高电压强电流下GaAs光电导开关的损伤及寿命分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaAs光电导开关(Photoconductive Semiconductor Switches简称PCSS's)具有触发无晃动、寄生电感电容小、上升时间快、重复频率高等特点,特别是耐高压及大功率容量使其在超高速电子学和大功率脉冲产生与整形技术领域具有广泛的应用前景。然而高增益模式下存在丝状电流现象且锁定时间长达几到几十微秒,极易造成开关电极和芯片材料的损伤,极大的缩短了开关的使用寿命,限制了这类器件在高电压大功率领域的应用。寿命问题已经成为制约开关发展的关键因素。
     分析了开关电极和芯片材料的退化和损伤机制。指出芯片材料的损伤主要是由于EL2能级的存在;深能级缺陷及热效应是导致开关击穿的主要原因。电极的退化和损伤主要是由于强电场触发时,开关电极金属-半导体材料互扩散、金属电极的电迁移等效应。
     在高压强流下分别进行了开关的寿命实验和耐压实验。基于光电导开关中丝状电流的流注理论解释了开关芯片上损伤的深沟道现象。认为电流流注首先出现于载流子高密度区,由于辐射复合和再吸收,会触发材料产生新的电子-空穴对,导致载流子雪崩倍增。随着电流的增加,容易在熔融材料的流注通道上产生二次流注,这样流注通道不断积累,最终造成了很深的损伤沟渠。
     通过两种组合开关可以抑制锁定效应,提高高压强流下开关的寿命。GaAs PCSS's与气体开关的组合开关:既可以获得更大的电流脉冲;又可以获得超快的下降沿,后者可以避免由锁定效应引起的开关的持续损伤,同时,气体间隙的存在使得光电导开关不会长时间承受高电压,有利于提高开关寿命。双层GaAs PCSS's的组合开关:两层GaAs开关既能先后发生高增益过程,又能相互抑制对方进入锁定状态,因此在高于非线性触发光电阈值的条件下,既具有非线性模式特有的所需光能小的优点,又具有线性模式特有的使用寿命长的优点。
GaAs Photoconductive Semiconductor Switches (PCSS's) are free of fitter in their ignition, small in their parasitic inductance and capacitance, fast in their pulse increase, short in their turn-off delay, and high in their GHz repetition rate. And particularly remarkable are their high withstand voltage and their high-powered capacity that enable whom to find their wide use in such fields as ultrahigh-speed electronics, and the technology of generating and reshaping high-powered pulse. However, because of the existence of the filament currents in the non linear mode of PCSS's, the switch electrodes as well as chip material are easily damaged, which greatly reduces the lifetime of PCSS's and limits the application of these devices in high-voltage and high-power fields. The longevity problem has become the key factor in restricting the development of PCSS's.
     The degradation and damage of the switch electrodes as well as chip material is analyzed. It is shown that the main reason for the puncture of chip material is that there exists the deep level trap EL2; The defect of deep level trap and Joule heat effect are the main causes for the puncture of the switch. The degradation and damage of electrode are caused by the effects such as diffusion effect between the switch's electrode alloy and semiconductor material, and the electromigration metal electrode when the switch is triggered under high electric field.
     Voltage withstand test and lifetime test of the PCSS's are performed under high voltage and strong current. The phenomenon of deeply melted groove in chip material is analyzed based on the streamer theory of the current filaments in the PCSS's. The current streamer appears in the regions with high carrier density initially, and then chip material is excited by the recombination and reabsorption, which generats new electron-hole pairs and causes avalanche multiplication of carriers. As the increase of current, a second streamer grow in the molten material with streamers easily. In terms of this property, the current streamer accumulates continually, and a deeply melted groove forms ultimately.
     The lock-on effect can be suppressed through two kinds of combined switches, which can improve the longevity of PCSS's under high voltage and strong current. The combined switch of GaAs PCSS's and gas switch:This combined switch not only gains larger current but also shorter falling edge. The latter can help preventing the lock-on effect from destroying GaAs PCSS's continually. Further-more, GaAs PCSS's can be avoid supporting high-voltage for a very long time due to the existence of gas gap, which is propitious to improve its longevity. High-gain double-layer GaAs PCSS's:The double GaAs layers can go into the high-gain state one after the other but prevent each other from entering the lock-on state. This operating mode not only has the strong points of far less laser energy required under the nonlinear mode, but also has the merits of longer lifetime under the linear mode.
