口腔疣状癌基因组DNA甲基化谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔疣状癌(oral verrucous carcinoma, OVC)是一种不同于鳞癌的有着独特的病理学特征和生物学行为的独立性疾病,其发病机制尚不清楚。DNA甲基化芯片和生物信息学技术的发展提高了我们对疾病的生物学的研究和探讨疾病分子机制能力。本研究采用甲基化DNA免疫沉淀(Methylated DNA immunoprecipitation, MeDIP)结合NibleGen CpG promoter芯片技术探讨口腔疣状癌及其正常对照组织中基因组DNA甲基化情况,并采用多种生物信息学方法对甲基化基因进行分析,为进一步探讨OVC发生的分子机制和发现治疗靶基因奠定基础。
     目的:分析口腔疣状癌DNA甲基化位点上基因,挖掘其隐含的生物学意义。
     方法:收集5例口腔疣状癌癌组织及相应患者的正常粘膜组织,采用甲基化DNA免疫沉淀(Methylated DNA immunoprecipitation, MeDIP)分别和十张NibleGen CpG promoter芯片进行杂交,对杂交信号进行扫描以及原始数据进行归一化处理和比较分析。利用多种生物信息学工具和软件对筛选基因进行染色体定位分析、GO (Gene Ontology)分析、Pathway分析。
     结果:芯片杂交结果符合质量控制要求,按照Peak Count>2为筛选标准,肿瘤中发生超甲基化位点的有1023个,这些位点包含了1248个基因,其甲基化位点在其启动子内或者上下游发生甲基化,489个(47.8%)甲基化位点发生在CpG岛上。发生去甲基化位点的有640个,包含了780个基因,474个(74.06%)甲基化位点位于基因的启动子区域;363个(56.71%)甲基化位点位于发生在CpG上。
     染色体定位分析可见在肿瘤组织中分布于1,17号染色体上的发生甲基化位点最多, Y染色体上的甲基化位点最少;在正常组织中定位在19号染色体上的发生甲基化位点最多,其次为17号染色体;Y染色体上去甲基化位点最少。
     GO分析显示口腔疣状癌差异甲基化基因细胞成分大部分为细胞核以及整合于细胞膜上。生物学过程主要参与信号传导,DNA依赖的转录调节,G-protein偶联蛋白受体信号通路,氧化还原等生物过程;分子功能上大部分基因为蛋白结合分子,钙锌结合分子,肽链内切酶的活性序列特异性DNA断裂及蛋白质GTP酶激活因子等分子功能相关;
     Pathway分析结果显示口腔疣状癌甲基化基因主要参与神经活性配受受体相互作用,NK细胞介导的细胞毒性,细胞凋亡,细胞因子间相互作用、MARK信号通路等通路。
     结论:
     1.口腔疣状癌与对应的正常口腔粘膜组织DNA甲基化位点存在差异;
     2.口腔疣状癌发生甲基化和去甲基化区域的大部分位于基因的启动子区并且大部分为CpG岛;
     3.运用生物信息学工具可快速、平行地分析大量的基因芯片数据,实现对甲基化基因初步的功能归类,为口腔疣状癌的发病机制提供新的思路。
Oral verrucous carcinoma (oral verrucous carcinoma, OVC) is different from the squamous cell carcinoma, which has a unique pathological features and biological behavior. its pathogenesis is still unknown. The development of DNA methylated microarray and bioinformatics enable us to understand disease biology and molecular mechanisms of disease more efficient. In this study, we use the method of Methylated DNA immunoprecipitation and combine with NibleGen CpG promoter profiles to analyse genomic DNA methylated in oral verrucous carcinoma and normal tissue, meanwhile, we also use a variety of bioinformatics methods to initially screen disease genes, in order to further rexplore the molecular mechanism and potential markers/ targets for clinical utility in treatment of OVC.
     Objective:analysis of DNA methylated gene with oral verrucous carcinoma, then apply the bioinformatics tools for analyzing the DNA methylated genes in OVC to obtain the implied biological significance.
