
     A detailed theoretical analysis is made of the switch electrodes as well as of the deterioration and damage of chip material under both high voltage and powerful current. As pointed out in the dissertation, the deterioration and damage of electrode are the effects of such factors as respective scattering between the switch's electrode metal and semi-conducting material, and the electric transfer of metal electrode when the powerful electric field is triggered off. In such a process, the damage to the anode, due to potential barrier around, is heavier than that to the cathode. The main reason for the puncture of chip material is that there exists energy level EL2. Through the mechanism analysis of the role of energy level EL2 in the switch, it is suggested that the defect of deep energy level and heat effect are the main causes for the puncture of the switch. Through the mechanism analysis of the puncture of the photoconductive switch, therefore, the service life of the switch can be extended in the following ways: (1) Select appropriate trigger light source; (2) Choose the optimum interval between the two electrodes of the switch chip; (3) Redesign the shape and location of electrodes; (4) Select new electrode materials; (5) Improve contact interfaces.
     The project has been sponsored by The National Natural Science Foundation of China. (No. 10376025, 50477011)
引文
[1]Evans,A.,Kantrowitz,w.A User Authentication Scheme for requiring secrecy in the computer[J].Comm.ACM,1974,17(8):437-442
    [2]Jayaraman S and Lee C H.Observation of two photon conductivity in GaAs with nanosecond light pulse[J].Appl.Phys.Lett.1972,20:392-395
    [3]Davanloo.Farzin;Collins.Carl B;Agee.Forrest J,High-power photoconductive semiconductor switches treated with amorphic diamond coatings,IEEE Transactions on Plasma Science,2002,30(5):1897-1904
    [4]Lee C H.Picosecond optoelectronic switching In GaAs[J].Appl.Phys.Lett.1977,30(2):84-86
    [5]Lee C.H.et al.,Picosecond photoconductivity and its applications.IEEE J.Quantum Electron,1981,17(10):2098-2112
    [6]G.M.Loubriel.F.J.Zutaverm.Trigering GaAs Lock-on Switches with laser diode arrays.IEEE.Tran.Elect.device,1991,38:692-695
    [7]G.M.Loubriel.F.J.Zutaverm.Measurement of the velocity of current filment in optically triggered high gain GaAs switches[J].Appl.Phys.Lett,1994,64(24):3323-3325
    [8]Mazzola M S.Roush R A.Stoudt D C.etal.Evaluation of Transport Effects on the Performance of a Laser-controlled GaAs Switch.IEEE Pulse Power Conf,1991,87(1):114-117.
    [9]陈治明,王建农.半导体器件的材料物理学基础[M].科学出版社,1999:187-200
    [10]W.C.Nunnally.R.B.Hammond.80MW photoconductor power switches[J].Appl.Phys.Lett.,1984,44:980-983
    [11]Zhao H.Hur P.Gunderson M A.Lock-on effect in GaAs Photoconductive Switches[J],In:proc SPIE,Los Angeles,1992,1632:274-280
    [12]Lee C H.Optical control of semiconductor Closing and Opening Switches[J].IEEE Tran.Electron Devices,1990,37(12):2426-2437
    [13]程念安.高增益砷化镓光导半导体开关[J],爆轰波与冲击波,2002,4(1):12-15
    [14]施卫,屈光辉.半绝缘GaAs光电导开关最佳芯片材料的优化设计[J].高电压技术,2003,5(20):1-3
    [15]李琦,施卫.高压GaAs亚纳秒光电导开关的实验研究[J].电力电子技术,2002,36(4):70-72
    [16]施卫,赵卫,张显斌等.高功率亚纳秒光电导开关的研究[J].物理学报,2002,51(4):867-869
    [17]施卫,梁振宪,冯军等.高压超快GaAs光电导开关的耐压设计与绝缘保护[J],高电压技术,1998:24(1):12-13
    [18]Shi Wei.Zhao Wei.Sun Xiaowei.et al.Transit Properties of High Power Ultra-Fast Photoconductive Semiconductor Switch[J].Chinese Journal of semiconductors,2000,21(5):421-425
    [19]施卫,赵卫,张显斌,李恩玲.高功率亚纳秒光电导开关的研究[J].物理学报,2002,51(4): 867-872
