考虑水泥土峰值后软化特性复合地基性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合地基是在天然地基土体中设置加固体的一种人工地基。水泥土桩复合地基是复合地基的一种,在土木工程中有着广泛的应用。但是,对复合地基桩-土共同工作的机理和荷载传递机制的认识,仍停留在比较粗浅的阶段,这极大地制约了复合地基的推广和进一步发展。针对这些问题,本课题对水泥土桩复合地基的工作机理和破坏形式进行了深入系统的研究,在此基础上提出了水泥土桩复合地基承载力确定方法的建议。
     本文首先总结了当前复合地基的研究现状,根据现场和室内试验的结果,提出了一个以分段函数形式表示的水泥土非线性应力-应变关系模型,其参数可以由试验结果确定。模量的表达式也可以由此模型方便地求得。用此模型拟合试验点的吻合程度相当好。通过参数分析发现,水泥土强度的增加主要表现为粘结力的增加;围压增加时,水泥土的模量在对数关系下线性增长,并且围压改善了水泥土的延性;高掺合比的水泥土强度获得的增长比低掺合比水泥土大,但是破坏时其强度的损失也大。
     根据相关的土力学理论和计算方法,开发了一个可以进行单桩和群桩复合地基受力分析三维有限元程序。将桩体、土体、底板、垫层、桩-土接触面分别划分为不同类型的有限单元;根据对称性取体系的1/4进行计算,以节省计算量;采用分级加荷来模拟加载过程;程序中设置了接触面单元以考虑桩体和土体之间的相互作用;考虑了桩体、土体、桩-土接触面的非线性性能;采用增量割线法以考虑围压的增长对垫层材料模量的影响;采用中点增量法以改进分级加荷计算误差积累的影响。
     运用本文提出的水泥土的力学模型及模拟分析方法,对一个单桩复合地基进行了三维有限元模拟分析,计算结果和试验数据很接近,验证了该模型的适用性。对两种典型土类的复合地基进行了大量的参数影响分析,研究了水泥土桩复合地基的荷载-沉降曲线、水泥土桩的轴向力、侧摩阻力和桩土应力比,以及母土、水泥掺合比、桩径和桩长等因素的影响。考察了水泥土桩复合地基的荷载传递机制;指出了水泥土桩复合地基荷载-沉降曲线是一条开始为一段直线,破坏后陡降型的曲线;在荷载-沉降曲线上有一个明显的弯曲点,该点相应于水泥土桩顶发生压缩破坏点,因此可按该点来确定水泥土桩复合地基的承载力;基于模拟分析的结果,探讨了随荷载增加桩身轴向力及桩侧摩阻力沿深度分布的曲线,分析了桩土应力比,尤其是破坏时的桩土应力比。研究了水泥土桩端破坏时的桩端变形和桩身压缩。基于水泥土复合地基破坏机制,对确定水泥土桩复合地基承载力提出了建议。
Composite foundation is a kind of artificial foundation setting up reinforcement body in natural soil. Cemented soil pile is one type of composite foundation and it has been widely adopted in civil engineering projects in China. However, it is still beyong full understanding of pile-soil co-work mechanism and load transfer behavior and it is at a preliminary stage yet, which greatly hampers the promotion and further development of composite foundation technique. In this paper, the work mechanism and failure mode of cemented soil pile composite foundation are deeply and systematically studied, on which basis proposal of bearing capacity determination method of cemented soil pile composite foundation is put forward.
     The recent studies on composite foundation are summarized in the first part of the paper. According to the results of in-situ and lab tests, a non-linear stress-strain relationship model of cemented soil expressed in piecewise function is established, whose parameters can be determined from test results. The expressions of modulus can be conveniently obtained from this model as well. The agreement degree is very well adopting this model to fit in-situ and lab test results. Parametric analysis shows that the increase of cemented soil strength is mainly the consequence of adhesion increase in soil; when the surrounding pressure increases, the modulus of cemented soil linearly increases in the mathematical relationship of logarithm correspondingly, and the existence of surrounding pressure improves the ductility of cemented soil; the increase degree of cemented soil strength with high admixture ratio is greater than that of cemented soil with low admixture ratio, but when the former fails, the strength loss is also greater than that of the latter.
