纳米添加物的粒径对聚合物纳米复合介质电荷输运特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
s
     无机纳米/聚合物复合材料在宏观上表现出区别于普通聚合物介质的特殊性能,特别是在光、电、磁和热等方面展示出广阔的应用前景,已成为材料科学中的一个令人关注的研究方向。当前,在电气绝缘领域,多数学者主要以交联聚乙烯与低密度聚乙烯等为基础材料,进行不同浓度及不同种类无机纳米复合材料的各种介电特性的初步研究。但是,从研究的深度和广度方面来讲,对聚合物纳米复合材料的介电性能的研究仅停留在不同种类的添加剂上,对相同种类不同粒径以及含有不同表面处理剂的纳米微粒形成的复合介质的介电性能的研究还少有相关报道。
     本文采用LDPE作为基料,以亲水性与疏水性两种表面处理剂下的7种不同粒径SiO_2纳米颗粒作为添加剂制备复合介质试样。以电声脉冲法(Pulsed Electro-acoustic Method)进行了复合材料空间电荷分布的测量,研究表明浓度增大后,各粒径对空间电荷的抑制效果较好;进行了交流、直流正极性与负极性击穿试验,并用Weibull分布对试验结果进行了统计分析,试验结果表明不同表面处理对复合介质的击穿场强的影响较大,且亲水性纳米SiO_2/LDPE复合介质的击穿场强普遍比疏水性纳米SiO_2/LDPE复合介质的击穿场强低;采用强场电导测试系统进行了高场下的电导测试,结果表明2wt%浓度下,各试样高场电导率随粒径增大而逐渐增大;最后,以Agilent公司生产的宽频介电谱仪进行了复合材料介电谱的研究,研究表明各试样的介电常数相差不大,其中以7nm/2wt%复合介质的介电常数最小。
Inorganic nanocomposite polymer materials shows some unexpected characteristics such as heat、light、electricity、magnetics in macro way compared to common polymers and demonstrates broad application prospects. It has become a concerning research hotspots in material science. At present, many scholars mainly make the cross-linked polyethylene and low-density polyethylene as the basic materials and make various preliminary dielectric property study based on several concentrations of different inorganic nano-composite materials. However, in terms of study depth and breadth, the dielectric properties study of the nanocomposite polymer materials also stay in different additives. The additive of the same types but different size or different surface treatment is rarely reported.
     This article adopts LDPE as the base material and seven kinds of SiO_2 nano-particles under hydrophilic and hydrophobic surface modification as the additives. The PEA(Pulsed Electro-acoustic Method) was used to measure space charge distribution of nanocomposite polymer materials, the study findings shows that the inhibitory effect of all kinds of particle size on space charge become better when the concentration increases. The AC, positive and negative DC breakdown test were carried out, and Weibull distribution was used to make statistical data analysis on the test results. The experiments results shows that different surface treatment has big impact on the breakdown strength of nanocomposite polymer materials, and the breakdown strength of hydrophilic nano SiO_2/LDPE composite generally smaller than those of hydrophobic nano SiO_2/LDPE. High field conductivity test system was adopted to make high field conductivity tests. The test results shows that under the 2wt% concentration, and the high-field conduction of all samples increase with the particle size increase. At last, 4294A broad band dielectric spectrometer of agilent company was used to make the study of dielectric spectra, the study shows that the difference of dielectric constant is smaller in all samples, and 7nm/2wt% concentration of nanocomposite polymer materials has the smallest dielectric constant.