    [20]Kelkar,Kapil,Islam,Naz E.,Kirawanich,Phumin,Fessler,Christopher M.,Nunnally,William C.,Kemp,William T.,Sharma,Ashwani K.,Effects of field-dependent trapping and detrapping on the responses of compensated GaAs photoconductive switches,IEEE Transactions on Plasma Science,2007,35(1):93-99
    [21]施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析[J],电子学报,2000,28(2):19-23
    [22]张显斌,施卫,用红外激光脉冲触发半绝缘GaAs光电导开关的实验研究[J],强激光与粒子束,2002,14(6):815-818
    [23]Shi Wei,Xu Jing-zhou,Zhang xi-cheng,Terahertz generation from Si3N4 covered potoconductive dipole antenna[J],Chinese Optics Letters.2003,1(5):308-310
    [24]Loubriel G M,M.W.O'MalIy,F.J.Zutavern.High gain photoconductive semiconductor switches for impulse source,Proc.SPIE Optically Activated Switching Ⅳ,1994,2343:180-184
    [25]D.krokell,D.Grischkowsky,M.B.Ketchen.Subpicosecond Electrical pulse generation Using Photoconductive Switches with Long Carrier Lifetime,Appl.Phys.Lett.54,1989,11:1046-1047
    [26]黄裕年,HPM源及军事应用[J].微波学报,1996,12(4):320-322
    [27]Loudrie G M.Photoconductive semiconductor switches for firing sets and electro-optic modulators.In:Proc.Of 10th IEEE Pulsed Power Conf.1995:354-359
    [28]G.Mourou,C.V.Stancampiano,and D.Blumenthal,Picosecond Microwave Pulse Generation,Appl.Phys.Lett.,1981,Vol.38:470-472
    [29]G.Mourou,C.V.Stancampiano,A.Antonetti,and A.Orszag,Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch,Appl.Phys.Lett.,1981,Vol.39:295-296
    [30]曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,Vol.9(3):111-117
    [31]Liu H C,Wachter M,Ban D,et al.Effect of doping concentration on the performance of terahertz quantum-cascade lasers.Appl.Phys.Lett.,2005,87(14):141102
    [32]Z.M.Sheng,H.C.Wu,K.Li,and J.Zhang,Terahertz radiation from the vacuum-plasma interface driven by ultra-short intense laser pulses,Phys.Rev.E,2004,69,025401.
    [33]Dogan,S.Teke,A.Huang,D.Morkoc,H.Roberts,C.B.Parish,J.Ganguly,B.Smith,M.Myers,R.E.Saddow,S.E.,4H-SiC photoconductive switching devices for use in high-power applications,Applied Physics Letters,2003,82(18):3107-3109
    [34]Zutavern F J,Loubriel G M,O'Malley M W,et al.Rise time recovery of GaAs photoconductive semiconductor switches.SPIE Vol.1378,Optically Activated Switching,1990:271-278.
    [35]Wang Ding,Golovchenko E A,Pilipetskii A N,et al.Nonlinear optical loop mirror based on standard communication fiber[J].J.of Light wave Tech.,1997,15(4):642-646
    [36]Brinlcmann R P.Nonlinear behavior of optically activat switches at high electrical fields.Proc.IEEE 20th Power Modulator Symposium,Myrtle Beach,SC,1992:316-319
    [37]Kelkar.K.S,Islam.N.E,Fessler.C.M,Silicon carbide photoconductive switch for high-power,linear-mode operations through sub-band-gap triggering,Journal of Applied Physics,2005,98(9):093-102
    [38]Zutavern F J,Loubriel G M,O'Malley M W,et al.High gain photoconductive semiconductor switching,IEEE 8th Pulsed Power Conference,San Diego,CA,1991:23-28
    [39]Peterkin F E,Schoenbach K H,Dougal R,et al.Developments toward laser diode drive bistable photoconductive switches(BOSS).IEEE 10th Pulsed Power Conf.1995:366-371
    [40]Loubriel G M,Zutavern F J,O'Malley M W,et al.Measurement of filament velocity reduced trigger energy.SPIE Vol.2343 Optically Activated Switching Ⅳ,1994:21-31
    [41]Loubriel G M,Zutavern F J,Mar.A et al.Longevity of optically activated,high gain GaAs photoconductive semriconductor switches.IEEE 11th Pulsed Power Conf.,Vol.1,1997:405-413.