     According to related soil mechanics theories and calculation methods, a three-dimensional FEM computer program is developed in which bearing capacity and deformation analysis of single and group pile composite foundation can be performed. The cemented soil piles, original soil mass, foundation plate, cushion layer and pile-soil interface are discreted into finite calculation elements of different types respectively. Taking advantage of symmetry, one quarter of the whole analysis system is taken to be studied to save calculation capacity, and the load applying process is simulated by step loading method. In the program, the interaction effect between soil mass and pile is considered by setting up interface element, and the non-linear behavior of shaft, soil mass and the interface between pile and soil is considered. The influence of surrounding pressure increase on the modulus of material in cushion layer is considered by using incremental secant method while the influence of error accumulation using step loading method is improved by adopting mid-point incremental method.
     The three-dimensional FEM simulation analysis of a single pile composite foundation is performed by adopting the cemented soil model and simulation analysis method suggested in this paper. The calculated results well agree with the test data, which testifies the validity of the model. A great amount of parametric influence analysis of cemented soil pile composite foundation in two typical soils is carried out to reveal the influence of factors as load vs. settlement curve, axial forces of shaft, side friction, stress ratio of pile to soil, natural soil, cement admixture ratio and pile length etc. The load transfer mechanism of cemented soil pile composite foundation is estimated as well. The load vs. settlement curve of cemented soil pile composite foundation is a straight line at the beginning and a curve with sharp drop after failure. There is an obvious inflection point on the load vs. settlement curve, which is corresponding to the compressive failure state point of cemented soil pile top. Therefore, the bearing load capacity of cemented soil pile composite foundation can be determined by this point. Based on the simulation analysis results, the distribution curves of shaft axial forces and side friction developing with the increase of load along depth are discussed. Stress ratio of pile to soil is analyzed, especially when the foundation reaches failure state. Pile top deformation and shaft compression at failure state of pile top are studied as well. Determination of bearing capacity of cemented soil pile composite foundation based on failure mechanism is suggested.
引文
1 龚晓南. 复合地基设计和施工指南. 人民交通出版社, 2003: 1-50
    2 牛志荣, 李宏, 穆建春, 谢耀岗, 郭永东. 复合地基处理及其工程实例. 中国建材工业出版社, 2000: 414-542
    3 阎明礼, 张东刚. CFG 桩复合地基技术及工程实践. 中国水利水电出版社, 2001: 12-48
