碎单板条定向成材的力学性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以弹性力学能量原理为基础,应用层合板理论建立碎单板条定向成材的力学模型,以实验测定杨木单板在不同的热压工艺下的弹性常数作为基本数据,预测材料强度性能。研究结果表明:
     1)单因素方差分析的结果表明,对单板压缩率影响最显著的因素是热压压力,其次是单板初含水率和热压温度,热压时间对单板压缩率影响不显著。
     2)多因素实验分析表明,热压压力、热压温度和单板初含水率对单板压缩率的影响都达到了较高的显著性水平。与单个因素相比,各因素之间的交互作用对单板压缩率影响不大,可以认为各个因素之间相互独立。
     3)以单因素分析为基础,确定单板压后密度模型为:单因素分析得出的单板压后密度模型在热压压力低于5MPa时比较准确。
     4)不施胶压制PSL实验结果表明,各层内单板条密度分布呈现正态分布规律。尤其是热压压力为5MPa时,密度梯度明显。经过修正的单板条压后密度与各个主要因素之间的关系方程为:
     5)采用应变片测定单板的各个弹性系数,实验结果表明:该方法得出的单板的各个弹性系数具有一定的准确性。
     6)验证试验结果表明:以弹性力学能量原理为基础,应用层合板理论建立的碎单板条定向成材的力学模型所计算的预测范围,精度较高。
This paper was focused on using energy principle in elasticity and the theory of laminated panel in composite mechanics to establish the mechanical model of parallel strand lumber. Based on the different elastic constant of poplar veneer tested in the experiment, we can achieve the purpose of forecasting the strength of materials. The results as follows:
     The single-factor anova showed that the effect of hot-pressing pressure on veneer compression ratio was very obvious, second is the initial moisture content of veneer and hot-pressing temperature. The effect of hot-pressing time on veneer compression ratio was neglectable.
     Tests of multiple factors showed that the effect of hot-pressing pressure, hot-pressing temperature and the initial moisture content of veneer on the compression ratio of veneer was very obvious. Compared with any single factor, the effect of interaction between any two or three factors on the compression ratio of veneer was not obvious. We can get the conclusion that each factor was independent.
     The model of compressed-board density by single factor analysis as follow: When the hot-pressing pressure is lower than 5MPa, we could get the model of compressed-board density by single factor analysis more precise.
     When the PSL pressed without glue, each layers of veneer density showed normal distribution. Especially, the pressure is 5MPa, the density of veneer gradient become obviously. Relationship between the modified compressed-board density and the main factors equation is:
     In this paper, we use the strain foil to be pasted up on the veneer to measure coefficient of elasticity. Test results showed that the coefficient of elasticity of the lumber is accurate.
     Verification test results showed, based on the elasticity energy principle, we can receive a highly precision of the prediction range which the mechanical model of parallel strand lumber was established by the laminated plate theory.
引文
[1]周晓燕,华毓坤.定向结构板热物理特性的研究.木材工业,1998,12(3):14~18.
    [2]顾梓生.发展木材工业促进林业可持续发展.中国人造板.2008,(5):1~2,6.
    [3]吴竹涟.木结构房屋——我国住宅的盲点.世界建筑,2000,(5):63~66.
    [4]美纸.回归与重塑——木结构建筑.中国林业,2001,(5):30~31.
    [5]国家林业局森林资源管理司,第六次全国森林资源清查及森林资源状况,绿色中国,2005,(2):10~12.
    [6]吴盛富.我国杨木资源与胶合板工业的发展.中国人造板,2008,(3):24~28.
    [7]李远宁,邵议.试论我国胶合板工业的现状和今后的发展.林产工业,1996,23(4):8~11.
    [8]吕柳,王志强,张智光等.我国胶合板产业集群的发展现状与建议.木材工业,2008,22(2):2 9~32.
    [9]周宏琛.我国胶合板出口现状及发展前景.中国检验检疫,2008,(6):11~12.
    [10]徐漫萍,郑虹,方崇荣.我国胶合板行业现状及产品质量分析——以浙江省胶合板行业现状为例.浙江林业科技,2006,26(6):65~68.
    [11]周伟旺,吴盛富.中国胶合板行业的发展.中国林业,1999,(9):34~35.
    [12]吴盛富.浅析单板层积材在我国的应用和发展.人造板通讯,2003,(2):6~8,23.
    [13] Yihai Liu. Evaluation on properties of parallel strand lumber.2002.
    [14]陈岳崙,王进武.工程结构材概述.广东林业科技.1997,13(2):45~48.
    [15]吴娟,陈天全.我国定向刨花板的现状和开发前景.木材加工机械.2004,(6):38~41.
    [16]金维洙,蔡立新.定向成材发展概况及前景分析.木材加工机械.1997,(3):2~6.
    [17]沈观林,胡更开.复合材料力学.北京:清华大学出版社.2006.
    [18]许震宇,张若京.纤维排列方式对单向纤维加强复合材料弹性常数的影响.力学季刊.2002,23(1):59~63.
    [19]陈烈民,杨宝宁.复合材料的力学分析.北京:中国科学技术出版社.2006.
    [20]那斌,卢晓宁.胶合板弹性特性预测.建筑人造板.2002,(1):31~33.
    [21]王志强,卢晓宁,朱月虎等.不对称人造板的结构设计.南京林业大学学报(自然科学版),2006,30(3):23~26.