    [42]Falk R A,Adams J C,Capps C D,et al.Optical probe-techniques for avalanching photoconductors.Proc.8th IEEE Pulsed Power Conf.,R.White K.R.Prestwich,eds.San Diego,CA,1991:29-32
    [43]Adams J C,Falk R A,Capps C D,et al.Characterization of current filamention in GaAs photoconductive switches.SPIE Vol.1873 Optically Activated Switching Ⅲ,Los Angeles,CA.1993:10-20
    [44]Zutavern F J,Loubriel G M,Heigeson W D,et al.Fiber-optic control of current filaments in high gain photoconductive semiconductor switches.Proc.21 st Power Modulator Symp.,Costa Mesa,CA,1994:116-119
    [45]Ma.Kai,Urata.Rvohei,Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches,IEEE Journal of Quantum Electronics,2004,40(6):800-804
    [46]Gunda,Rahul,Gleason,David S.,Kelkar,Kapil,Kirawanich,Phumin,Nunnally,William C.,Radio-frequency heating of GaAs and SiC photoconductive switch for high-power applications,IEEE Transactions on Plasma Science,2006,34(5I):1697-1701
    [47]Wang Ding,Golovchenko E A,Pilipetskii A Net al.non-linear optical loop mirror based on standard communication fiber.J.of Light wave Tech.,1997,15(4):642-646
    [48]王松柏,张声豪.用表面光伏方法研究半绝缘GaAs的禁带宽度[J]。福州大学学报(自然科学版),2003,31(2):144-146
    [49]华庆恒,刘春香.SI-GaAs材料质量与器件参数相关性[J].半导体杂志,1991,16(3):29-31
    [50]沈能珏.GaAs材料表征技术的新进展[J].半导体杂志,1995,20(4):1-11
    [51]A.G.米尔恩斯.半导体中的深能级杂质(第一版)[M].(张月清等译).北京,科学出版社,1981:53-72,187-188
    [52]石顺祥,万贤军.光电导开关中深能级杂质对输出脉冲影响的研究[J].光子学报,1997,26(10):35-37
    [53]刘恩科,朱秉升,罗晋生等.半导体物理学(第6版)[M].北京:电子工业出版社,2003:32-34, 111-112,112-118,124-126,139-141
    [54]Gunda,Rahul Gleason,David S.Kelkar,Kapil Kirawanich,Phumin Nunnally,William C.Islam,Naz E.,Radio-frequency heating of GaAs and SiC photoconductive switch for high-power applications,IEEE Transactions on Plasma Science,2006,34(5I):1697-1701
    [55]Kelkar,K.S.Islam,N.E.Fessler,C.M.Nunnally,W.C.,Design and characterization of silicon carbide photoconductive switches for high field applications,Journal of Applied Physics,2006,100(10):1049-1059
    [56]印新达,叶嘉雄,李宇航等.砷化镓半导体光吸收特性的研究[J],光电工程,1997,24(2):54-60
    [57]张雨印.半导体光电子学[M],上海科学技术出版社,上海,1987:42-54
    [58]叶良修.小尺寸半导体器件的蒙特卡罗模拟[M].北京,科学出版社,1997:11-111
    [59]张子砚,吴广国.半导体器件模拟中的散射机制[J].贵州大学学报(自然科学版),2004,21(4):1-5
    [60]谢希德,方俊鑫.固体物理学[M].上海:上海科学技术出版社,1961:90-103
    [61]赵晶,高倍增GaAs光电导开关的计算机模拟[D].西安:西安理工大学,2002
    [62]Shi Wei,Liang Zhen-xian.Feng Jun.Monte Carlo Simulation of High-Gain Photoconductive Semiconductor Switches.Journal of Xi'an Jiaotong University,1998,32(4):55-56
    [63]Kelkar,Kapil;Islam,Naz E.;Kirawanich,Phumin;Fessler,Christopher M.;Nunnally,William C.;Kemp,William T.;Sharma,Ashwani K.,Effects of field-dependent trapping and detrapping on the responses of compensated GaAs photoconductive switches,IEEE Transactions on Plasma Science,2007,35(1):93-99
    [64]Shi Wei.Liang Zhen-xian.Optically activated charge domain Phenomena in High-Gain Ultra Fast High Voltage GaAs Photoconductive Switches[J].Chinese Journal of Semiconductors,1999,20(1):53-57