    4 Kuan-Yeow Show, Joo-Hwa Tay & Anthony T. C. Goh. Reuse of Incinerator Fly Ash in Soft Soil Stabilization. Journal of Materials in Civil Engineering. 2003, 15(4): 335-343
    5 Shenbaga R. Kaniraj & Vasant G. Havanagi. Compressive Strength of Cement Stabilized Fly Ash-soil Mixtures. Cement and Concrete Research. 1999,29: 672-677
    6 Masahiko Kimura, Toshiyuki Nishizawa, Hidenori Kotera & Norio Katakura. Improvement of Soft Ground Using Solidified Coal Ash and Its Effects on the Marine Environment. Journal of Hazardous Materials. 2000, 76: 285-299
    7 Zalihe Nalbantoglu. Effectiveness of Class C Fly Ash as an Expansive Soil Stabilizer. Construction and Building Materials. 2004, 18: 377-381
    8 Ame Ali Al-Rawas, A. W. Hago & Hilal Al-Sarmi. Effect of Lime, Cement and Sarooj (Artificial Pozzolan) on the Swelling Potential of an Expansive Soil from Oman. Building and Environment. 2005, 40: 681-687
    9 R. Bahar, M. Benazzoug & S. Kenai. Performance of Compacted Cement-Stabilised Soil. Cement and Concrete Composites. 2004, 26: 811-820
    10 Nilo C. Consoli, Pedro D .M. Prietto & Luciane A. Ulbrich. Influence of Fiber and Cement Addition on Behavior of Sandy Soil. Journal of Geotechnical and Geoenvironmental Engineering. 1998, 124(12): 1211-1214
    11 C. O. Okagbue & T. U. S. Onyeobi. Potential of Marble Dust to Stabilize Red Tropical Soils for Road Construction. Engineering Geology. 1999, 53: 371-380
    12 黄涛, 王小章, 吴跃刚, 陈长江. 豫北某钢厂钢渣桩复合地基的试验研究与应用. 岩土工程学报. 1999, 21(3): 328-333
    13 J.D. Hussin, Z.W. Abernathy & L.A. Hall. Embankment Construction in Soft Soils Using Vibro Concrete Columns(VCC). Thomas. L. Brandon. SpecialtyConference of Geo 2001, Blacksburg, Virginia.2001: 432-443
    14 Jiancheng Du & Limin Zhang. Centrifugal Modeling and Numerical Analysis of the Improvement of Soft Clay under Embankment. Thomas. L. Brandon. Specialty Conference of Geo 2001, Blacksburg, Virginia.2001: 302-310
    15 Khosrow Ghavami, Romildo D. Toledo Filho & Normando P. Barbosa. Behavior of Composite Soil Reinforced by Natural Fibres. Cement and Concrete Composites. 1999,21: 39-48
    16 金宗川, 顾源兴, 汪稔, 陈善雄. 垫层作用下石灰桩复合地基工作性状. 岩土工程学报. 1998, 20(2): 37-40
    17 阎明礼, 吴春林, 杨军. 水泥粉煤灰碎石桩复合地基试验研究. 岩土工程学报. 1996, 18(2): 55-62
    18 董平, 陈征宙, 秦然. 砼芯水泥土搅拌桩在软土地基中的应用. 岩土工程学报. 2002, 24(2):204-207
    19 吴迈, 窦远明, 王恩远. 水泥土组合桩荷载传递试验研究. 岩土工程学报. 2004, 26(3): 432-434
    20 Estelle Delfosse-Ribay, Irini Djeran-Maigre, Richard Cabrillac & Daniel Gouvenot. Shear Modulus and Damping Ratio of Grouted Sand. Soil Dynamics and Earthquake Engineering. 2004, 24: 461-471
    21 B. Indraratna & I.W. Redana. Numerical Modeling of Vertical Drains with Smear and Well Resistance Installed in Soft Clay. Canadian Geotechnical Journal. 2000, 37: 132-145
    22 A. K. Ashmawy, R. Rokicki & M. E. Plaskett. Predicted and Actual Settlement of Soils Improved by Vibro Replacement. Raymond J. Krizek, Kevan Sharp. Session of Geo 2000, Denver Colorado, 2000: 281-295
