快速急冷法制备β-Zn_4Sb_3基热电材料的微结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P型β-Zn4Sb3材料由于具有极低的热导率,因而具有优越的热电性能,在670K时其热电优值ZT可达1.3,是目前极具应用前景的中温热电材料。但由于Zn4Sb3体系本身的材料脆性和在相转变过程中由于热膨胀系数变化而产生的微裂纹,导致材料具有较差的力学性能和可加工性,大大限制了β-Zn4Sb3材料的商业化应用。因此探索新的制备工艺,制备出不仅具有优良热电性能而且具有较高力学强度的块体Zn4Sb3材料是该体系的研究主要任务。
     本论文以p型β-Zn4Sb3基化合物为研究对象,通过结构低维化结合第二相和掺杂手段来改善p型β-Zn4Sb3化合物的热电、力学性能。探索了熔体旋甩(MS)结合放电等离子烧结(SPS)技术制备β-Zn4Sb3化合物的可能性,揭示了MS-SPS过程中材料的相转变过程及微结构的形成规律,研究了MS工艺对材料热电、力学性能的影响规律;在此基础上,通过原位生成Zn第二相和Cd掺杂的方法进一步提高了β-Zn4Sb3化合物的热电、力学性能。主要研究内容和研究结果如下:
     探索了熔体旋甩快速凝固(MS)结合放电等离子快速烧结(SPS)制备具有纳米结构β-Zn4Sb3块体材料的可能性。直接以熔融法制备的锭块为母合金,单相的母合金经MS处理后得到含有Zn3Sb2、ZnSb、Zn4Sb3多相组成的薄带产物;MS过程中铜辊转速对薄带产物的微结构有显著影响,铜辊转速越高,得到的薄带产物晶粒更加细小,成分分布更加均匀;经过SPS烧结后,多相的薄带产物在短时间的SPS烧结过程中转变为单相的β-Zn4Sb3致密化合物,而且薄带中精细的纳米结构被保留在SPS烧结后的块体中,形成具有多尺度纳米结构的块体材料;相比于直接熔融法制备的β-Zn4Sb3化合物,MS-SPS样品的Seebeck系数显著增加,热导率大幅度降低,ZT值得到了大幅的提高,所有MS-SPS样品的ZT值均达到1.0左右;另外,MS-SPS样品与熔融法制备的样品相比,力学强度也得到大幅提高。
     通过调节Zn的原始组成,研究了第二相Zn和ZnSb对MS-SPS技术制备β-Zn4+xSb3化合物热电、力学性能的影响。原始组成Zn微量过量或不过量时,由于在制备过程中Zn的挥发会导致最终块体材料中产生ZnSb第二相,而ZnSb第二相会严重劣化材料的热电性能;而适度过量的Zn不仅可以有效弥补在制备过程中Zn的挥发,且随着Zn过量程度的增加会使块体材料中产生弥散分布的纳米Zn第二相,这种纳米金属Zn第二相对材料的热电、力学性能有良好的作用;金属第二相Zn有效的提高了材料的电导率,优化了材料的电热输运特性,因此提高了材料的热电优值ZT,其中,Zn4.32Sb3样品具有最好的热电优值ZT,在700K时达到了1.13;另外,金属相的Zn第二相可以有效地改善材料的力学性能,主要是由于金属第二相的塑性变形可以吸收弹性应变能的释放量,改善脆性材料的强度。
     采用熔融法传统工艺及MS-SPS技术制备了Cd掺杂的β-Zn4Sb3化合物。研究表明熔融法制备的Zn4-xCdxSb3化合物中当x<0.15时可以得到单相的β-Zn4Sb3化合物,当x=0.15时,产物的XRD图谱中出现Cd的特征峰,说明Cd在β-Zn4Sb3化合物中的固溶极限x<0.15;通过Cd掺杂调节了β-Zn4Sb3化合物的电热输运特性,随着Zn4-xCdxSb3化合物中Cd掺杂量x的增加,样品的载流子浓度降低,而载流子迁移率变化不大;x<0.15时,随着Cd含量x的增加,材料的电导率略有降低,Seebeck系数增加,同时样品的热导率随着Cd掺杂量x的增加而显著降低,因此最终材料的热电优值ZT得到了提高;由于熔融法制备的Zn4-xCdxSb3化合物仍具有较高的热导率,因此我们通过MS-SPS技术制备了Zn3.95Cd0.05Sb3样品,MS工艺的引入使块体材料具有低维结构,相比与熔融法制备的该组成样品,热导率大幅降低,因此MS-SPS法制备的Zn3.95Cd0.05SB3样品具有较高的热电优值ZT,在700K时达到了1.20。
P-typeβ-Zn4Sb3 compound has become one of the most promising thermoelectric (TE) materials because it has exceptional thermoelectric properties in the intermediate temperature range. The maximum ZT value reaches 1.3 at 670K because of its extremely low thermal conductivity originated from its complex crystal structure. While the fragility and the microcracks result from the phase transition greatly decrease the mechanical property and process ability, which limits its commercial application. Therefore, to fabricateβ-Zn4Sb3 bulk material with not only high thermoelectric performance but also high mechanical durability is of vital significance.