    [65]Shi Wei,Zhang Xian-bin,Li Qi et al.Investigation of high-gain lateral semi-insulating GaAs photoconductive switch triggered by 1064nm laser pulse[J].China Phys Lett,2002,19(3):351-356
    [66]龚仁喜,张义门,石顺祥等.用PSPICE模拟光导半导体开关的瞬态特性[J].西安电子科技大学学报,2002,29(1):91-94
    [67]Davanloo,Farzin.Collins,Carl B.Agee,Forrest J.High-power photoconductive semiconductor switches treated with amorphic diamond coatings,IEEE Transactions on Plasma Science,2002,30(5):1897-1904
    [68]侯军燕,戴慧莹,施卫等.半绝缘GaAs光电导开关散射机制的比较[J].半导体技术,2006,31(12):944-947
    [69]Herring C.Transport Properties orf a Many-Valley Semiconductor.Bell Sys.Tech.J.1955,34:237
    [70]郭冰,文锦辉,张海潮等.共面微带传输线超短电脉冲传输特性[J].光子学报,2000,29(4):313-316
    [71]鲍吉龙,石顺祥,詹玉书,高压超快光导开关输出电脉冲的瞬态分析,光子学报,1995 24(1):62-67
    [72]J.R.Mayes,W.C.Nunnally.Analytical modeling of the optically controlled semiconductor switch for short pulse excitation.Proc.12~(th)IEEE Pulse Power Conf.Montery CA.1999.1207-1210
    [73]徐岳生,张春玲等.半绝缘砷化镓单晶中的晶体缺陷[J]半导体学报.2004,24(7):718-722
    [74]刘智刚,黄亚萍等.缺陷态对载流子的俘获作用[J].中山大学学报(自然科学版),2002,41(3):119-122
    [75]A G Milnes.Impurities with Deep Energy Level in Semiconductor[M]。Beijing:Science Press,1985206-208
    [76]戴慧莹,马德明,施卫.GaAs光电导开关超短电脉冲响应特性的研究[J].西安理工大学学报.2007,23(3):236-239
    [77]田立强.光电导开关非线性模式的机理分析及应用研究[D].西安:西安理工大学,2004
    [78]施卫.高倍增超快高压半导体光电导开关的研究[D].西安:西安交通大学,1997
    [79]Kazushige Horio.Kazuhiro Asada Hisayoshi Yanai.Two-dimensional simulation of GaAs MESFET with seep acceptor in semi-insulating substrate[J].Solid-state electronics.1991,34(4):335-343
    [80]PresisK.Eddy current loss calculation in air-coils using FEM method[J].IEEE Trans on Magn,1982,18(11):1064-1066
    [81]施卫,戴慧莹,孙小卫.在高倍增光电导开关中的光激发电荷畴[J].中国光学快报,2003,1(9):1-3
    [82]B.G.Bosch and R.W.H.Engelman,Gunn-Effect Electronics[M]Pitman,Bath,1975:23-27
    [83]J.Singh,Semiconductor Optoelectronics:Physics and Technology[M]McGraw Hill,Singapore,1995:205-265
    [84]Dai Hui-ying.Shi Wei.Hou Jun-yan.Effects of impurities with deep Energy Level in high biased field on delay time of semi-insulating GaAs photoconductive Switch..年第二届光电子探测与成像技术及应用国际学术会议 2007
    [85]戴慧莹,施卫.光控光电导开关高倍增模式下的光电响应特性[J]。半导体光子学与技术.2007,13(4):280-282
    [86]谢自力.SI-GaAs单晶中深能级陷阱退火特性研究[J]。半导体技术,2002,27(7):9-10
    [87]施卫,戴慧莹,张显斌.用1064nm激光脉冲触发半绝缘GaAs光电导开关的的奇特光电导现象[J]。半导体学报,2005,26(3):460-464
    [88]Manaserh M O.Mitchel W C.Fischer D W.Obervation of the second energy level of the EL2 defect in GaAs by the infrared absorption technique[J].Appl Phys Lett,1989,55(9):864 -866
    [89]Bourgoin J C,Neffati T.Detection of the metastable state of the EL2 defect in GaAs[J].J Appl Phys.1997,82(8):4124-4126
    [90]Shi Wei,Chen Er-zhu,Zhang Xian-bin,et al.Monople charge domain in high-gain gallium arsenide photoconductive switch[J].Chinese Physics Letters,2002,19(8):1119-1122
    [91]Shi Wei,Zhao Wei,Zhang Xian Pin,et al.Investigation of high power sub-nanosecond GaAs Photoconductive switches.Acta Physica Sinica 2002,4(51):867-869