    23 A. Porbaha, T. B. S. Pradhan, & T. Kishida. Static Response of Fly Ash Columnar Improved Ground. Canadian Geotechnical Journal. 2001, 38: 276-286
    24 Ren Wang, Changqi Zhu, Jili Wang & Michael Zhiqiang Yang. Improvement of Soft Clays by Dynamic Compaction with PVDs. Raymond J. Krizek, Kevan Sharp. Session of Geo 2000, Denver Colorado, 2000: 311-324
    25 M. Akdogan & O. Erol. Settlement Behavior of a Model Footing on Floating Sand Columns. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, 2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse,2001: 1669-1673
    26 梁文选, 杨红春, 蔡遥念. 动力参数(频率-初速)法检测碎石桩复合地基承载力的应用. 岩土工程学报. 1995, 17(1): 79-85
    27 James K. Mitchell & Timothy R. Huber. Performance of a Stone Column Foundation. Journal of Geotechnical Engineering. 1985,111(2): 205-223
    28 D. Muir Wood, W. Hu & D.F.T. Nash. Group Effects in Stone Column Foundations. Geotechnique. 2000, 50(6): 689-698
    29 G. Mesri & M.M. Shahien. Liquefaction Resistance and Earthquake-Induced Settlement of Granular Soil Deposits Stabilized by Gravel Drains. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul,2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001:1811-1813
    30 K. S. Watts, D. Johnson, L. A. Wood & A. Saadi. An Instrumented Trial of Vibro Ground Treatment Supporting Strip Foundations in a Variable Fill. Geotechnique. 2000, 50(6): 699-708
    31 K. Adalier, A. Elgamal, J. Meneses & J. I. Baez. Stone Columns as Liquefaction Countermeasure in Non-plastic Silty Soils. Soil Dynamics and Earthquake Engineering. 2003, 23: 571-584
    32 S. Kolias, V. Kasselouri-Rigopoulou & A. Karahalios. Stablilisation of Clayer Soils with High Calcium Fly Ash and Cement. Cement and Concrete Composites. 2005, 27: 301-313
    33 J. Prabakar, Nitin Dendorkar & R. K. Morchhale. Influence of Fly Ash on Strength Behavior of Typical Soils. Construction and Building Materials. 2004, 18: 262-267
    34 Khaled Sobhan & Mehedy Mashnad. Mechanical Stabilization of Cemented Soil--Fly Ash Mixtures with Recycled Plastic Strips. Journal of Environmental Engineering. 2003, 129(10): 942-947
    35 Mostafa A. Ismail, Hackmet A. Joer, Wee H. Sim & Mark F. Randolph. Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil. Journal of Geotechnical and Geoenvironmental Engineering. 2002, 128(6): 520-529
    36 P. J. Walker. Strength, Durability and Shrinkage Characteristics of Cement Stablised Soil Blocks. Cement and Concrete Composites.1995,17: 301-310
    37 K. Omine & H. Ochiai. Prediction of Strength of Cement-Treated Soil ColumnBased on Size Effect. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul,2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001: 1537-1540
    38 童小东, 龚晓南, 蒋永生. 水泥土的弹塑性损伤试验研究. 土木工程学报. 2002, 35(4): 82-85
    39 梁旭, 蔡袁强. 复合地基动弹性模量和阻尼比的试验研究. 土木工程学报. 2004, 37(1): 96-101
    40 陈甦, 彭建忠, 韩静云, 顾欢达. 水泥土强度的试件形状和尺寸效应试验研究. 岩土工程学报. 2002, 24(5): 580-583