     In this research, we focus on p-typeβ-Zn4Sb3 compound. The thermoelectric properties and mechanical properties are expected to be improved by obtaining low-dimensional structure combining doping or producing second phase material methods. We explore the feasibility of preparing the nanostructuredβ-Zn4Sb3 bulk material by combining melt-spinning (MS) with spark plasma sintering (SPS) technique, study the phase transform and the microstructure formation during the MS processes, and the influences of MS process on TE properties and mechanical properties are investigated. Base on the above research works, we study the influences of second phase and doping element on TE properties and mechanical properties for MS-SPS materials. The main obtained results are as follows:
     We developed a novel synthesis technique that is MS-SPS method to quick prepare nano-structured p-typeβ-Zn4Sb3 bulk material. The ingots prepared by melting method are used as starting materials. After MS treatment, the single phase ingot transforms into multi-phase ribbons containing not only Zn4Sb3 but also Zn3Sb2 and ZnSb. The process parameter of MS process (linear speed of the spinning cooper wheel) has great influences on the microstructure of MS ribbons. With higher linear speed of the spinning cooper wheel, we can get ribbons with smaller grain size. After SPS treatment, the multi-phase ribbons can be transformed to single-phaseβ-Zn4Sb3 in a very short time, and the nanostructure induced by melt spinning technique can be preserved after SPS processing. Compared with the sample prepared by the traditional melting method (M-ingot), the Seebeck coefficient of the MS-SPS samples increases significantly and the thermal conductivity decreases remarkably, which leads to a great improvement in the thermoelectric figure of merit (ZT). Moreover, the mechanical strength of the MS-SPS samples has great improvement compared with M-ingot sample.
     By adjusting the amount of Zn, we studied the influences of Zn and ZnSb second phase on TE properties and mechanical properties of MS-SPSβ-Zn4+xSb3 compounds. With a little Zn excess (x<0.08), we can get (3-Zn4Sb3 bulk material containing ZnSb second phase because of Zn volatilization during preparation. And ZnSb phase has bad influence on the TE performance ofβ-Zn4Sb3 material. While moderately superfluous Zn improves the electrical transport properties significantly. Excess Zn may lead to nano-scalled second Zn phase dispersed on the boundary which optimizes the electrical and thermal transport properties, and leads to an improvement on the ZT value. The ZT value of Zn4.32Sb3 sample reaches 1.13 at 700K. Moreover, the Zn second phase has good influence on the mechanical properties. With the increase of Zn content, the mechanical properties of the MS-SPS samples increase greatly.
     A range of Zn4-xCdxSb3 compounds are synthesized using a traditional melting method and MS-SPS method. The results show that we can get single phase Zn4Sb3 material when x<0.15, and we can find Cd peaks in XRD patterns of Zn3.85Cd0.05Sb3. It means that the solid solubility limit of Cd in the Zn-Sb system is x<0.15. With increasing Cd content x, the room-temperature carrier concentration of Zn4-xCdxSb3 compounds decreases, while the carrier mobility is nearly unchanged. For Zn4-xCdxSb3 compounds (x< 0.15), the electrical conductivity and thermal conductivity decrease with increasing x, while the Seebeck coefficient raises largely. So this leads to a great improvement in the ZT value, the maximum ZT value of 1.05 is obtained at 700K for Zn3.90Cd0.10Sb3 sample prepared by melting method. Because of high thermal conductivity, the ZT values of the Zn4-xCdxSb3 samples prepared by melting method are rather low. So we adopt MS-SPS method to prepare the Zn3.95Cd0.05Sb3 sample with lower thermal conductivity. The results show that the MS-SPS Zn3.95Cd0.05Sb3 sample has fine nanostructure and so has very low thermal conductivity. Compared with the sample prepared by melting method, the ZT value of MS-SPS Zn3.95Cd0.05Sb3 sample is largely improved, reaching 1.20 at 700K.
