落叶松锯材无损检测结果与静态抗弯性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材作为一种生物质高分子材料,其本身存在较大的变异性。这种变异性不但会对木材的力学性质造成较大影响,更会给其加工利用带来很大的不确定性。为了科学合理的使用木材,有效提高木质资源的利用率,保证各种木质产品在建筑上的安全可靠应用,必须对其力学性质进行准确预测以实现等级区分。目前,国内外常用的分等方法有目测分等和无损检测两类。
     通过对木材进行无损检测和破坏性试验,探究无损检测结果与力学性能的关系,不但可以较为全面的了解木材的各项力学性质,更能为实现快速准确的强度分级提供科学依据,具有很大的理论意义和实用价值。
     本文首先依据美国ASTM D245、日本JAS 1152、德国DIN 4074三种目测分等标准对694根足尺落叶松天然林锯材和221根足尺落叶松人工林锯材进行了目测分等,然后分别运用四种无损检测方法(机械应力分等、横向振动、纵向振动和应力波)和两种静态弯曲测试方法(ASTM D4761三点平弯、四点侧弯)对试材动、静态弹性模量进行了测试,最后通过对整体样本随机抽样,进行四点平弯破坏,获得了试材的抗弯强度。
     通过分析不同力学性质之间的关系,得到了以下主要研究结论:
     1、目测等级与静态抗弯性能(三点平弯静曲弹性模量E3s、四点侧弯静曲弹性模量E4s,抗弯强度MOR)之间具有密切的相关性。
     2、三点平弯与四点侧弯测试方法结果之间(E3s与E4s)具有良好的线性回归关系,相关系数R为0.8049,E4s平均值比E3s高8.13%(1.3GPa)。
     3、动态MOE与静态MOE的相关性存在较大差异,R范围为0.4989-0.7330。其中以EMSR与E4S的相关性最好,R达到0.7730;ELV与E3S的相关性最差,R仅为0.4989。
     4、静态MOE与MOR的相关性(R范围0.6552~0.7535)优于动态MOE与MOR的相关性(R范围0.3087-0.6439),其中以E4s与MOR的相关性最好,R为0.7535。
     5、机械应力法、横向振动法、应力波法、纵向振动法所建立的MOR预测模型,相关系数分别为0.6439、0.5914、0.5035、0.3087,表明利用机械应力分等法预测MOR的效果最好,其次分别是横向振动法、应力波法,纵向振动法预测MOR的效果最差。
As biomass polymer material, wood has great variability. It will not only affect the mechanical properties of wood, but also cause great uncertainty in wood processing and utilization. In order to make the most use of wood resources, pre-tests must be done to achieve the class differentiation. At present, visual grading and non-destructive testing (NDT) are two effective methods.
     Using NDT and destructive testing to test wood materials and finding the relationship between NDT results and static properties can not only gain a more comprehensive understanding of mechanical properties, but also provide a scientific basis for strength grading, which has a very theoretical and practical value.
     In this paper, six hundred and ninety-four full-size Chinese larch (Larix gmelin (Rupr.) Rupr.) sawn lumber and two hundred and twenty-one Larix olgensis sawn lumber were studied. Visual grading was firstly conducted according to ASTM D 245、JAS 1152、DIN 4074, then four NDT methods (mechanical stress grading, transverse vibration, longitudinal vibration and stress wave)and two static bending test methods (ASTM D 4761 center-point flat-wise bending, third-point edge-wise bending) were used to determine the dynamic and static modulus of elasticity (MOE). Finally, modulus of rupture (MOR) was measured by bending flat-wise (third-point loading). By analyzing the relationship between NDT results and static bending properties, we got the main conclusions as follows:
     1、The relevance of visual grades and static properties (E3S、E4S、MOR) were obvious.
     2、There was a good correlation between center-point flat-wise bending and third-point edge-wise bending, the correlation coefficient between E3S and E4S was 0.8049, the mean value of E4S was 8.13% (1.3GPa) greater than E3S.
     3、Relationship between dynamic MOE and static MOE showed large variability, R ranged from 0.4989 to 0.7330. E4S and EMSR had the highest correlation coefficient, R was 0.7330.
     4、Correlation between static MOE and MOR (R range of 0.6552~0.7535) was better than correlation between dynamic MOE and MOR (R range of 0.3087~0.6439), E4S best correlated with MOR, R is 0.7535.
     5、Strength prediction model created by MSR, transverse vibration, stress wave and longitudinal vibration were different, the correlation coefficients were 0.6439,0.5914,0.5035 and 0.3087. It showed that using MSR to predict MOR was the best, followed by the transverse vibration and stress wave, the longitudinal vibration method was the worst.