    41 宁宝宽, 刘斌, 陈四利. 环境侵蚀对水泥土桩承载力影响的试验及分析. 东北大学学报(自然科学版). 2005, 26(1): 299-302
    42 徐超, 董天林, 叶观宝. 水泥土搅拌桩法在连云港海相软土地基中的应用. 岩土力学. 2006, 27(3): 495-498
    43 顾明芬, 刘松玉, 洪振舜, 于小军. 水泥土结构特性的定量化研究. 岩土力学. 2005, 26(11): 1862-1865
    44 Watanabe T., Nishimura S., Moriya M., Hirai T. Development and Application of New Deep Mixing Soil Improvement Method to Form a Rectangular Stabilized Soil Mass. Yonekura R. et al. Grouting and Deep Mixing Conference, Tokyo, 1996: 782-786
    45 T. W. Feng, J. Y. Lee & Y. J. Lee. Consolidation Behavior of a Soft Mud Treated with Small Cement Content. Engineering Geology. 2001, 59: 327-335
    46 梁仁旺. 水泥深层搅拌桩力学特性试验研究及其复合地基变形的弹塑性分析. 太原理工大学博士学位论文. 2000: 2-36
    47 Fa Yun Liang, Long Zhu Chen & Xu Guang Shi. Numerical Analysis of Composite Piled Raft with Cushion Subjected to Vertical Load. Computers and Geotechnics. 2003, 30: 442-453
    48 郝玉龙,王立忠,陈云敏,陈胜乐. 深厚软土水泥搅拌桩复合地基沉降分析及控制. 岩土工程学报. 2001,23(3):345-349
    49 吴慧明,龚晓南. 刚性基础与柔性基础下复合地基模型试验对比研究. 土木工程学报. 2001,34(5):81-84
    50 马时冬. 水泥搅拌桩复合地基桩土应力比测试研究. 土木工程学报. 2002,35(2):48-51
    51 高贵才, 申京涛. 粉喷桩对桩间土性状的影响. 岩土力学. 1996, 17(2): 70-75
    52 Saad A. Aiban, Hamad I. Al-Abdul Wahhab, Omar Saeed Baghabra Al-Amoudi & Habibur Rehman Ahmed. Performance of a Stabilized Marl Base: a Case Study. Construction and Building Materials. 1998,12: 329-340
    53 Xiaohong Bai, Young Uk Kim & M.C. Wang. Load Transfer Behavior of Soil-Cement Columns in Soft Ground. Thomas. L. Brandon. Specialty Conference of Geo 2001, Blacksburg, Virginia.2001: 61-73
    54 Mehdi Bahrekazemi & Anders Bodare. Soil Stabilization by Lime-Cement Columns as a Countermeasure against Train-Induced Ground Vibrations. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul,2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001: 1695-1700
    55 何开胜, 陈宝勤. 超长水泥土搅拌桩的试验研究和工程应用. 土木工程学报. 2000, 33(2): 80-86
    56 徐超, 叶观宝. 水泥土搅拌桩复合地基的变形特性与承载力. 岩土工程学报. 2005, 27(5): 600-603
    57 马海龙, 陈云敏. 水泥土桩长等对承载力和模量影响的定量分析. 岩土工程学报. 2003, 25(6): 720-723
    58 崔溦,闫澍旺,周宏杰. 多桩型复合地基的载荷传递机理研究. 岩土力学. 2005,26(2): 290-294
    59 Shiomi M., Ito K., Nishimura D. et al. Slope Stability Using the Admixture Method. Yonekura R. et al. Grouting and Deep Mixing Conference, Tokyo, 1996: 562-568
    60 M. S. De Silva, N. J. O’Riordan & L. N. Parry. Trials for the Construction of a Cement Solidified Retaining Structure in a Domestic Landfill Site Using Deep Mixing Method. Engineering Geology. 2001, 60: 49-60
    61 熊祚森, 杨林德, 黄宏伟. 水泥土复合式支挡结构的机理分析. 土木工程学报. 1997,30(5): 42-48
    62 周顺华, 余绍锋, 吴海平. 水泥土-灌注桩基坑围护结构的试验与现场实测. 岩土工程学报. 1998, 20(2): 51-54
    63 徐永政, 王元汉, 周芳. 搅拌桩-喷锚支护技术在深基坑支护中的应用. 岩石力学与工程学报. 2004,23(增 1): 4649-4652
    64 颜恩锋,孙友宏,许振华,刘冬生. 深层水泥土搅拌桩在基坑支护中的应用. 岩土力学. 2003, 24(增 1): 90-93
    65 Ulrik Praastrup, Kim P. Jakobsen & Lars Bo Ibsen. Two Theoretically Consistent Methods for Analysing Triaxial Tests. Computers and Geotechnics. 1999,25: 157-170
