女性非选择性人群的骨密度和骨质疏松患病率分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的非选择性人群女性人群的骨密度(BMD)和骨质疏松(OP)患病率及其患病风险是不清楚的,了解非选择性女性人群的OP患病率及其不同疾病组患者的OP患病率和患病风险,对指导临床实践具有重要意义。本研究目的是了解女性非选择性人群的BMD随年龄的变化规律,各种疾病组之间OP患病率的差异,及与健康体检人群比较各疾病组的患病风险。
     方法本研究收集和回顾性分析2000年至2008年之间在骨密度室测量BMD的女性受试者11983例,年龄35-89岁。其中健康体检者4605例(病种组1)、2型糖尿病患者3110例(病种组2)、腰背部骨关节疼痛患者1938例(病种组3)、疑似OP或/和既往骨折患者644例(病种组4)、四肢乏力或/和甲低患者463例(病种组5)、甲亢患者271例(病种组6)和其它疾病患者952例(病种组7)。受试者均由送检医生和BMD测量室工作人员详细填写表格,记录以往主要疾病的诊断结果,测量体重和身高。受试者均采用Hologic Delphi A双能x线的吸收法(DXA)骨密度仪测量腰椎前后位(正位)第1至第4椎体(L1-L4)的投射骨面积(BA)、骨矿含量(BMC)、面积BMD(aBMD)和估算体积BMD(vBMD),测量左侧髋部各骨骼区域,包括股骨颈、大转子、转子内区和总体髋部的投射BA、BMC、aBMD和股骨颈的vBMD。按每10岁年龄段计算各病种不同年龄组的BA、BMC、aBMD和vBMD的平均值,比较不同病种及不同年龄组之间各指标的差异。采用最佳回归模型拟和各病种组的BMD随年龄的变化曲线,比较不同病种组BMD拟和曲线的差异。按照WHO的诊断标准,受试者aBMD或vBMD与峰值比较,低于2.5SD(T值<-2.5)诊断为OP。与健康体检者比较,计算各病种组的OP患病风险(OR)。
     结果(1)本组资料属回顾性分析资料,不同病种组之间的受试者例数存在明显差异,各病种组之间的平均年龄和平均绝经年限也存在差异,其中病种4的平均年龄最大,病种6的平均年龄、平均体重、平均BMI和平均绝经年限最小。病种1至病种7腰椎平均BMC分别为:47.0±10.6 g、45.6±10.3 g、43.3±10.5g、36.9±9.24 g、46.0±10.6 g、49.2±11.0 g和44.6±10.9 g,其中病种4的BMC最低,病种6的BMC最高;股骨颈的平均BMC分别为:3.28±0.612g、3.09±0.617g、3.00±0.629 g、2.62±0.520 g、3.24±0.644 g、3.34±0.627 g和3.07±0.667g,病种4的平均BMC显著低于其它病种组;病种1至病种7总体髋部的平均BMC分别为:25.0±4.83 g、24.0±5.17 g、23.5±5.15g、20.6±4.69 g、24.3±5.05g、25.1±4.90 g和24.1±5.58 g,其中病种4的平均BMC显著低于其它病种组。病种1至病种7腰椎平均aBMD分别为:0.848±0.152g/cm2、0.818±0.145g/cm2、0.786±0.155g/cm2、0.683±0.140 g/cm2、0.842±0.150 g/cm2、0.869±0.152g/cm2和0.808±0.155g/cm2,其中病种4的平均值最低和病种6的平均值最高;股骨颈的aBMD的平均值分别是:0.705±0.123 g/cm2、0.657±0.124g/cm2、0.638±0.127g/cm2、0.556±0.104g/cm2、0.704±0.130 g/cm2、0.709±0.119g/cm2和0.651±0.133g/cm2,其中病种4的aBMD最低和病种3的次之;总体髋部的平均aBMD分别为:0.781±0.132g/cm2、0.744±0.139g/cm2、0.724±0.142 g/cm2、0.631±0.129g/cm2、0.771±0.135g/cm2、0.777±0.130g/cm2和0.739±0.150g/cm2,也是病种4和病种3的平均值显著低于其它病种组。
     (2)各病种组腰椎、股骨颈和总体髋部的aBMD及股骨颈的估算vBMD随年龄的变化关系均采用三次回归模型拟和优度最佳。不同病种组之间BMD拟和曲线的比较,其中疑似OP和骨折组(病种4)各骨骼部位的BMD曲线总是显著低于其它病种组,2型糖尿病组(病种2)的腰椎aBMD的拟和曲线则显著高于其它病种组。病种1、病种2、和病种5股骨颈的aBMD和vBMD的拟和曲线处于较高水平,病种3、病种6和病种7的BMD曲线处于中间水平,并显著低于病种1、病种2和病种5,但显著高于病种4的拟和曲线。在总体髋部,病种4的BMD曲线处于最低水平,显著低于其它病种组;病种6的BMD曲线尽管显著高于病种4,但显著低于病种1、病种2、病种3和病种5的水平。
     (3)不同骨骼部位指标检测总体受试者的OP平均患病率为19.9±7.8%,其中腰椎aBMD和vBMD的阳性检出率分别为32.9%和27.9%,显著高于髋部各骨骼区域指标;股骨颈的aBMD和vBMD的OP检出率分别为20.9%和12.2%,总体髋部aBMD的OP检出率为15.6%;腰椎aBMD和股骨颈aBMD的OP检出率显著高于各自vBMD的OP检出率。采用腰椎aBMD和vBMD、股骨颈的aBMD和vBMD、大转子aBMD、转子内区aBMD和总体髋部aBMD诊断OP,病种1的OP平均检出率为12.9±7.5%、病种2为20.3±7.3%、病种3为26.1±9.1%、病种4为51.1±13.0%、病种5为13.8±6.9%、病种6为11.3±5.5%、病种7为23.2±7.1%,其中病种4的OP平均检出率最高,病种6检出率最低。与健康体检组比较,各病种组的OP患病风险(OR,95%CI)显示,病种2的腰椎和股骨颈分别为1.37(1.27-1.59)和2.07(1.86-2.39),病种3分别为1.97(1.79-2.25)和2.95(2.63-3.42),病种4分别为7.06(6.06-8.46)和9.12(7.86-10.8),病种5分别为1.03(0.87-1.35)和1.08(0.72-1.36),病种6分别为0.74(0.53-1.02)和0.84(0.58-1.12),病种7分别为1.57(1.40-1.96)和2.62(2.28-3.20),其中病种4的OP患病风险大约是体检组的7-9倍,病种2、病种3和病种7的OP患病风险也明显增加,但病种6的OP患病风险明显降低。