引文
[1]Evans, A., Kantrowitz, w. A user authentication scheme for requiring secrecy in the computer[J]. Comm.ACM,1974,17(8):437-442.
    [2]Jayaraman S, Lee C H. Observation of Two-Photon Conductivity in GaAs with Nanosecond and Picosecond Light Pulses[J]. Appl. Phys. Lett.,1972,20(3):392-395.
    [3]Auston D H, Piconsecond optoelectronic switching and gating in Si[J]. Appl. Phys. Lett.,1975, 26(1):101-103.
    [4]C. H. Lee, Picosecond optoelectronic switching in GaAs[J]. Appl. Phys. Lett.,1977,30(1):84-86.
    [5]Lee C H, et al. Picosecond photoconductivity and its applications[J]. IEEE J. Quantum Electron, 1981,17(10):2098-2112.
    [6]Mazzola M S, Roush R A, Stoudt D C, et al. Evaluation of Transport Effects on the Performance of a Laser-controlled GaAs Switch[J]. IEEE Pulse Power Conf,1991,87(1):114-117.
    [7]陈治明,王建农.半导体器件的材料物理学基础[M].北京:科学出版社,1999:187-200.
    [8]G. M. Loubriel, F. J. Zutavern, H. P. lljalmarson, et al. Measurment of the velocity of current filaments in optically triggered high gain GaAs switches[J]. Appl. Phys. Lett.,1994,64(24): 3323-3325.
    [9]张同意,石顺样,龚仁喜等.非线性光电导开关快速导通特性[J].光学学报,2002,22(3):327-331.
    [10]施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析[J].电子学报,2000,28(2):19-23.
    [11]Mourou G. Picosecond switching in semiconductors, Picosecond optoelectronic device[M]. In Lee C H edited. Orland, Academic press,1984:19-23.
    [12]Nunnally W C, Hammond R B.80-MW photoconductive power switch[J]. Appl.Phys.Lett.,1984, 44(9):980-982.
    [13]Loubriel G M, Zutavem F J. Towards pulsed power uses for photoconductive semiconductor switches:closing switches[C]. In:Proc 1th IEEE Pulsed Power Conf. Arlington,1987:149-152.
    [14]Zhao H, Hur P, Gunderson M A. Lock-on effect in GaAs photoconductive switches[C]. In:Proc SPIE 1632, Los Angeles,1992:274-280.
    [15]Lee C H. Optical Control of Semiconductor Closing and Opening Switches[J]. IEEE Tran.Electron Devices,1990,37(12):2426-2438.
    [16]施卫,屈光辉.半绝缘GaAs光电导开关最佳芯片材料的优化设计[J].高电压技,2003,5(20):1-3.
    [17]李琦,施卫.高压GaAs亚纳秒光电导开关的实验研究[J].电力电子技术,2002,36(4):70-72.
    [18]施卫,赵卫,张显斌等.高功率亚纳秒光电导开关的研究[J].物理学报,2002,51(4):867-869.
    [19]施卫,梁振宪,冯军等.高压超快GaAs光电导开关的耐压设计与绝缘保护[J].高电压技术,
    1998,24(1):12-13.
    [20]Shi wei, Zhao wei, Sun Xiao-wei, el at. Transit Properties of High Power Ultra-Fast Photoconductive Semiconductor Switch[J]. Chinese Journal of semiconductors,2000,21(5):421-425.
    [21]施卫,梁振宪.高倍增高压超快GaAs光电导开关中的光激发畴现象[J].半导体学报,1999,20(1):53-57.
    [22]张显斌,施卫.用红外激光脉冲触发半绝缘GaAs光电导开关的实验研究[J].强激光与粒子束,2002,14(6):815-818.
    [23]Shi Wei, Xu Jing-zhou, Zhang Xi-cheng. Terahertz generation from Si3N4 covered photoconductive dipole antenna[J]. Chinese Optics Letters,2003, 1(5):308-310.