     Methods:Total methylated DNA immunoprecipitation (Met hylated DNA immunoprecipitation, MeDIP)was isolated from 5 OVC patients and corresponding normal mucosa and hybride with 10 NibleGen CpG promoter microarray,then scan the hybridization signals and get raw data and comparative analysis; Then several bioinformatic analysises were used in the second screening of genes in OVC, which included gene ontology(GO)analysis, pat-hway analysis, chromosomal assignment;
     Results:The results of microarray hybridization results accorded with quality control. Using a the Peak Count> 2 for the criteria.1023 DNA areas which contain 1248 genes occur methylation.Their methylated sites locate within or upstream and downstream their promoter.There are 952 (93.06%)methylated sites which were located on the promoter regions of genes and 489(47.8%) methylated sites occurred in the CpG islands.Correspondingly,the occurrence of de-methylated sites are 640, contains 780 genes.There are 474 (74.06%) methylated sites whi-ch were located on the promoter regions of genes, and 363 (56.71%) methylated sites occurred in the CpG islands.
     Chromosome 1 happen to methylate at most, a total of 125, followed by chromosomes 17, however, in the Y chromosome happen to methylat-ed sites for at least,a total of 7.Demethylated sites, in chromosome 19, up to a total of 90.In the Y chromosome methylated sites are at least,a total of 7.
     GO classification of differentially expressed DNA methylated genes identified cellular component subgroups consisted of genes mainly located in nucleus, integral to membrane; the biological process subgroups involved genes in signal transduction, regulation of transcription, DNA-dependent, G-protein coupled receptor protein signaling pathway, oxidation reduction; the function of most genes related to protein binding, calcium zinc ion binding et al. Pathway analysis showed that differentially expressed DNA methylated genes in oral verrucous carcinoma mainly involvedin pathways including Neuroactive ligand-receptor interaction, Natural killer cell mediated cytotoxicity, Apoptosis, Cytokine-cytokine receptor interaction,MARK signaling pathway.Conclusion The use of bioinformatics tools to quickly analyze a large number of parallel gene chip data that initially classified the functions of genes,which provide a new way of thinking for the pathogenesis of oral verrucous carcino-ma.
     Conclusion:
     1. DNA methylated and demethylated sites a-re different in Oral verrucous carcinoma and corresponding normal oral mucosa;
     2. The region of methylated and demethylated in oral verrucous carcinoma mostly locate in the gene promoter region and CpG islands;
     3. Bioinformatic tools Can provide the quick and parallel analysis of massive data derived from genechips and enable the function classification of the differentially expressed genes, which provides new clues on the research of pathogenesis and epidemiology of OVC.
引文
[1]Ackerman L. Verrucous carcinoma of the oral cavity[J]. Surgery 1948;23:670-678.
    [2]Steffen C. The man behind the eponym:Lauren V. Ackerman and verrucous carcinoma of Ackerman[J]. Am J Dermatopathol 2004;26(4):334-341.
    [3]Montjean F, Evrard L, Magremanne M, et al. Oral verrucous carcinoma[J]. Rev Med Brux 2004;25(3):173-177.
    [4]Bouquot JE. Oral verrucous carcinoma. Incidence in two US populations[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;86(3):318-324.
    [5]J.E. Medina, W. Dichtel and M.A. Luna, Verrucous squamous carcinomas of the oral cavity. A clinicopathologic study of 104 cases [J]. Arch Otolaryngol 110 (1984) (7):437-440.
    [6]Neville BW, Day TA. Oral cancer and precancerous lesions[J]. Cancer Clin, 2002,52(4):195-215.
    [7]Suarez PA, Adler-Storthz K, Luna MA, et al. Papillary squamous cell arcinomas of the upper aerodigestive tract:a clinicopathologic and molecular study [J]. Head Neck 2000;22(4):360-368.
    [8]Miller CS, Johnstone BM. Human papillomavirus as a risk factor for oral squamous cell carcinoma:a meta-analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91(6):622-635.
    [9]A Ogawa. Treatment results of oral verrucous carcinoma and its biological behavior[J].Oral Oncology 2004; 40(2):793-797.
    [10]Oliveira DT, de Moraes RV, Fiamengui Filho JF, Fanton Neto J,Landman G, Kowalski LP. Oral verrucous carcinoma:a retrospectivestudy in Sao Paulo Region, Brazil[J]. Clinc Oral Invest 2006;10(3):205-209.