    66 Y. El-Mossallamy, P. Scheller, T. Neidhart & W. Reitmeier. Stabilization of Soil with Displacement Columns of Dry Sand-Cement/Lime Mix: Construction Methods, Physical Behavior and Numerical Modeling. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul,2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001: 1522-1527
    67 J. S. Sharma & M. D. Bolton. Finite Element Analysis of Centrifuge Tests on Reinforced Embankment on Soft Clay. Computers and Geotechnics. 1996, 19(1): 1-22
    68 龚晓南. 复合地基. 浙江大学出版社. 1992: 1-36
    69 郑俊杰,区剑华,吴世明,袁内镇. 多元复合地基的理论与实践. 岩土工程学报. 2002,24(2): 208-212
    70 李宁,韩煊. 褥垫层对复合地基承载机理的影响. 土木工程学报. 2001,34(2):68-73
    71 徐洋,谢康和,卢廷浩. 二灰土桩复合地基三维固结有限元分析. 岩土工程学报. 2002,24(2):254-256
    72 Korhan Adalier & Ahmed Elgamal. Mitigation of Liquefaction and Associated Ground Deformations by Stone Columns. Engineering Geology. 2004, 72: 275-291
    73 J. T. Shahu, M. R. Madhav & S. Hayashi. Analysis of Soft Ground-granular Pile-Granular Mat System. Computers and Geotechnics. 2000, 27: 45-62
    74 S. Horpibulsuk & N. Miura. A New Approach for Studying Behavior of Cement Stabilized Clays. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, 2001. The Netherlands, A.A. Balkema, Swets & Ieitlinger B.V. Lisse, 2001: 1759-1762
    75 A. Vatsala, R. Nova & B. R. Srinivasa Murthy. Elastoplastic Model for Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering.2001, 127(8): 679-687
    76 Suksun Horpibulsuk, Norihiro Miura & D. T. Bergado. Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering. 2004, 130, (10): 1096-1105
    77 张土乔. 水泥土的应力应变关系及搅拌桩破坏特性研究. 浙江大学博士学位论文. 1992: 15-21
    78 M. Bouaasida, P. De Buhan, L. Dormieux. Bearing Capacity of a Foundation Resting on a Soil Reinforced by a Group of Columns. Geotechnique. 1995, 45(1): 25-34
    79 A. Saha. Sand Drains and Stone Columns-General Unifying Theory. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, 2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001: 1842-1846
    80 韩煊,李宁. 复合地基中群桩相互作用机理的数值试验研究. 土木工程学报. 1999,32(4):75-80
    81 张忠坤,殷宗泽,曹正康. 复合地基临界桩长的研究. 岩土工程学报. 1999,21(2):184-188
    82 饶为国,赵成刚. 桩-网复合地基应力比分析与计算. 土木工程学报. 2002,35(2):74-80
    83 陈志敏,贾立宏. 夯扩桩复合地基承载力预测的 BP 网络研究. 岩土工程学报. 2002,24(3):286-289
    84 徐洋,谢康和,梁仕华. 复合地基的平面应力扩散效应. 土木工程学报. 2002,35(2):57-60
    85 宋修广. 水泥粉喷桩的理论研究与分析. 河海大学博士学位论文. 2000: 16-29
    86 洪昌华,龚晓南,温晓贵. 深层搅拌桩复合地基承载力的概率分析. 岩土工程学报. 2000,22(3):279-283
    87 Jie Liu, H. B. Xiao, J. Tang & Q. S. Li. Analysis of Load-transfer of Single Pile in Layered Soil. Computers and Geotechnics. 2004, 31: 127-135
    88 冯瑞玲, 谢永利. 路堤荷载作用下复合地基的计算机辅助试验仿真分析. 土木工程学报. 2004, 37(1): 92-95
    89 何开胜. 水泥土搅拌桩设计计算方法探讨. 岩土工程学报. 2003, 25(1): 31-35
    90 冯仲仁, 王雄江, 姚爱民, 刘兆丰. 基于遗传算法的深层搅拌桩优化设计. 岩土力学. 2003, 24(3): 420-422
    91 邓永锋,洪振舜,刘松玉,胡银宝,蔺宁君. 搅拌桩复合地基平面模拟的简化方法探讨. 岩土力学. 2005,26(增刊): 209-212
    92 章定文, 刘松玉. 深层搅拌桩隔离墙应用于软基高速公路扩建工程的数值分析. 公路交通科技. 2005, 22(11): 10-13