    [24]Loubriel G M, M.W O'Mally, F.J.Zutavern. High gain photoconductive semiconductor switches for impulse source[C]. Proc. SPIE 2343 Optically Activated Switching IV,1994:180-184.
    [25]D.krokell, D.Grischkowsky, M.B.Ketchen. Subpicosecond Electrical pulse generation Using Photoconductive Switches with Long Carrier Lifetime[J]. Appl. Phys. Lett.,1989,54(11):1046-1047.
    [26]Loubriel G M. Photoconductive semiconductor switches[J]. IEEE Trans. Plasma science,1997, 25(2):124-130.
    [27]A. Mar, G M. Loubriel, F. J. Zutavern, et al. Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches[J]. IEEE Trans. Plasma Sci.,2000, 28(5):1507-1511.
    [28]Wang Ding, Golovchenko E A, Pilipetskii A N, et al. Nonlinear optical loop mirror based on standard communication fiber[J]. J. of Light wave Tech.,1997,15(4):642-646.
    [29]黄裕年.高功率武器的发展评述[J].微波学报,1999,12(4):354-360.
    [30]Han P Y, Tani M, Usami M, et al. A Direct Comparison between Terahertz Time-Domain Spectroseopy and Far-Inftared Fourier Transform Spectroscopy[J]. Journl of applied Physics,2001, 89(4):2357-2359.
    [31]邵庆辉,叶志镇,黄靖云.GaN基器件中的欧姆接触[J].材料导报,2003,17(3):38.
    [32]Wang S, Zhang X T. Tomographic imaging with a terahertz binary lens. Applied physics letters,2003, 82(12):1821-1823.
    [33]Chen Q, Jang Z P, Xu G X, Zhang X T. Near Field THz Imaging with Dynamic Aperture[J]. Optics Lett.,2000,25(15):1122-1124.
    [34]Han P Y, Cho G C, Zhang X T. Time-Domain Transillumination of Biological Tissues using THz Pulses[J]. Optics Lett.,2000,25(4):242-244.
    [35]Masahiko Tani-su Lee, Zhang X T. Detection of Terahertz Radiation with Low Temperature Grown GaAs-based Photoconductive Antenna with 1.56 mm probe[J]. Applied physics letters,2000, 77(9):1396-1398.
    [36]Hu B B, Froberg N, Mack M, et al. Electronically-controlled Frequency Scanning by
    Photoconducting Antenna Array[J]. Applied physics letters,1991,58(13):1369-1371.
    [37]Hudgins J L, Bailey D W. Streamer model for ionization growth in a photoconductive power switch[J]. IEEE, Trans power Electronics,1995,10(5):615-620.
    [38]吕福云,袁树中,潘家齐等.用ps光电导采样技术测量微波单片集成电路的S参数[J].电子学报,1999,27(2):26-28.
    [39]Rhce M J. Basic circuits for inductive energy pulsed power systems[J]. J. Appl. Phys.,1990, 67(9):4333-4337.
    [40]Zutavern F J. Optically activated GaAs switches for compact accelerator and short pulse sensors [C]. In:Porc.22th IEEE Power Modulator Symp.,1996:31-34.
    [41]Dogan, S. Teke, A. Huang, et al.4H-SiC photoconductive switching devices for use in high-power applications[J]. Applied Physics Letters,2003,82(18):3107-3109.
    [42]Zutavern F J, Loubriel G M, O'Malley M W, et al. Rise time recovery of GaAs photoconductive semiconductor switches[C]. SPIE Vol.1378, Optically Activated Switching,1990:271-278.
    [43]Zutavern F J, Loubriel G M, O'Malley M W, et al. High gain photoconductive semiconductor switching[C]. IEEE 8th Pulsed Power Conference, San Diego, CA,1991:23-28.
    [44]Loubriel G M, Zutaven F J, O'Malley M W, et al. Measurement of filament velocity reduced trigger energy[C]. SPIE Vol.2343 Optically Activated Switching Ⅳ,1994:21-31.
    [45]Loubriel G M, Zutavern F J, Mar. A, et al. Longevity of optically activated, high gain GaAs photoconductive semriconductor switches[C]. IEEE 1th Pulsed Power Conf., Vol.1,1997:405-413.