    [11]Tang ZG, Xie XL, Li JY,et al. A clinic study on oral verrucous carcinoma phenotypes[J]. The Chinese Journal of Dental Research.2005,8(3):57-61
    [12]Batsakis JG, Hybels R, Crissman JD, Rice DH. The pathology of head and neck tumors:verrucous carcinoma[J].Head Neck Surg 1982;5(1):29-38.
    [13]Ferlito A, Devaney KO, Rinaldo A, Putzi MJ. Papillary squamous cell carcinoma versus verrucous squamous cell carcinoma of the head and neck[J]. Ann Otol Rhinol Laryngol 1999;108(3):318-322.
    [14]唐瞻贵,赵素萍,张雷,等.口腔疣状癌与口腔鳞状细胞癌差异基因表达的对比分析[J].中华口腔医学杂志,2007,42(4):229-230
    [15]唐瞻贵,赵素萍,张雷,等.口腔疣状癌差异基因表达研究[J].口腔颌面外科杂志,2005,15(4):344-348
    [16]W. Reik and J. Walter, Genomic imprinting:parental influence on the genome[J].Nat. Rev. Genet.2 (2001),:21-32.
    [17]Rountree MR, Bachman KE, Herman JG,and Baylin SB. DNA methylation, chromatin inheritance and cancer[J]. Oncogene 2001,20:3156-3165.
    [18]Jones PA, and Laird PW:Cancer epigenetics comes of age[J]. Nature Genetics 1999,21:163-167.
    [19]Ji Wj Hemandez R, and Zhang XY,et al. DNA demethylation and pericentromeric rearrangements of chromosome 1 [J]. Mutat Res 1997,319:333.
    [20]Melanie Ehrlich. DNA methylation in cancer:too much, but also too little[J]. Oncogene 2002,21:5400-5413.
    [21]Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases[J]. Biochim Biophys Acta,2007,1775:138-162.
    [22]Epub ahead of print. BaSin SB, Tying it all together:epigenetics, cell cycle,and cancel[J]. Science,1997,277:1948-1949.
    [23]Tollefsbol TO,Hutchison CA. Mananalian DNA(cytosine-5)-methytransferase expressed in Escherichia coli,purified and characterized[J]. JBiol Chem,1995, 270:18543-18550.
    [24]Tollefsbol TO,Hutchison CA. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase[J]. J Mol Biol,1997,269: 494-504.
    [25]Flynn J, Glickman JF,Reich NO. Murine DNA cytosine-C5 methyltransferase: pre-steady-and steady-state kinetic analysis with regulatory DNA sequence [J]. Biochemistry,1996,35:7308-7315.
    [26]Pradhan s,BacolLa A, Wells RD, Roberts RJ. Recombinant human DNA(cytosine-5) methyltransferase.1. Expression,purificafien,and comparison of de novo and maintenance methytation [J]. J Biol chem,1999,274:33002-33010.
    [27]Fatemi M, Hermann A,Pradhan S, Jeltsch A. The activity of the murine DNA methyltransfernse Dnmtl is controlled by interaction ofthe catalytic domain with the N-terminal pan of the leading to an allosteric of the alzyllle after binding to methylated DNA[J].Mol Biol,2001,309:1189-1199.
    [28]Bestor TH, Tycko B. Creation ofgenomic mediylation patterns[J]. Nat Genet, 1996,12:363-367.
    [29]Cedar H. DNA methylation and gene activity[J]. Cell.1988,53:3-4.
    [30]Counts JL, Goodman JI.Alterations in methylafion may play a variety of mica in carcinogenesis [J].Cell,1995,83:13-15.
    [31]Bird AP. CpG-rich island and the function of DNA methylated. Nature, 1986,321:209-213.
    [32]Eng C,Herman JC,Baylin SB,Nat Cenet,2000,24(1):101-10234.Wolffe A P, Matzke M A. Epigenetics:regulation through repression[J]. Science,1999, 286(5439):481-486.
    [33]Plass C. Cancer epigenomics. Hum Mol Genet,2002,11(20):2479-2488.
    [34]Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates [J]. Nature,1998,395 (6697):89.