引文
1.安磊,高建民,胡传坤.非接触式无损检测木材干燥应力的方法[J].广东林业科技,2007,23(2): 63-66.
    2.安源,殷亚方,王喜平,等.无损检测技术评估规格材的性质[J].木材工业,2009,23(4):5-8.
    3.成俊卿.木材学[M].北京:中国林业出版社,1985.
    4.渡边治人.木材应用基础[M].北京:中国林业出版社,1985.
    5.段新芳,王平,周冠武.应力波技术检测古建筑木构件残余弹性模量的初步研究[J].西北林学院学报,2007,22(1):112-114.
    6.国家林业局.2010中国林业发展报告[R].北京:中国林业出版社,2010:136.
    7.国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010(1):1-8.
    8.郭伟,任海青,殷亚方,等.北美规格材目测分等概述[J].世界林业研究,2007,10(5):57-62.
    9.郭伟,任海青,殷亚方.人工林杉木规格材目测分等研究[C]//2007年中国木材标准化研讨会,北京,2007.
    10.嵇伟兵.速生林木工程结构集成材单元性能及其指接材性能的无损检测[D].浙江林学院,2006.
    11.江泽慧,陈绪和,叶克林,等.世界木材利用发展态势[J].木材工业,2010,24(1):1-4.
    12.江泽慧,任海青,胡一贯,等.木材断裂过程的研究[J].核技术,2000,23(8):572-576.
    13.柯病凡.节子对马尾松木构件抗弯强度及抗弯弹性模量的影响[J].安徽农学院学报,1982(2): 11-21.
    14.龙超,吕建雄,任海青,等.中国与加拿大规格材目测分等规则的比较[J].木材工业,2008,22(4): 23-25.
    15.李华,刘秀英,陈允适.古建筑木结构的无损检测新技术[J].木材工业,2009,23(2):37-39.
    16.李华,刘秀英.大钟寺博物馆钟架的超声波无损检测[J].木材工业,2003,17(2):33-36.
    17.李坚,王清文,刘一星,等.木材波谱学[M].北京:科学出版社,2003.
    18.娄万里,任海青,江京辉,等.落叶松规格材目测分等的研究[J].木材工业,2010,24(2):1-4.
    19.刘一星主编.中国东北地区木材性质与用途手册[M].北京:化学工业出版社,2004.
    20.任海青,郭伟,殷亚方.北美锯材机械分等综述[J].世界林业研究,2006,19(3):66-70.
    21.日本农林水产省.日本农林水产省告示第1152号.集成材の日本农林规格[S].2007.
    22.尚大军,段新芳,杨中平,等.西藏部分古建筑腐朽与虫蛀木构件的Pilodyn无损检测研究
    [J].林业科技,2007,32(5):53-55.
    23.司慧,鹿振友,王立昌.含水率对落叶松材动态弹性模量的影响[J].木材加工机械,2007(1): 16-19.
    24.苏娟,张厚江,王喜平.应力波评价活立木材质的研究与进展[J].林业机械与木工设备,2008,36(8):40-43.
    25.汪秉全.木材科技词典[M].北京:科学出版社,1985.
    26.王朝志.基于简支梁振动原理的板材检测系统的研究与应用[D].北京林业大学,2007.
    27.王立海,杨学春,徐凯宏.木材缺陷无损检测技术研究现状[J].林业科技,2002,27(3):35-38.
    28.王欣,申世杰.木材无损检测研究概况与发展趋势[J].北京林业大学学报,2009,31(S1):202-205.
    29.王志同,曹志强,袁卫国.用应力波非破损检测技术检测中密度纤维板弹性模量的研究[J].木材工业,1995,9(5):17-21.
    30.王志同,曹志强,袁卫国.用应力波非破损检测技术检测中密度纤维板弹性模量的研究(续)[J].木材工业,1995,9(6):21-25.
    31.肖江,杨建华,黄娜.基于DSP的木材强度超声波检测系统研究[J].林业机械与木工设备,2008,36(1):27-28,37.
    32.殷亚方,吕建雄,倪春,等.横向振动方法评估大尺寸规格材静态抗弯弹性性质[J].北京林业大学学报,2005,27(5):107-110.
    33.张壁光主编.木材科学与技术研究进展[M].北京:国环境科学出版社,2004.
    34.中国建筑西南建筑设计院,GB 50005-2003木结构设计规范[S].北京:中国标准出版社,2005.
    35.中国林业科学研究院木材工业研究所,GB-T 1933-2009木材密度测定方法[S].北京:中国标准出版社,2009.
    36.中国林业科学研究院木材工业研究所,GB-T 1931-2009木材含水率测定方法[S].北京:中国标准出版社,2009.
    37.张金菊.结构用锯材非破坏性检测综合分等技术研究Combigrade课题第二阶段试验[D].北京:北京林业大学,2007.