    [46]Adams J C, Falk R A, Capps C D, et al. Characterization of current filamention in GaAs photoconductive switches[C]. SPIE Vol.1873 Optically Activated Switching Ⅲ, Los Angeles, CA. 1993:10-20.
    [47]Zutavern F J, Loubriel G M, Heigeson W D, et al. Fiber-optic control of current filaments in high gain potoconductive semiconductor switches[C]. Proc.21st Power Modulator Symp., Costa Mesa, CA,1994:116-119.
    [48]MaKal, Urata. Rvohei. Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches[J]. IEEE Journal of Quantum Electronics,2004,40(6):800-804.
    [49]Gunda, Rahul, Gleason, et al. Radio-frequency heating of GaAs and SiC photoconductive switch for high-power applications[J]. IEEE Transactions on Plasma Science,2006,34(51):1697-1701.
    [50]Loubriel GM, O'Malley MV, Zutavern FJ. Surface flashover threshold and switched fields of photoconductive semiconductor switches[C]. Proc IEEE Conference on Electrical Insulation and Dielectric Phenomena(CEIDP),1988:430-441.
    [51]Bosen A, Zutavern F J. High-power optical activated solid-state switches[M]. Boston:Artech House, 1993:252-257.
    [52]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:105-110,134-137.
    [53]Rhoderick EH. Metal-semiconductor contacts[M]. London:Oxford University Press,1978:1-15.
    [54]梁振宪,施卫.高压超快GaAs光电导开关的研制[J].电子学报,1998,26(11):104-106.
    [55]Donaldson WR, Mourou G. Improve contacts on intrinsic silicon for high voltage photoconductive switching [C]. Proc the 5th IEEE Pulsed Power Conference, Arlington,1985:590-593.
    [56]Donaldson WR, Mourou G., Kingsley L, et al. Characterization of High-Voltage photoconductive switches [C]. Proc the 6th IEEE Pulsed Power Conference,1987:141-144.
    [57]Zutavern FJ and O'Malley MW. Engineering limits of photoconductive semiconductor switches in pulsed power application [C]. Proc the 16th Power Modulator Symposium,1986:214-218.
    [58]张冠军,严璋,刘源兴等.真空中冲击电压下硅半导体的泄漏电流及沿面闪络特性[J].电工技术学报,2000,15(5):53-57.
    [59]Feuerstein RJ and Senitzky B. Surface Breakdown of Silicon[J]. J. Appl. Phys.,1991,70(1): 288-298.
    [60]姜节俭.光电物理基础[M].成都电讯工程学院出版社,1986:45-51.
    [61]牛燕雄,谭吉春.GaAs开关的热击穿实验研究[J].光电子.激光,1994,5(5):304-305.
    [62]刘红侠,郝跃.热生长超薄栅氧化层的空穴击穿机理与碰撞电离模型[J].西安电子科技大学学报,1998,25(2):152-154.
    [63]施卫,田立强.半绝缘GaAs光电导开关的击穿特性[J].半导体学报,2004,25(6):692-696.
    [64]孙承伟,陆启生,范生修等.激光辐照效应[M].北京:国防工业出版社,2002:58-67.
    [65]吴云峰,叶玉堂,杨先明等.10.6μm激光诱导扩散中热致破坏的抑制[J].光学学报,2004,24(12):1638-1642.
    [66]舒柏宏,侯静,陆启生等.砷化稼材料与激光相互作用的实验研究[J].红外与激光,1999,28(1):40-42.
    [67]杨瑞霞等.非有意掺杂LEC SI GaAs中EL2分布特性的研究[J].电子科学学刊,1995,17(1):94-99.
    [68]R.Aleksiejunas, M.Sudzius, K.Jarasiunas. Direct determination of EL2 thermal recovery rate at 300K [J]. Optics Communications,2001,198(3):115-120.
    [69]党冀萍.n型GaAs的欧姆接触[J].半导体技术,1994,2(1):26-34.
    [70]赵智大.高电压技术[M].北京:中国电力出版社,1998:13-15.
    [71]施卫,戴慧莹,张显斌.用1064nm激光脉冲触发半绝缘GaAs光电导开关的的奇特光电导现象[J].半导体学报,2005,26(3):460-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700