引文
[1]黄锐,王旭,李忠明.纳米塑料.中国轻工业出版社.2002
    [2]张立德,牟季美著.纳米材料和纳米结构.科学出版社,2001
    [3]张俊虎,杨柏.无机纳米微粒在聚合物中的复合组装塑料.2000,29(2),pp:4~8
    [4] Okanloto T, M.Koyanla, Inoue Y, et al. Dielectric property of composites made with polyethy1ene, boron nitride and carbon black. 2002 Annual Report, CEIDP, PP:574~577
    [5] Fukunag H, Kuma J, Kanai Y. Effect of strength of lntergrain exchange interaction on maglletic properties of nanocomposite magnets. IEEE Trans.on magnetics, 1999,35(5), PP:3235~3240
    [6]王立新,张福强,姜云鹏等.Ppy/SiO_2纳米复合材料导电机理的研究.功能材料,1999,30(3),pp:302~303
    [7]陈昊,刘俊,何明鹏等.纳米氧化铝改性聚酰亚胺薄膜的制备与表征.哈尔滨理工大学学报,2009,14(2):90~94
    [8]何恩广,刘学忠.纳米TiO2填料对变频电机耐电晕电磁线绝缘性能的影响.电工技术学报,2003,18(1):72~76
    [9]李鸿岩,郭磊,刘斌等.聚酰亚胺/纳米AlB2BOB3B复合薄膜的介电性能.中国电机工程学报,2006,26(20):166~170
    [10]袁鹏亮,殷景华,李国华等.不同组分对PI/AlB2BOB3B复合薄膜的击穿性能和微观形貌的影响.绝缘材料,2008,41(4):38~41
    [11]冯军强,徐曼,郑晓泉等.Ag/PVA纳米聚合物基复合材料的制备及其电性能研究.中国电机工程学报,2004,24(6):92~95
    [12]成霞,陈少卿,王霞等.纳米ZnO对聚乙烯电老化过程中空间电荷及击穿特性的影响.绝缘材料,2008,41(4):44~48
    [13]张晓虹,高俊国等.PE/MMT纳米复合材料的电击穿与耐局放性能.高电压技术,2008,34(10):2124~2128
    [14]王坤,张维国等.无机纳米杂化聚酰亚胺薄膜的制备及耐局部放电特性.哈尔滨理工大学学报,2004,9(1):47~49
    [15]刘学忠,徐传骧.纳米无机粉末填充电磁线漆的介电特性研究.中国电机工程学报,2004,24(10):143~147
    [16]张沛红,薛玉翠等.无机纳米一聚酰亚胺复合薄膜介电性研究.哈尔滨理工大学学报,2009,14(2):98~102
    [17]尹毅,陈炯等.纳米SiOx/聚乙烯复合材料强场电导特性的研究.电工技术学报,2006,21(2):22~26
    [18]孙兆奇,何玉平. Cu-MgFB2B复合纳米金属陶瓷薄膜的电导特性研究.物理学报,2003,52(6):1455~1460
    [19] Mitsumoto S, Nagao M, Kosaki M. High-field conduction and space charge distribution in acetophenone -coated polyethylene film. Proceeding of the 5th international conference on properties and applications of dielectric materials May25-30, Seoul, Korea. 1997,pp:806~809.
    [20] Suzuoki Y, Cai G and Ieda M. Effects of interface on electrical conduction in polyethylene-(ethylene-vinyl acetate) copolymer composites. Phys. D: Appl. Phys. 1984.vol.17,pp:141~146
    [21] Mizutani T. Semi H. Kaneko, K. Space charge behavior in low-density polyethylene. IEEE Trans.on DEI 2000,7(4),pp:503~508
    [22] Lewis T J. Nanometric dielectrics. IEEE Trans.on DEI, 1994,1(5):812~825
    [23] Roy M, Nelson J K, MacCrone R K, et al. Polymer Nanocomposite Dielectrics–The Role of the Interface. IEEE Trans.on DEI, 2005,12(4):629~643
    [24] Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans.on DEI. 2004,11(5):739~753
    [25] Tanaka T, Kozako M, Fuse N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEETrans.on DEI, 2005,12(4):669~681
    [26] Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Trans.on DEI, 2005,12(5):914~928
    [27]陈季丹,刘子玉.电介质物理学.机械工业出版社,1980
    [28]杜宏伟,孔瑛,Ying Z.聚酰亚胺/TiOB2B有机-无机纳米复合膜材料的合成与表征.高分子材料科学与工程, 2004,(01):83~86
    [29]李德泉,张树平.纳米聚合物复合材料开发与技术.甘肃科学学报,2002,14(2):61~65
    [30]胡显奎,林少全,刘振兴.聚合物基无机纳米粒子复合材料的制备技术及应用展望.材料导报, 2000,14(10):62~63
    [31]李振中,李东红,温变英.无机纳米粒子填充改性聚合物的研究进展.塑料,2001,30(1):44~48
    [32]安秋风,郭锟.纳米SiO_2表面改性及其在复合材料中的研究进展.中国粉体工业,2007,6:15~20
    [33] Dang Zhimin, Kang Jie, Tu Demin. Relationships between space charge accumulation and electrical for water treeing in improved PE and XLPE by ethylene-acrylic acid copolymer. Proceedings of of the 6th international conference on properties and applications of dielectric materials. June 21-26,2000, Xi'an Jiao Tong University,Xi'an,China, pp:75~78
    [34]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究.中国电机工程学报,2002,22(1),pp:43~48
    [35]李吉晓,张冶文,夏钟福等.空间电荷在聚合物老化和击穿过程中的作用.科学通报,2000,45(23),pp:2469~2476.