     结论本研究揭示了女性非选择性人群及其不同疾病组之间的BMD变化规律和相互之间的差异,比较了不同病种组和各骨骼部位指标的骨质疏松检出率的差异,及与健康体检人群比较各种疾病组患者患骨质疏松的风险。为了解女性非选择性人群的骨量的变化和骨质疏松患病率提供了重要的参考资料,对指导临床诊断和评价骨质疏松具有重要意义。
Objective:
     The prevalence and risk of Osteoporosis(OP) as well as bone mineral density(BMD) in nonselected female population are still unclear. It's of far reaching cilinical importance to understand the prevalence and risk of the nonselected female population with OP in different disorder groups.The study is to know the changes of BMD with age in nonselected female population, the differences in the prevalence of osteoporosis in different disease groups and the risk of OP compared with physical examination population.
     Methods:
     Clinical BMD data of 11983 female cases, measured in the room of bone mineral density, aged between 35-89 years, collected from 2000 to 2008 year were analysed retrospectively.4605 cases of healthy person were specified as group 1,3110 cases of patient with Type 2 diabetes as group 2,1938 cases of patient with joint and lower back pain as group 3, 644 cases with suspect OP and/or fracture as group4,463 cases with Limbs weakness and/or hypothyrodism as group 5,271 cases with hyperthyroidism as group 6,952 cases with other diseases as group 7.All the subjects were tested BMD, weight as well as height by designated doctors.Previous medical history was inquired and detailedly filled form. BA, BMC and aBMD in L-spine (L1-L4) and Left Hip(including Femoral neck, Trochanter, Intertrochanter, Total region) were measured by using dual-energy X-ray ab-sorptiometry (DXA) with a Hologic Delphi A, estimated vBMD in lumbar spine and femoral neck. All groups were stratified by 10-year age groups, and BMD, mean of BA, BMC, aBMD and vBMD of each group were calculated at various skeletal regions, to find the differences among disease groups and age groups.The best-fit regression model was used to describe the changes of BMD curve in different disease groups with age. According to the WHO diagnostic criteria, the peak value of aBMD or vBMD lower than 2.5SD(T value<-2.5) was diagnosed as OP.Compared with healthy group,the risk of suffering OP of each disease group was calculated.