引文
[I]Sales B. C., Thermoelectric materials:Smaller is cooler, Science,2002 295:1248.
    [2]DiSalvo F. J., Thermoelectric cooling and power generation, Science,1999,285:703-706.
    [3]Leong D., Harry M., Reeson K. J., et al., A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm, Nature,1997.387:685-686.
    [4]Service R. F., Semiconductor advance may help reclaim energy from'lost'heat, Science, 2006.311:1860-1861.
    [5]Rowe D. M., CRC Handbook of Thermoelectrics, Boca Raton, CRC Press, Interscience Publishers,1995.105.
    [6]Guff K. F., Horst R. B., Weaver J. L., Thermomagmetic figure of merit and ettingshausen cooling in Bi-Sb alloys, Applied Physics Letter,1963.145.
    [7]Rowe D. M., Bhandari C. M., Modern Thermoelectricity, Holt Rinchalt and Wiston London,1983.28.
    [8]Sales, B. C., et al., Atomic displacement parameters:a useful tool in the search for new thermoelectric materials, Materials Research Society Symposium-Proceedings,1999. 545:13-15.
    [9]Yoon C. O., Moses M. D., et al., Transports in blends of conducting polymers, Synthetic Metals,1995.69:255-258.
    [10]Yim W. M., Rosi F. D., Compound tellurides and their alloys for Peltier cooling-A review, Solid State Electronics,1972.15:1121-1138.
    [11]Hsu K F, Loo S, Fu G, et al. Cubic AgPbmSbTe2+m:bulk thermoelectric materials with high figure of merit. Science,2004,303:818-821
    [12]Skrabeck E. A. and Trimmer D.S., Thermoelectric Handbook, Edited by D.M. Rowe (CRC. Boca Raton,Fl).1995.274-275.
    [13]刘恩科,朱秉升,罗晋生等.半导体物理学.北京,国防工业出版社,1994.286-294.
    [14]Mahan G.D. and Bartkowiak M. Wiedemanm-Franz law at boundaries. Applied physics Letters,1999.74(7):953-954.
    [15]T. M. Tritt, G. S. Nolas, G. A. Slack, et al. Journal of Applied Physics,1996.79: 8412-8418.
    [16]B. C. Sales, D. Mandrus, Science,1996.272:1325-1328.
    [17]Tritt T. M., Holey and unholy semiconductors. Science,1999.283:804-805.
    [18]Noda Yasutoshim Mizuno Kaoru, Kang Yan-sheng, et al. preparation and properties of thermoelectric materials for intermediate temperature range applications. Journal of the Japan Institute of Metals,1999.63(11):1448-1453.
    [19]Kishimoto K. and Koyanagi T. Prepartions of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. Journal of Applied physics,2002.92(5): 2544-2549.
    [20]Yang J., Aizawa T., Yamamoto A., Ohta T., Thermoelectric properties of p-type (Bi2Te3)(x)(Sb2Te3)(1-x) prepared via bulk mechanical alloying and hot pressing, Journal of Alloys and Compounds,2000.309:225-228.
    [21]Rogacheva E I, Nashchekina O N, Meriuts A V, et al. Dresselhaus G. Quantum size effects in n-PbTe/p-SnTe/n-PbTe heterostructures. Appl. Phys. Lett.,2005.86:063101-063103
    [22]Slack G. A., Hussain M. A., The maximum possible conversion efficiency of silicon-germanium thermoelectric generators, Journal of Applied Physics,1991.70: 2694-2718.
    [23]Hirano T., Teraki J., and nishio Y. Computational design for functionally graded thermoelectric materials. Materials Science Forum,1999.308-311:641-646.
    [24]Koizumi M. FGM activities in Japan. Composites Part B:Engineering,1997.28(1-2):1-4.
    [25]Imai Y., Shinohara S., Nishida I. A., et al. Joint of n-type PbTe with Different Carrier Concentration and its Thermoelectric Properties, in Functionally Graded Materials 1996. Elsevier Science B. V.:671-622.
    [26]Shingu P. H., Ishihara K. N., Otsuki A., et al. Nano-scaled multilayered bulk materials manufactured by repeated pressing and rolling in the Ag-Fe and Cu-Fe systems. Materials Science Forum,1999.312:293-298.