    [92]Shi Wei,Liang Zheng Xian.Fabrication of high voltage ultra fast Photoconductive switches.Acta Electronica Sinica.1998,26(11):104-105
    [93]李琦,张显斌,施卫.半绝缘GaAs光电导开关的超线性时间响应分析[J].光子学报.2002,31(9):345-346
    [94]姜节俭.光电物理基础[M].成都电讯工程学院出版社,1986:45-51
    [95]牛燕雄,谭吉春.GaAs开关的热击穿实验研究[J]。光电子.激光.1994,5(5):304-305
    [96]王立模,本征击穿电场与禁带宽度的关系[J].微电子学.2006,36(6):702-705
    [97]刘红侠,郝跃.热生长超薄栅氧化层的空穴击穿机理与碰撞电离模型[J].西安电子科技大学学报,1998,25(2):152-154
    [98]徐波,王占国,万寿科等.EL2光淬灭过程中光电导增强现象原因新探[J].半导体学报.1994,15(5):322-324
    [99]杨瑞霞,李光平.未掺杂半绝缘GaAs中受主及电中性EL2分布的研究.固体物理学研究与进展.1994,14(2):151-154
    [100]施卫,田立强.半绝缘GaAs光电导开关的击穿特性[J].半导体学报.2004,25(6):692-696
    [101]小崎正光.高电压与绝缘技术[M].北京:科学出版社,2001:41-47
    [102]孙承伟,陆启生,范生修等.激光辐照效应[M]。北京:国防工业出版社,2002:58-67
    [103]刘全喜,钟鸣,江东等.重频激光辐照半导体损伤的有限元分析[J].激光与红外.2006,36(8):670-674
    [104]吴云峰,叶玉堂,杨先明等.10.6μm激光诱导扩散中热致破坏的抑制[J].光学学报.2004,24(12):1638-1642
    [105]舒柏宏,侯静,陆启生等.砷化镓材料与激光相互作用的实验研究[J].红外与激光.1999,28(1):40-42
    [106]Peterkin F E.Schoenbach K H.Dougal R.et al.Developments toward laser diode driven bistable photoconductive switches(BOSS).IEEE 10th Pulsed Power Conf.1995:366-371
    [107]Falk R A.Adams J C.Capps C D.et al.Optical probe techniques for avalanching photoconductors.Proc.8th IEEE Pulsed Power Conf.R.White K.R.Prestwich.eds.San Diego,CA,1991:29-32
    [108]Adams J C,Falk R A,Capps C D,et al.Characterization of current filamention in GaAs photoconductive switches.SPIE Vol.1873 Optically Activated Switching Ⅲ,Los Angeles,CA.1993:10-20
    [109]程宁,崔一平,盛政明等.光电导过程中陷阱的影响[J].光学学报,1996,16(6):870-873
    [110]高观志,黄维.固体中的电输运[M]。科学出版社。北京。1991:333-338
    [111]杨瑞霞等.热处理中As压对半绝缘GaAs缺陷的影响[J].固体电子学研究与进展,2002,22(3):359-361
    [112]杨瑞霞等.非有意掺杂LEC SI GaAs中EL2分布特性的研究[J].电子科学学刊,1995,17(1):94-99
    [113]赵周英等.SI-GaAs中EL2和EL6缺陷团簇相关性研究[J].功能材料与器件学报,1996,2(1):57-58
    [114]杨瑞霞,李光平等.热处理和淬火的未掺杂半绝缘LEC GaAs的均匀性[J],固体电子学研究与进展.1996,16(1):31-33
    [115]R.Aleksiejunas,M.Sudzius,K.Jarasiunas.Direct determination of EL2 thermal recovery rate at 300K[J].Optics Communications.2001,198:115-120.
    [116]党冀萍.n型GaAs的欧姆接触[J].半导体技术,1994,2(1):26-34
    [117]孙聂凤,陈旭东.磷化铟晶体材料的应用进展研究[J],半导体情报,1998,35(4):1-6
    [118]田敬民.宽禁带半导体金刚石材料与功率器件[J].半导体杂志.1995,20(3):40-46
    [119]C.H.Lee.Optical Control of Semiconductor Closing and Opening Switches,IEEE Trans.Electron devices,1990,37(12):2426-2438
    [120]黄裕年.用光导半导体开关产生高功率微波[J],半导体光电,1998,19(2):101-106
    [121]G.M.Loubriel,M.W.O'Malley and F.J.Zutavern,Toward Pulsed Power Uses for Photoconductive Semiconductor Switches.Proc.of 6th IEEE Pulsed Power Conf.,Arlington,VA,1987:145-148
    [122]Loubriel G M.Zutavern F J et al.Physics and applications of the Lock-on effect.IEEE Pulse Power Conf,1992:33-38
    [123]龚仁喜.GaAs光电导开关的线性和非线性研究(D),西安,西安电子科技大学,2002:56-70
    [124]PresisK.Eddy current loss calculation in air-coils using FEM method[J].IEEE Trans on Magn,1982,18(11):1064-1066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700