     Results:
     (1)In this retrospective review, there was difference in the number of case, average age and average years since last menstrual period of each disease group. Among them, group 4 had the oldest average age, group 6 was the lowest in all average age, average weight, BMI and duration since menopause. The average BMC in anteroposterior lumbar spine from group1 to group 7 was 47.0±10.6g,45.6±10.3g,43.3±10.5g,36.9±9.24g, 46.0±10.6g,49.2±11.0g and 44.6±10.9g respectively; group 4 had the lowest while group 6 had the most. The average BMC of the femoral neck was 3.28±0.612g,3.09±0.617g,3.00±0.629g,2.62±0.520g, 3.24±0.644g,3.34±0.627g and 3.07±0.667g respectively; group 4 was lowest in all groups. The average BMC of the Total region was 25.0±4.83g,24.0±5.17g,23.5±5.15g,20.6±4.69g,24.3±5.05g, 25.1±4.90g and 24.1±5.58g respectively; group 4 was lower than other groups too.The average aBMD in anteroposterior lumbar spine from group 1 to group 7 was 0.848±0.152g/cm2,0.818±0.145g/cm2, 0.786±0.155g/cm2,0.683±0.140g/cm2,0.842±0.150g/cm2, 0.869±0.152g/cm2 and 0.808±0.155g/cm2 respectively; group 4 had the lowest while group 6 had the highest. The average aBMD in the femoral neck was 0.705±0.123g/cm2,0.657±0.124g/cm2,0.638±0.127g/cm2, 0.556±0.104g/cm2,0.704±0.130g/cm2,0.709±0.119g/cm2 and 0.651±0.133g/cm2 respectively; group 4 was the lowest and group 3 took second place compare with other groups. The average aBMD in the total region was 0.781±0.132g/cm2,0.744±0.139g/cm2,0.724±0.142g/cm2, 0.631±0.129g/cm2,0.771±0.135g/cm2,0.777±0.130g/cm2 and 0.739±0.150g/cm2 respectively; group 4 and group 3 were also lower than other groups.
     (2) The relationships between aBMD, vBMD and age in anteroposterior lumbar spine, femoral neck, total region were analysed by cubic regression model which was the best-fit model.The fitted curves of BMD in group 4 was significantly lower than other groups.The fitted curves of aBMD in anteroposterior lumbar spine of group2 was significantly higher than other groups.The fitted curve of aBMD and vBMD in Neck of group 1,group 2 and group 5 was in a higher level. The fitted curve of BMD in femoral neck of group 3,group 6 and group 7 was in a middle level and significantly lower than group 1,group 2 and group 5,significantly higher than group 4.The fitted curve of BMD in total region of group 4 was in the lowest level, while group 6 significantly was higher than group 4,but significantly had lower than group 1 and group 2 and group 3 and group 5.
     (3)The average prevalence rate of OP was 19.9±7.8% in different bone areas.The positive detection rate of aBMD and vBMD in anteroposterior lumbar spine were 32.9% and 27.9% respectively, which was significantly higher than other areas. The positive detection rate of aBMD and vBMD in femoral neck was 20.9% and 12.2% respectively while aBMD in Total region was 15.6%. The positive detection rate of aBMD in anteroposterior lumbar spine and femoral neck was significantly higher than vBMD of themselves.Diagnosis OP by aBMD and vBMD in anteroposterior lumbar spine, aBMD and vBMD in femoral neck, aBMD in trochanter, aBMD in Inter-trochanter and aBMD in total region, the detection rate from group 1 to group 7 was 12.9±7.5%, 20.3±7.3%,26.1±9.1%,51.1±13.0%,13.8±6.9%,11.3±5.5%,23.2±7.1%, group 4 had highest while group 6 had the lowest. Compared with the healthy group, the risk of OP(OR,95%CI) in anteroposterior lumbar spine and femoral neck was 1.37(1.27-1.59) and 2.07(1.86-2.39) in group 2, 1.97(1.79-2.25)and 2.95(2.63-3.42) in group 3,7.06(6.06-8.46)and 9.12(7.86-10.8) in group 4,1.03(0.87-1.35) and 1.08(0.72-1.36) in group 5,0.74(0.53-1.02) and 0.84(0.58-1.12) in group 6,1.57(1.40-1.96) and 2.62(2.28-3.20) in group 7. The risk of group 4 was about 7-9 times of the healthy group. The risk of group 2,group 3and group 7 increased significantly while the risk of group 6 was decresed significantly
     Conclusions:
     The study reveales that the variation laws of BMD of the nonselected female population with different disorders.The difference of detection rates among each disease group as well as every bone area is compared, so the risk is compared between the healthy group and disease groups. This study provides important reference data for knowing the change of bone mineral content and the prevalence of osteoporosis in non-selective female population, it has great significance for clinical diagnosis and evaluation of osteoporosis.