    38.朱景乐,王军辉,张守攻.Pilodyn在林木遗传改良应用中的研究进展[J].浙江林学院学报,2008,25(5):661-665.
    39.张厚江,崔英颖,王朝志,等.横向振动法测量结构用木材弹性模量[J].林业实用技术,2009,12:57-59.
    40.张厚江,申世杰,崔英颖,等.振动方式测定木材弹性模量[J].北京林业大学学报,2005,27(6): 91-94.
    41.朱晓冬,曹军,王逢瑚.基于振动模态分析的落叶松节子定位的无损检测[J].林业科学, 2009,45(5): 169-172.
    42. ASTM, ASTM D 245-06 Standard Practice for Establishing Structural Grades and Related Allowable Properties for Visually Graded Lumber [S]. USA:ASTM International,2006.
    43. ASTM, ASTM D 4761-05 Standard Test Methods for Mechanical Properties of Lumber and Wood-Base Structural Material [S]. USA:ASTM International,2005.
    44. B. A. Jayne. Stress Waves in Solids [C]//The 1st International Nondestructive Testing and Evaluation of Wood Symposium. USA:1963.
    45. Brian K. Brashaw. Development of Flexural Vibration Inspection Techniques to Rapidly Assess the Structural Health of Rural Bridge Systems-Phase Ⅱ [C]//Proceedings of the 16th International Nondestructive Testing and Evaluation of Wood Symposium. BeiJing:2009.
    46. Dunlop J. I. Testing of poles by using acoustic pulse method [J]. Wood Science and Technology, 1981,15 (4):301-310.
    47. Gonzalo A. Ruz, etc. Automated Visual Inspection System For Wood Defect Classification Using Computational intelligence Techniques [J]. International Journal of Systems Science,2009,40(2).
    48. Green W. D, Gorman M. T, Evans W. J, etc. Mechanical grading of round timber beams[J]. Journal of Materials Civil Engineering,2006 (1):1-10.
    49. G.. H. Agrawal, N. K. Choudhari. Ultrasonic NDT for Evaluation of Wood Quality in Engineering Structure [C]//Proceedings of the 16th International Nondestructive Testing and Evaluation of Wood Symposium. BeiJing:2009.
    50. Hatayama Y. A new estimation of structural lumber considering the slope of the grain around knots [J]. Bull For For Prod Res Inst,1984,326:69-167.
    51. M. Hasegawa, J. Matsumura, etc. Acoustic Effect in Fast Growing Tree for Ultrasonic Stress Analysis [C]//Proceedings of the 9th European NDT Conference (ECNDT06).2006.
    52. Massmi Noguchi, Koichi Nishimoto, etc. Detection of very early stages of decay in western hemlock wood using acoustic emissions [J]. Forest Products Journal,1986 (4).
    53. Megumi ISHIDOH, Futoshi ISHIGURI, Kazuya IIZUKA. The Evaluation of Modulus of Elasticity at an Early Stage of Growth in Sugi (Cryptomeria japonica) Wood Using S2 Microfibril Angle of Latewood Tracheids as a Wood Quality Indicator [J]. 木材学会志,2009,55 (1):10-17.
    54. Miguel, etc. Automatic visual inspection of wooden pallets [C]//Proceedings of the 16th international conference on developments in applied artificial intelligence. Laughborough, UK,2003.
    55. Nakai T, Ebihara T, Tanaka T. Grade and bending strength of Douglas fir square sawn timber (in Japanese) [C]//Abstracts of 34th Annual Meeting of Japan Wood Research Society, Nagoya,1984: 285.
    56. National Grading Rule Committee, NGR (National Grading Rule) [S]. USA:National Grading Rule Committee,2004.
    57. Robert. J. Ross, John I. Zerbe, Xiping Wang, etc. Stress wave nondestructive evaluation of Douglas-fir peeler cores [J]. Forest Products Journal,2005,55 (3):90-94.
    58. Robert J. Ross, Roy F. Pellerin. Nondestructive Testing for Assessing Wood Members in Structures: A Review[M]. WI U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.1994.
    59. Robert J. Ross, Roy F. Pellerin. NDE of wood-based composites with longitudinal stress wave [J]. Forest Products Journal,1988,38 (5):39-45.
    60. Witold, Tomasz Wiktorski. Ultrasonic evaluation of mechanical properties of wood in standing trees [C]//Proceedings of the COST E 53 Conference-Quality Control for Wood and Wood Products. Warsaw,2007.
    61. Xiping Wang, Robert J. Ross, etc. Nondestructive Assessment of Single-Span Timber Bridge Using a Vibration-Based Method [R]. Res. Pap. FPL-RP-627, Forestry Production Laboratory,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700