    [27]Koshigoe M., Kudo Y., Hashimoto M., et al. Thermoelectric properties of segmented Bi2Te3/PbTe, in Xvii International Conference on Thermoelectrics, Proceedings ICT 98. 1998, IEEE:New York.479-482.
    [28]Koshigoe M., Shiota I., and Nishida I. A. Expansion of utilizing temperature range of Bi2Te3/PbTe by FGM forming. Materials Science Forum,1999.308-311:693-698.
    [29]Huong N. T., Setou Y, Nakamoto G, et al. High thermoelectric performance at low temperature of p-Bil.8Sb0.2Te3.0 grown by the gradient freeze method from Te-rich melt. J. Alloys Compd.,2004,368,44-50.
    [30]Yamashita O., Sugihara S, High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit. J. Mater. Sci.,2005.40:6439-6444.
    [31]Kim S. S., Yamamoto S and Aizawa T. Thermoelectric properties of anisotropy-controlled p-type Bi-Te-Sb system via bulk mechanical alloying and shear extrusion. J. Alloys Compd.,2004.375:107-113.
    [32]Yang J. Y., Aizawa T., Yamamoto A., et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1-x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd.,2000.312:326-330.
    [33]Poudel B., Hao Q., Ma Y., et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science,2008.320:634-638.
    [34]Xie W. J., Tang X. F., Yan Y. G., et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett.,2009.94(102111):1-3.
    [35]Xie W. J., Tang X F, Yan Y G, et al. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure, Journal of Applied physics,2009.105(113713):1-7.
    [36]Tang X F, Xie W J, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, Appl. Phys. Lett.,2007. 90(012102).1-3.
    [37]Jansen M. V., Hoppe R., Notiz Zur Kenntnis der Oxocobaltata des naturiums, Zeitschrift fur Anorganische and Allgemeine Chemie,1974.408:104.
    [38]Orihashi M., Noda Y., and. Chen L. D., et al, Effect of tin content on thermoelectric properties of p-type lead tin telluride, Journal of Physics and Chemistry of Solids,2000.61: 919-923.
    [39]Labotz R. J., Mason D. R., kane D. F., Cadmium diffusion studies of PbTe and Pb1-xSnxTe, Journal of The Electrochemical Society,1979.8:99.
    [40]Crocker A. J., The role of sodium in lead telluride, Journal of Physics And Chemistry of Solids,1967.28:1903-1912.
    [41]Tang X. F., Chen L. D., Goto T., et al., Synthesis and thermoelectric properties of filled skutterudite compounds CeyFexCo4-xSb12 by solid state reaction, Journal of Materials Science,2001.36:5435-5439.
    [42]Tang X. F., Li H., Zhang Q. J., et al., Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFex-Co4-xSb12, Journal of Applied Physics,2006.100:123702.
    [43]Tang X. F., Zhang, Q. J., Chen L. D., et al., Synthesis and thermoelectric properties of p-type-and n-type-filled skutterudite RyMxCo4-xSb12(R:Ce,Ba,Y; M:Fe,Ni), Journal of Applied Physics,2005.97:093712.
    [44]唐新峰,陈立东,後藤孝等,n型BayNixCo4-xSb12化合物的热电性能,物理学报,2002. 51:2823-2828.
    [45]唐新峰,陈立东,王军等,RyMxCo4-xSb12化合物的晶格热导率,物理学报,2004.53:1463-1468.
    [46]Chu Y., Tang X. F., Wan L., Zhao W. Y., and Zhang Q. J., Synthesis of nano-skutterudite compound powder by cross-coprecipitation method, Journal of Inorganic Materials,2006. 21:298-302.
    [47]Toprak S. M., Christian S., Dieter P., et al. The impact of nano-structure on the thermal conductivity of thermoelectric CoSb3, Advanced Functional Materials,2004.14: 1189-1196.
    [48]Sales B.C., Mandrus D., Williams R. K., Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials, science.1996.272:1325-1328.
    [49]Li H., Tang X. F., Zhang Q. J., et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Applied Physics Letter,2009. 94(102114):1-3.
    [50]Terasaki I., Sasago Y., Uchinokura K., Large thermoelectric power in NaCo2O4 single, Physical Review B,1977.56:685.