引文
1 Kanis JA, Melton LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res 1994:1137-1141.
    2 National Osteoporosis Foundation. Fast Fact. http://www.nof.org/diseasefacts.htm
    3 Nagata-Kobayashi S, Shimbo T, Fukui T. Cost-effectiveness analysis of screening for osteoporosis in postmenopausal Japanese women. J Bone Miner Metab 2002;20:350-357.
    4 Wang Y,Tao Y, Hyman ME, Li J, Chen Y.Osteoporosis in china. Osteoporos Int 2009;20(10):1651-62.
    5 Malhotra N, Mithal A. osteoporosis in Indias. India J Med Res 127 2008;127(3):263-268.
    6 Pinheiro MM, Ciconelli RM, Martini LA, Ferraz MB.Clinical risk factors for osteoporotic fractures in Brazilian women and men:the Brazilian Osteoporosis Study (BRAZOS).Osteoporos Int 2009;20(3):399-408.
    7 Lan JM, Riley BH, Wirganowicz PZ. Osteoporosis:diagnosis and treatment. J Bone Joint surg (AM) 1996; 78 (4):618.
    8 Melton LJ3rd, Thamer M, Ray NF, etal.Fractures attributable to osteoporosis:report from the National Osteporosis Foundation. J Bone Miney Res 1997;12:16.
    9 Kanis JA, Oden A, Johnell B, Delaet C, Dawson A(2001)The burden of osteoporotic fractures:a method for setting intervention thresholds. Osteoporos Int 12(5):417-427.
    10 Johnell O, Kanis J(2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(supple2):s3-s7.
    11 Magaziner J, Lydick E, Hawkes W, et al.(1997) Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health 87:1630.
    12 Kanis JA, Johnell O, De Laet C,et al.(2002) International variations in hip fracture probabilities:implications for risk assessment. J Bone Miner Res 17:1237.
    13 Cummings SR and Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761.
    14 Melton LJ,3rd, Gabriel SE, Crowson CS, et al. (2003)Cost-equivalence of different osteoporotic fractures. Osteoporos Int 14:383.
    15 Johnell O and Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726.
    16 Mansell JP, Bailey AJ, Yarram SJ. Could bone tissue be a target for luteinizing hormone/chorionic gonadotropin?Mol Cell Endorcrinol 2007;169:99-106.
    17 Ausmanas MK, Tan DA, Jaisamrarn U,et al. Estradiol, FSH and LH profiles in nine Ethnic groups of postmenopausal Asian women:the Pan-Asia Menopause (PAM) study. Climacteric2007;10(5):427-437.
    18 Riggs BL, Khosla S, Melton LJ 3rd. Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocr rev 2002;23(3):279-302.
    19 Prior JC.FSH and bone-important physiology or not? Trends Mol Med 2006;13:1-3.
    20 Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell 2006;125(2):247-260.
    21 Devleta B, Adem B, Senada S.Hypergonadotropic amenorrhea and bone density:new approach to and old problem. J Bone Miner Metab 2004; 22(4):360-364.
    22 Yu Q, Lin S,He F, et al. Clinical manifestations of low bone mass in amenorrhea patients with elevated follicular stimulating hormone. Clin Med J 2002;115(9):1376-1379.
    23 Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA. Bone mineral density of both genders in Type 1 diabetes according to bone composition. J Diabetes Complications 2006; 20(5):302-307.