    [35]Wolffe AP,Matzke MA, et al.Epigenetics:regulation through repression[J]. Science,1999,286(5439):481-486.
    [36]M. Weber, J.J. Davies, D. Wittig, E.J. Oakeley, M. Haase, W.L. Lam and D. Schubeler, Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J].Nat. Genet.37 (2005):853-862.
    [37]Ashbumer M, Ball C A, Blake J A, et al. Gene ontology tool for the unification of biology[J]. Nat Genet,2000,25(1):25-29.
    [38]Eisen MB, Spellman P T, Brown P, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci USA,1998,95(25): 14863-14868.
    [39]Zhang X, et al. Genomewide high resolution mapping and functionalanalysis of DNA methylation in arabidopsis DNA methylomes and histone modification maps[J]. Cell,2006.126(6):1189-1201.
    [40]Esteiler M, Cancer epigenomics:DNA methylomes and histone modification maps[J]. Nat RevGenet,2007.8(4):286-298.
    [41]L. Shen, Y. Kondo, Y. Guo, J. Zhang, L. Zhang, S. Ahmed, J. Shu, X. Chen, R.A. Waterland and J.P. Issa, Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters[J].PLoS Genet.3 (2007), 2023-2036.
    [42]Khatri P, Draghici S, Ostermeier GC, et al. Profiling gene expression using onto-express[J]. Genomics,2002,79(2):266-270.
    [43]Dennis GJ, Sherman BT, Hosack DA, et al.Database for Annotation, Visualization, and Integrated Discovery [J]. Genome Biol, 2003,4(5):3
    [44]Mehta PB, Jenkins BL,McCarthy L, et al. MEK5 over expression is associated withmetastatic prostate cancer and stimulates proliferation,MMP-9 expression and invasion [J]. Oncogene,2003,22(9):1381-1389.
    [45]Cassano A,Bagala C, Battelli C, et al. Expression of vascular endothelial growth factor,mitogen-activated protein kinase and p53[J]. Oncogene 2007,3(2):2179-2184.
    [46]Yasuo Tanaka, Takaaki Imamura, Fumihiko Kanai, et al. Proteomic analysis of the TGF-β signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence expression[J].Biochemical and Biophysical Research Communications, Volume 318, Issue 1,21 May 2004,289-296.
    [47]Masahisa Katsuno, Hiroaki Adachi, Makoto Minamiyama. et al.TGF-β signal disruption in polyglutamine disease[J].Neuroscience Research, Volume 65, May 2009,248.
    [48]邹萍,唐瞻贵,冯德云,等.P53蛋白在口腔疣状癌组织中的表达及意义[J].口腔医学研究,2003,19(4):264-265.
    [49]Ito-H,Kyo-S,Kanaya-T,Takakura-M et al. Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer[J].Clin-Cancer-Res,1998:4(7):1603-1608.
    [50]Ji-Ching Lai, Ya-Wen Cheng et al. Promoter methylation of O6-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53[J].DNA Repair, Volume 7, Issue 8, August 2008,1352-1363.
    [1]Bird AP. CpG rich—island and the function of DNA methylated[J]. Nature, 1986,321:209-213.
    [2]Cervoni N, Szvf M. Demethylase activitv is directed by Histone acetylation[J].J Biol Chem 2001:276:40778-40787.
    [3]Wijermas P, LubbertM, verhoefG, BoslyA, RavoetC, AndreM, Ferrant A Low-dose 5-aza-2-deoxycvtidine, a DNA hypomethylating agent, for the treatment of high—risk myelodysplastic syndrome:a multicenter phasell study in elderly patients[J].J Clin Oncol 2000; 18:956.9621999:21:103-107.
    [4]Bird AP. Gene number:noise reduction and biological complexity[J]. Trends Genet,1995,11:94-100.
    [5]P.A. Jones and S.B. Baylin, The fundamental role of epigenetic events in cancer[J]. Nat. Rev. Genet.3 (2002):415-428.
    [6]K.D. Robertson, DNA methylation methyltransferases, and cancer[J]. Oncogene 20(2001):3139-3155.