    [51]Mikami, M., et al., Bi-substitution effects on crystal structure and thermoelectric properties of Ca3Co4O9 single crystals, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2006.45:4131.
    [52]Moon J. M., Masude Y., Seo W. S., Ca-doped HoCoO3 as p-type oxide thermoelectric material, Materials Letters,2001.48:225.
    [53]Fujita K., Mochida T., and Nakamura K., High-temperature thermoelectric properties of NaxCoO2-delta single crystals.Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2001.40(7):4644-4647.
    [54]Ito M., Nagira T., Furumoto D., et al. Synthesis of NaxCoO2 thermoelectric oxides by the polymerized complex method. Scripta Materialia,2003.48(4):403-408.
    [55]Nolas G. S., Cohn J. L., Slack G. A., et al., Schjuman, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Applied Physics Letters,1998.73: 178-180.
    [56]Sales, B.C., Chakoumakos B. C., Mandrus D., et al., Atomic displacement parameters and the lattice thermal conductivity of clathrate-like thermoelectric compounds, Journal of Solid State Chemistry,1999.146:528-532.
    [57]Schujmana S. B., Nolas G. S., Young R. A., Structural analysis of Sr8Ga16Ge30 clathrate ompound, Journal of Applied Physics,2000.87:1529-1533.
    [58]Kuznetsov V. L., Kuzentsova L. A., Kaliazin A. E., et al., Preparation and thermoelectric properties of A8ⅡB16ⅢB30Ⅳ clathrate compounds, Journal of Applied Physics,2000.87: 7871-7875.
    [59]Matsui, T., Furukawa J., Tsukamoto K., et al., Structure and properties of Ba8Ga16Ge30 clathrates by a novel synthesis method using CO gas reductive atmosphere, Journal of Alloys and Compounds,2005.391:284-287.
    [60]Saramat A., Svensson G., Palmqvist A. E. C., et al., Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge3o, Journal of Applied Physics, 2006.99:023708.
    [61]Kim J. H., Okamoto N. L., Kishida K., et al. High thermoelectric performance of type-Ⅲ clathrate compounds of the Ba-Ge-Ga system. Acta Materialia,2006.54(8):2057-2062.
    [62]Ponnambalam V., Gao X., Lindsey S., et al. Thermoelectric properties and electronic structure calculations of low thermal conductivity Zintl phase series M16X11 (M=Ca and Yb; X=Sb and Bi). Journal of Allys and Compounds,2009.484(1-2):80-85.
    [63]May, A.F., Toberer E. S., Snyder G. J., Transport properties of the layered Zintl compound SrZnSb2. Journal of Applied Physics,2009.106(013706):1-4.
    [64]Bobev S., Fritsch V., Thompson J. D., et al. Synthesis, structure and properties of the new rare-earth Zintl phase Yb11GaSb9, Journal of Solid State Chemistry,2005.178(4): 1071-1079.
    [65]Gascoin F., Ottensmann S., Stark D., et al. Zintl phases as thermoelectric materials:Tuned transport properties of the compounds CaxYb1-xZn2Sb2, Advanced Functional Materials, 2005.15(11):1860-1864.
    [66]Mayer H. W., Milahail I., Schubert K., J. Less Common Met.1978.59:43.
    [67]Tapiero M., Tarabichi S., Gies J. G., et al, Sol. Energ. Mater.1985.12,257.
    [68]Snyder G. J., Christensen M., Nishibori E., et al, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater.2004.3:458-463.
    [69]Cargnoni F., Nishibori E., Rabiller P., et al, Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3:A Combined Maximum Entropy Method X-ray Electron Density and AbInitio Electronic Structure Study, Chem. Eur. J.,2004.10: 3861-3870.
    [70]Bhattacharya S., Hermann R. P., Keppens V., et al, Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3, Phys. Rev. B.2006.74(134108): 1-5.
    [71]Spitzer D., Phys J.. Chem. Solids,1970.31:19-25.
    [72]Nolas G. S., Poon J., and Kanatzidis M. G., MRS Bull.2006.31:199-205.
    [73]Caillat T., Fleurial J., and Borshchevsky A., Preparation and Thermoelectric Properties of Semiconductivity Zn4Sb3, J. Phys. Chem. Solids,1997.58:1119-1125.
    [74]Izard V., Record M. C. et al. Mechanical alloying of a new promising thermoelectric material, Sb3Zn4. Journal of Alloys and Compounds,2002.345:257-264.