    [36] Zheng Feihu, Zhang Yewen, Xiao Chun, et al. Space charge breakdown in PMMA without applied field. Proceedings of 2005 International Symposium on electrical insulation materials, June 5-9,2005, Kitakyushu, Japan, pp:356~359
    [37] Boufayed F, Leroy S, Teyssedre G, et al. Models of bipolar charge transport in Polyethylene Applied Phys, 2006, 100:104105~104115
    [38] Montanari G C. Extration of information from space charge measurements and correlation with insulation ageing. Proc. IEEE CSC, France, 2001, 2001:178~184
    [39] Gao L Y, Tu D M, Zhou S C. The influence of morpho1ogy on the electrical breakdown strength of polypropylene film. IEEE Trans.on DEI, 1990,25(3), pp:535~540.T
    [40] Ieda M, Nagao M, Hikita M. .High-field conduction and breakdown in insulating polymers present situation and future prospects. IEEE Trans. Vol.1,No.5,1994, pp:934~945
    [41] Khalil M S. The role of BaTiOB3B in modifying the de breakdown strength of LDPE. Vol.7,No.2,2000, PP:261~268
    [42]王乐,徐曼,孙颖等.纳米银/环氧树脂复合物的电阻和击穿特性研究.绝缘材料,2006,39(4):37~40
    [43] Pelissou S, Bencaad P, G L H. Electrical properties of matallocene polyethylene. 2004 internet conference on solid dielectrics, Paris, 2004:466~469
    [44] Ueki M M, Zanin M. Influence of additives on the dielectric strength of high-density polyethylene. IEEE Transactions on Dielectrics and electrical insulation, 1999,6(6):876~881
    [45]张晓虹,高俊国,张金梅.PE/MMT纳米复合材料的电击穿与耐局放性能.高电压技术,2008,34(10):2124~2128
    [46]曹晓珑,徐曼,刘春涛.纳米添加剂对聚合物击穿性能的影响.电工技术学报,2006,21(2):8~12
    [47] Tsu R, Li XiaoLei. Slow conductance oscillations in nano scales silicon clusters of quantum dots[J]. App1.Phys Lett, 1994,65(7):842~844.
    [48] Kim D W, Yoshino K, Morpho1ogical characteristics and electrical conduction in syndiotactic polypropylene. Journal of physics D:Applied physics, 33,2000,pp:464~471
    [49] DiliP K, Das-Gupta. Conduction mechanisms and high-field effects in syntheticinsu1ating polymers. IEEE Trans.on DEI, vol.4,No.2,1997, pp:149~156
    [50] Kawanoto A, Suzuoki Y, Ikejiri T, et al. Effects of interface on electrical conduction in the poxyres in composite. Proceedings of the 3th intemational conference on properties and applications of dielectric materials, Julys-12,Tokyo, Japan,1991,pp:619~622
    [51] Kazuo lid, Kim Jong suk, Nakamura Shuhel, et al. Effects of molecuiar strucLure on electrical conduction in low-density polyethylene aboveits melting point. IEEE Trans.on DEI, Vol.7,No.2,1992, pp:391~398
    [52] Yeh W, Budenstein P P. Electrical conduction at low fields of composites sparsely filled withaluminum particles. IEEE trans.on DEI, Vol.2,No.1,1995, pp:84~96.
    [53] Pdissou S, St-onge H, Wertheimer M R. Electrical conduction of polyethy1ene below andaboveits melting point. IEEE Trans.on DEI, Vol.23,No.3,1988, pp:325~333
    [54] Ieda M. Electrical conduction and carrier traps in polymeric materials. IEEE Trans in EI, 1984,19(3), pp:162~168
    [55]王先锋,谷晓丽.GB/T 1410-2006/IEC 60093:1980.固体绝缘材料体积电阻率和表面电阻率试验方法.2006
    [56] Xue Q. The influence of particle shape and size on electric conductivity of metal-polymer composites. European Polymer Journal, 2004,40:323~327
    [57] Chen Jiong, Yin Yi, Li Zhe. Study the percolation phenomenon of high field volt-ampere characteristic in the composite of low-density polyethylene/SiOx. International Symposium on Electrical Insulating Materials 2005, Kitakyushu, Japan, 2005:243~246
    [58] Trusov L I, Askuntovich N G, Borovikova R P, et al. The percolation size effect. Physics Letters, 1992,167:306~308
    [59]赵孔双,介电谱方法及应用.化学工业出版社.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700