    24 Liu EY, Wactawski-Wende J, Donahue RP, Dmochowski J, Hovey KM, Quattrin T. Does low bone mineral density start in post-teenage years in women with Type 1 diabetes? Diabetes Care 2003;26(8):2365-2369.
    25 Schwartz AV. Diabetes Mellitus:Does it Affect Bone? Calcif Tissue Int 2003;73:515-519.
    26 Schwartz AV, Sellmeyer DE. Women, type 2 diabetes, and fracture risk. Curr Diab Rep 2004;4(5):364-9.
    27 Rakic V, Davis WA, Chubb SA, et al. Bone mineral density and its determinants in diabetes:the Fremantle Diabetes Study. Diabetologia 2006; 49(5):863-71.
    28 Dominguez LJ, Muratore M, Quarta E, et al. Osteoporosis and diabetes. Reumatismo 2004; 56(4):235-41.
    29 Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 2007; 18:427-444.
    30 Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes. Diabtes Care 2007;30:835-841.
    31 Huang BK, Goloen LA, Tarjan G, et al. Insulin-like growth factor I production is essential for anabolic effects of thyroid hormone in osteoblast. J Bone Miner Res 2000;15(2):188-197.
    32 Lakatos P, Foldes J, Nagy Z, et al. Serum insulin-like growth factor I, insulin-like growth factor binding proteins, and bone mineral content in hyperthyroidism. Thyroid 2000; 10(5):417-23.
    33 Pantazi H, Papadetrou PD. Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin Endocrinol Metab 2000;85(3):1099-106.
    34 Steinbuch M, Youket TE, Cohen S.Oral glucocorticoid use is associated with an increased risk of fracture.Osteoporos Int 2004;15(4):323-8.
    35 Goldstein MF, Fallon JJ Jr, Harning R. Chronic glucocorticoid therapy-induced osteoporosis in patients with obstructive lung disease. Chest 1999; 116:1733-1749.
    36 Bhattoa HP, Bettembuk P, Balogh A, Szegedi G, Kiss E. Bone mineral density in women with systemic lupus erythematosus. Clin Rheumatol 2002;21:135-41.
    37 Bultink IE, Lems WF, Kostense PJ, et al. Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 2005;52:2044-50.
    38 Garcia R, Leme MD, Garcez-leme LE. Evolution of Brazilian elderly with hip fracture secondary to a fall. Clinics 2006;61(6):539-544.
    39 Vidal El, Coelicm CM, Pinheiro RS,Camargo KR(2006)Mortality with 1 year after hip fracture surgical repair in the elderly according to postoperative period: a probabilistic record linkage study in Brazil osteoporos Int 17(10):1569-1576.
    40 Kelly TL(1992)study protocol QDR reference databases. Hologic Inc Bedford,MA.
    41 Tan LJ, Lei SF, Chen XD, et al.Establishment of peak bone mineral density in southern Chinese males and its comparisons with other males from different regions of china. J Bone Miner Metab 2007;25:114-121.
    42 Lu PW, Cowell CT, Lioya-Jones SA, et al.volumetric bone mineral density in normal subject, aged 5-27years. J Clin Endocrinol Metab 1996;81:1586-1590.
    43 Katzman DK, Bachrach LK, Carter DR, et al. clinical and anthrometric corrlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Netab 1991;73:1332-1339.
    44 Liao EY, Wu XP, Deng XG, et al. Age-Related Bone Mineral Density, Accumulated Bone Loss Rate and Prevalence of Osteoporosis at Multiple Skeletal Sites in Chinese Women. Osteoporos Int 2002;13(8):669-676.
    45 Wu XP, Liao EY, Zhang H, et al. Establishment of BMD reference plots and determination of peak BMD at multiple skeletal regions in mainland Chinese women and the diagnosis of osteoporosis. Osteoporos Int 2004;15(1):71-79.
    46 Liao EY, Wu XP, Luo XH, et al.Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in Chinese women. J Bone Miner Metab 2003;21(3):184-192.
    47钟如意,廖二元,伍贤平,张红,罗湘杭。股骨颈aBMD和vBMD与骨面积的关系及对诊断骨质疏松的影响。中国骨质疏松杂志2008;14(10):718-723.
    48 World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis WHO technical report series 843. Geneva:WHO 1994;10-12.
    49 Hannan MT, Tucker KL, Dawson-Hughes B, et al. (2000) Effect of dietary protein on bone loss in elderly men and women:the Framingham Osteoporos study. J Bone Miner Res 15:2504.