    [75]Izard V., Record M. C. et al. Discussion on the Stability of the Antimony-Zinc Binary Phases, Calphad,2001.25:567-581.
    [76]Mozharivskyj Y., Alexandra O., Pecharsky et al. A Promising Thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-δSb. Chemistry Material,2004.16:1580-1589.
    [77]祁琼,唐新峰等.过量Zn对β-Zn4Sb3热电性能影响的研究.物理学报,2006.55:5539-5544.
    [78]Pedersen B. L. and Iversen B. B., Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis, Appl. Phys. Lett.2008.92(161907):1-3.
    [79]Liu F., Qin X. Y. et al. Thermoelectric properties of (Zn0.98M0.02)4Sb3(M=Al, Ga and In) at low temperatures. Physics D:Applied Physics,2007.40:7811-7816.
    [80]Litvinchuk A. P., Nylen J., Lorenz B., et al. Optical and electronic properties of metal doped thermoelectric Zn4Sb3, Journal of Applied Physics,2008.103(123524):1-6.
    [81]Koyanagi T., Hino K., Nagamoto Y., et al. Thermoelectric properties of β-Zn4Sb3 Doped with Sn.16th International Conference on Thermoelectrics,1997.97:463-469.
    [82]Ugai Y. A., Marshakova T. A., Shevchenko V. Y et al. Inorg. Mat.1969.5:1180-1189.
    [83]Caillat T., Borshchevsky A., Fleurial J., Proc. Mat. Res. Soc. Symp.,1997.478:103
    [84]Kuznetsov V. L., Rowe D. M. Solid solution formation in the Zn4Sb3-Cd4Sb3 system, Journal of Alloys and Compounds,2004.372(1-2):103-106.
    [85]Nakamoto G, Souma T., Yamaba M., et al. Thermoelectric properties of (Zn1-xCdx)4Sb3 below room temperature, Journal of Alloys and Compounds,2004.377:59-65.
    [86]Ahmadpour F., Kolodiazhnyi T., Mozharivskyj Y., Structural and physical properties of Mg3-xZnxSb2 (x=0-1.34), Journal of Solid State Chemistry,2007.180(9):2420-2427.
    [87]Pedersen B. L., Birkedal H., Nishibori E., et al. Hg0.04Zn3.96Sb3:Synthesis, Crystal Structure, Phase Transition, and Thermoelectric Properties, Chem.Mater.,2007. 19:6304-6311
    [88]Li D., Hng H.H. and Ma J., Effects of Nb doping on thermoelectric properties of Zn4Sb3 at high temperatures, J. Mater. Res., Vol.2009.24(2):430-434.
    [89]Zhang L. T., Tsutsui M., Ito K., et al. Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3. Journal of Alloys and Compounds,2003.358:252.
    [90]陈光,傅恒志等.非平衡凝固新型金属材料.北京,科学出版社,2004.100-104.
    [91]程天一,章守华.快速凝固技术与新型合金.北京,宇航出版社,1990.31-35.
    [92]Hui X. D., Wang J. G., Han L., et al., Fabrication and structure of ripidsolidified Nd-Fe-B thick ribbons, J Univ Sci Technol. B.,2004.26:69-72.
    [93]Xu C. L., Wang H. Y., Qiu F., et al., Cooling rate and microstructure of rapidly solidified Al-20 wt.% Si alloy, Materials Science and Engineering A,2006.417:275-280.
    [94]Khoa T. V., Sun D. S., Ha N. D., et al., Effect of cooling rate and concentration of Ga on the microstructure and magnetic property of NdFeCoGaB ribbons, Journal of Magnetism and Magnetic Materials,2006.304:e246-e248.
    [95]Wider H. H.[美],李汉达译,半导体材料电磁性能参数的测量,北京,计量出版社,1986:14.
    [96]Xue J., and Taylor R., An Evaluation of Specific Heat Measurement Methods Using the Laser Flash Technique, International Journal of Thermophysic,1993.14(2):313-320.
    [97]Parker W. J., Jenkins R. J., et al., Flash Method of Determing Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics,1961.32(9):1679-1684.
    [98]K. Ueno, A. Yamamoto, T. Noguchi, et al., Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance I. Physical properties and thermoelectric performance, J. Alloys Compounds,2004.384:254-260.
    [99]关振铎,张中太,焦金生,无机材料物理性能,北京,清华大学出版社,2004,81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700