    [22]卢晓宁,陈宇聪,陈颖.速生杨木单板顺纹弹性模量预测模型.南京林业大学学报(自然科学版),2002,26(3):9~13.
    [23]卢晓宁,黄河浪,杜以诚.速生杨木单板横纹弹性模量预测模型.南京林业大学学报(自然科学版),2003,27(2):21~24.
    [24]卢晓宁,王志强,杜以诚等.速生杨木单板面内剪切模量预测模型.南京林业大学学报(自然科学版),2006,30(1):93~94.
    [25]华艈坤,卢晓宁,邓秀梅等.意杨枝桠材薄型定向刨花板的研究.世界林业研究.1993.
    [26]李凯夫,陆仁书.刨花与胶粘剂界面结合强度的研究.林业科学,2002,38(5):135~139.
    [27] Ihak Sumardi, Yoichi Kojima, Shigehiko Suzuki. Effects of strand length and layer structure on some properties of strandboard made from bamboo. J Wood Sci (2008) 54:128~133.
    [28] Sumardi I, Suzuki S, Ono K. Some important properties of strandboard manufactured from bamboo. Forest Prod J (2006) 56:59~63.
    [29] Harris RA, Johnson JA (1982) Characteristic of flake orientation in flake board by von Mises probability distribution function..Wood Fiber Sci 14:254~26.
    [30] Takuya Nishimura, Jaymeen Amin, Martin P. Ansell. Image analysis and bending properties of model OSB panels as a function of strand distribution, shape and size. Wood Sci Technol (2004) 38:297~309.
    [31] V. Sharma , A. Sharon. Optimal Orientation of Flakes in Oriented Strand Board (OSB). Experimental Mechanics, 1993,7:91~98.
    [32] Wood Handbook, USDA Agriculture Handbook No. 72. Chapter 4. USDA Forest Service, Forest Products Laboratory, Madison, W1(1974).
    [33] Barnes D. An integrated model for the effect of processing parameters on the strengthproperties of oriented strand wood products. Forest Prod J(2000) , 50(11/12):33~42.
    [34] Wang SY, Chen BJ The flakes alignment efficiency and orthotropic properties of oriented strandboard. Holzforschung(2001) ,55:97~103.
    [35] Xu W, Suchsland O Modulus of elasticity of wood composite panels with a uniform density profile: A model. Wood Fiber Sci (1998), 30(3):293~300.
    [36] Lee J, Wu Q. Continuum modeling of engineering constants of oriented strandboard. Wood Fiber Sci (2003) 35(1):24~40.
    [37] Dai C, Steiner PRCompression behaviour of randomly formed wood flake mat. Wood Fiber Sci (1993) ,25:349~358.
    [38] Lang EM, Wolcott MP A model for viscoelastic consolidation of wood-strand mats. Part II. Static stress–strain behaviour of the mat. Wood Fiber Sci(1996), 28:369~379.
    [39] Oudjehane A, Lam F, Avramidis S A continuum model of the interaction between manufacturing variables and consolidation of wood composite mats. Wood Sci Technol(1998) ,32:381~391.
    [40] Zombori BG, Kamke FA, Watson LT. Simulation of the mat formation process. Wood Fiber Sci (2001)33:564~579.
    [41] Greer Painter, Hector Budman, Mark Pritzker. Prediction of oriented strand board properties from mat formation and compression operating conditions. Part 1. Horizontal density distribution and vertical density profile. Wood Sci Technol (2006) 40: 139–158.
    [42] Greer Painter, Hector Budman, Mark Pritzker. Prediction of oriented strand board properties from mat formation and compression operating conditions. Part 2: MOE prediction and process optimization. Wood Sci Technol (2006) 40: 291~307.
    [43] [德]汉斯-乔治-伊利亚斯.大分子(下册)[M] .上海:上海科学技术出版社,1986.
    [44] F F P Kollmann. Principles of Wood Science and Technology, I, Solid Wood [M]. New York:Springer-Verlag Berlin Heidelberg, 1968.
    [45]刘则毅,刘东毅,马逢时等.科学计算技术与Matlab.北京:科学出版社.2001.
    [46]靖葳,俞昌铭,冯俊小等.木材热压过程热量与含湿量传输数学模型初探.木材加工机械.1999,(3):5~9.
    [47] Chunping Dai and Paul R.Steiner. Compression Behavior of Randomly Formed Wood Flake Mats[J]. Wood and Fiber Science, 1993, 25(4):349~358.
    [48]道格拉斯.C.蒙哥马利,乔治.C.朗格尔,诺尔马·法里斯·于贝尔著,代金,魏秋萍译.工程统计学[M].北京:中国人民出版社,第三版,2005.
    [49]杨德.实验设计与分析.北京:中国农业出版社.2002.
    [50]肖信.Origin 8.0科技绘图及数据分析.北京:中国电力出版社.2009.
    [51]陈玉竹,谢力生.人造板断面密度的研究现状与方向.中国人造板.2009,(3):21~25.
    [52]郁有文,常建.传感器原理及工程应用.西安:西安电子科技大学出版社.2000.
    [53]夏祁寒.应变片测试原理及在实际工程中的应用.山西建筑.2008,34(28):99~100.
    [54]岳孔.速生杨木改性力学性能及耐久性研究[D].博士学位论文,南京林业大学,2008:41-56.
    [55]王志强.胶合板构成及湿变形机理研究[D].博士学位论文,南京林业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700