    50 Brooke-Wavell K, Jones PR, Hardman AE, et al.(2001)Commencing continuing and stopping brisk walking:effects on bone mineral density, quantitative ultrasound of bone and marks of bone.metabolism in postmenopaul women. Osteoporos Int 12:581.
    51 Bonaiuti D, Shea B, Lovine R, et al. (2002)Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev:CD 000333.
    52 Karlsson M(2004) Has exercise an antifracture efficacy in women? Scand J Med Sci Sports 14:2.
    53 Zhang H, Ye AL, Liao EY.Change in bone mineral density in female patients with hyperthyroidism. J Cent South Univ(Med Sci) 2008;33(5):452-455.
    54 Xu H,Herrmann E.Changes of bone mineral density and biochemical markers of bone turnover in patients with hyperthyroidism.Chin J Endocrinol Metab 1998;14(4):244-247.
    55 Ba JQ, Chen DK. Effect of age and gender on bone mineral density in patients with hyperthyroidism.Acta Academiae Medicinae Zunyi 2000;23(4):370-371.
    56 Tauchmanova L, Nuzz o V, Del Puente A,et al.Reduced bone mass detected by bone quantitative ultrasonometry and DEXA in pre-and post menopausal women with endogenous subclinical hyperthyroidism.Maturitas 2004;48 (3):299-306.
    57 Quan ML, Pasieka JL, Rorstad O. Bone mineral density in Well-differentiated thyroid cancer patints treated with suppres-sive thyroxine:a systematic overview of the literature. J Surg Oncol 2002;79(1):62-69.
    58 Reverter JL,Holgado S,Alonso N, et al.Lack of deleterious effect on bone mineral density of long-term thyroxine suppres-sive therapy for differentiated thyroid carcinoma. Endocr Relat Cancer 2005;12(4):973-981.
    59 Tan XH, Zhan H, Liu W, Cao XZh. Changes in bone mineral density in female patients with hypothyroidism. China Medical Engineering 2006;14:541-543.
    60 Lakatos P.Thyroid hormones:beneficial or deleterious for bone? Calcif Tissue Int 2003;73(3):205-209.
    61 Liao EY,Wu XP,Liao HJ,et al.Effects of skeletal size of the lumbar spine on areal bone density,volumetric bone density,and the diagnosis of osteoporosis in postmenopausal women in China. J Bone Miner Metab 2004; 22(3):270-277.
    62 Zhong RY, Wu XP.Estimated methods and its values for diagnosis of osteoporosis of volumetric bone mineral density Chin J Osteoporos 2007;13:564-567.
    63 Hou YL, Liao EY, Wu XP, et al. Effects of the sample size of reference population on determining BMD reference curve and peak BMD and diagnosing osteoporosis. Osteoporos Int 2008;19(1):71-78.
    64 Wu XP, Liao EY, Dai RC, et al. Effects of projective bone area size of the spine on bone density and the diagnosis of osteoporosis in healthy pre-menopausal women in China. The British Institute of Radiology 2003;76:452-458.
    65 Garg A,BonanomeA,Grundy SM,et al.Effects of dietary car-bohydrates bohydrates on metabolism of calcium and other minerals in normal subjects and patients with non-ninsulin-dependent diabetes mellitus.J Clin Endocrino 1M etab 1990;70:1007-1013.
    66 Barrett-Connor E, Holbrook TL. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetesmellitus. JAMA 1992;268:3333-3337.
    67 Majima T, Komatsu Y, Yamada T, et al.Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients.Osteoporos Int 2005;16:907-913.
    68 Kathryn M, Lumpkin CK Jr, Bunn RC, et al. Is insulin an anabolic agent in bone?Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005:289:735-745.
    69朱旭萍,伍贤平,周智广等。女性2型糖尿病患者与健康人的骨密度的比较。中国糖尿病杂志2002,10:216-218.
    70 Bilezikian JP, Morishima A,Bell J,et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998;339: 599-603.
    71 De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk:a meta-analysis Osteoporos Int 2005;16(11):1330-8.
    72 Schwartz AV, Sellmeyer DE, Nevitt MC, et al.2000 older women with diabetes have a higher rate of bone loss at the hip. J Bone Miner Res 15:s1;s188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700