    93 郑俊杰,黄海松. 水泥土桩复合地基桩土应力比的解析算法. 岩土力学. 2005, 26(9): 1432-1435
    94 M. Alamgir, N. Miura. Deformation Analysis of Soft Ground Reinforced by Columnar Inclusions. Computers and Geotechnics. 1996, Vol.18, No.4: 267-290
    95 A. Burghignoli, M. Cocciuti, S. Miliziano & F. M. Soccodato. Evaluation of Advanced Constitutive Modeling for Cemented Clayey Soils: a Case History. Mathematical and Computer Modelling.2003, 37: 631-640
    96 Mulabdic Mensur. Settlement of a Building Founded on Soil Improved by Stone Columns. Publication Committee of the XV ICSMGE. The Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul,2001. The Netherlands, A. A. Balkema, Swets & Ieitlinger B. V. Lisse, 2001: 1532-1536
    97 A. Arulrajah, H. Nikraz & M. W. Bo. Factors Affecting Field Instrumentation Assessment of Marine Clay Treated with Prefabricated Vertical Drains. Geotextiles and Geomembranes. 2004, 22: 415-437
    98 H. B. Poorooshasb, M. Alamgir & N. Miura. Negative Skin Friction on Rigid and Deformable Piles. Computers and Geotechnics.1996, 18(2): 109-126
    99 陈强,黄志义,左人宇,徐兴. 组合型复合地基的特性及其 FEM 模拟研究. 土木工程学报. 2001,31(1):50-55
    100 张定. 复合地基中桩体变形模量的分析与计算. 岩土工程学报. 1999,21(2):205-208
    101 杨涛. 路堤荷载下柔性悬桩复合地基的沉降分析. 岩土工程学报. 2000, 22(6):741-743
    102 王瑞春,谢康和. 双层散体材料桩复合地基固结解析理论. 岩土工程学报. 2001, 23(4): 418-422
    103 池跃君, 宋二祥, 陈肇元. 刚性桩复合地基沉降计算方法的探讨和应用. 土木工程学报. 2003, 36(11): 19-23
    104 李海芳, 温晓贵, 龚晓南. 路堤荷载下复合地基加固区压缩量的解析算法.土木工程学报. 2005, 38(3): 77-80
    105 邢皓枫, 杨晓军, 龚晓南. 刚性基础下水泥土桩复合地基固结分析. 浙江大学学报. 2006, 40(3): 485-489
    106 周龙翔,童华炜,王梦恕,张顶立. 复合地基褥垫层的作用及其最小厚度的确定. 岩土工程学报. 2005,27(7): 841-843
    107 H. B. Poorooshasb & G. G. Meyerhof. Analysis of Behavior of Stone Columns and Lime Columns. Computers and Geotechnics.1997, 20(1): 47-70
    108 Sangseom Jeong, Sooil Kim & Jean-Luise Briaud. Analysis of Downdrag on Pile Groups by the Finite Element Method. Computers and Geotechnics. 1997, 21(2): 142-161
    109 C. J. Lee, M. D. Bolton & A. Al-Tabbaa. Numerical Modelling of Group Effects on the Distribution of Dragloads in Pile Foundations. Geotechnique. 2002, 52(5): 325-335
    110 Michael E. Heelis, Milija N. Pavlovic & Roger P. West. The Stability of Uniform-friction Piles in Homogeneous and Non-homogeneous Elastic Foundations. International Journal of Solids and Structures.1999, 36: 3277-3292
    111 Sangseom Jeong, Jin Hyung Lee & Cheol Ju Lee. Slip Effect at the Pile-soil Interface on Dragload. Computers and Geotechnics. 2004, 31: 115-126
    112 S. H. Ju, J. J. Stone & R. E. Rowlands. A New Symmetric Contact Element Stiffness Matrix for Frictional Contact Problems. Computers and Structures.1995, 54(2): 289-301
    113 Y. K. Chow, C. H. Lim & G. P. Karunaratne. Numerical Modeling of Negative Skin Friction on Pile Groups. Computers and Geotechnics. 1996, 18(3): 201-224
    114 张尔齐, 周敏锋. 土的非线性应力-应变关系及一般数学模型. 哈尔滨工业大学学报. 2004, 36(1): 99-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700