    [7]周永宁,徐采朴,房殿春.CpG岛甲基化与胃肠道肿瘤[J].世界华人消化杂志,2003,11(1):65-71.
    [8]K. Eguchi, Y. Kanai, K. Kobayashi and S. Hirohashi, DNA hypermethylation at the D17S5 locus in non-small cell lung cancers:its association with smoking history [J]. Cancer Res.57 (1997),4913-4915.
    [9]F. Fuks, W.A. Burgers, A. Brehm, L. Hughes-Davies and T. Kouzarides, DNA methyltransferase DNMT1 associates with histone deacetylase activity [J].Nat. Genet.24 (2000),88-91.
    [10]Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates [J]. Nature,1998,395 (6697):89.
    [11]LiuK, WangYF, CantemirC, Muller MT.Endogenous Assaysof DNA Methyltransferases:Evidenee for Differential Aetivities of Dnmtl, DnmtZ, and Dnmt 3in Mammalian Cells in Vivo[J].MolCellBiol2003;23:2709-2719.
    [12]BestorTH.The DNA Methyltransferases Of Mammals[J].JIHum MolGenet 2000; 9:2395-2402.
    [13]KloselU, BirdAP.GenomieDNAMethylation:TheMarkandlts Mediators. [J] Trends Biochem Sei 2006;31:89-97.
    [14]Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells [J]. Proc Natl Acad Sci USA,1997,94 (6): 2545.
    [15]erman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med,2003,349(21):2042-2054.
    [16]LI J, YEN C, LI AW D, et al, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science,275(5308): 1943-1947(1997).
    [17]Rafiopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN[J]. Science,1179-1181(2004):79-87
    [18]Shin KH. Kim JM, Rho KS, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Int J Oncol,2002,21(5):997-1001.
    [19]董玉英,王洁,董福生.口腔颊癌p53基因突变与肿瘤生物学行为的关系.中华口腔医学杂志[J],2006,41(5):297-298
    [20]Sekido Y, Ahmadian M, Wistuda ll, et al. Cloning. of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3tumor suppressor gene[J]. Oncogene,1998,16(24):3151-3157.
    [21]Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressorlocus 3p21.3[J]. NatGenet,2000,25(3):315-319.
    [22]Dong SM, Sun D1, Benoit NE, et al. Epigenetic inactivation of RASSF1A in head and neck cancer[J]. Clin Cancer Res,2003,9(10):3635—3640.
    [23]M. Okano, S. Xie and E. Li, Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases[J]. Nat. Genet.19 (1998), 219-220.
    [24]Y. Saito, Y. Kanai, M. Sakamoto, H. Saito, H. Ishii and S. Hirohashi, Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis[J]. Hepatology 33 (2001):561-568.
    [25]I. Rhee, K.E. Bachman, B.H. Park, K.W. Jair, R.W. Yen, K.E. Schuebel, H. Cui, A.P. Feinberg, C. Lengauer, K.W. Kinzler, S.B. Baylin and B. Vogelstein, DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J]. Nature 416 (2002):552-556.
    [26]Y. Kanai, S. Ushijima, H. Tsuda, M. Sakamoto and S. Hirohashi, Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis[J]. Cancer Lett.148 (2000):73-80.
    [27]Deiry WS, Nelkin BD, Celano P'Yen RW,Falco JP,Hamilton SR,Baylin SB. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer[J]. Proc Nau Acad Sci U SA.1991 Apr 15; 88(8):3470-3474.
    [28]Baylin SB, Makos M, Wu JJ, Yen RW,de Bustros A, Vertino P, Nelkin BD. Abnormal paRerns of DNA methylafion in human neoplasia:potential consequences for tumor progression[J]. Cancer Cells.1991 Oct; 3(10):383-390.
    [29]Szyf M. DNA methylation properties:consequences for pharmacology[J]. Trends Pharmacol Sci.1994 Jul; 15(7):233-238.
    [30]Fournel M, Sapieha P, Beaulieu N, Besterman JM, MacLeod AR. Down-regulation of human DNA-(cytosine-5)methyltransferase induces cell cycle regulators p16(ink4A)and p21(WAF/Cipl)by distinct mechanisms[J]. J Biol Chem.1999 Aug 20; 274(34):24250-24256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700