氢化硅薄膜的制备、特性及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢化硅薄膜由于在红外成像传感器、太阳能电池及薄膜晶体管等微电子器件中有着广泛应用前景而备受关注。等离子体化学气相沉积技术制备氢化硅薄膜工艺条件成熟稳定而成为薄膜制备的首选方法。
     本论文通过改变PECVD工艺条件,制备了非晶、微晶和多形硅三种氢化硅薄膜。运用多种分析与测试方法,研究了氢化硅薄膜的微观结构、光学、电学和热学等物理特性。选定多形硅薄膜为微测辐射热计热敏层,并重点从光学和热学两方面对微测辐射热计结构进行了优化设计。
     在椭偏光谱仪中采用FB模型,拟合得到非晶硅薄膜的折射率和光学禁带宽度,证明非晶硅薄膜的折射率和光学禁带对衬底温度的依赖关系。同时工作气体压强对非晶硅薄膜的沉积速率、光学禁带和消光系数值也有显著影响。傅立叶红外光谱分析了在KBr衬底上沉积的非晶硅薄膜的官能团信息,说明衬底温度和气体压强变化影响了薄膜中的氢含量改变。
     以纯硅烷为反应气源时,采用X射线衍射、拉曼和傅立叶红外光谱表征说明随着气体压强的升高,等离子体沉积过程产物形态变化过程为:非晶硅(a-Si:H)→多形硅(pm-Si:H)→凝聚块(agglomeration)→粉末(powder)。在较高的射频功率密度下,采用高浓度氢稀释硅烷为反应气源时,沉积产物形态变化过程为:微晶硅(μc-Si:H)→多形硅(pm-Si:H)→凝聚块(agglomeration)→粉末(powder)。采用电极间热梯度理论和氢刻蚀模型分析了微晶与多形硅晶化机理的差异,证明微晶硅薄膜的体积晶化率随薄膜厚度的增加而增加,而多形硅的体积晶化率对薄膜厚度没有依赖关系。
     通过研究硼掺杂浓度与氢化硅薄膜电学特性关系表明硼掺杂降低了薄膜的电阻率和方阻值,同时也降低了薄膜的温度电阻系数。研究电阻对时间的依赖关系表明氢化硅电阻值随测试时间增大而增大,XPS测试结果表明薄膜的氧化增大了薄膜电阻。实验还证明氢化硅薄膜的晶化降低了电阻率和方阻值,光照和焦耳热作用改变薄膜的电阻。搭建了半导体噪声测试系统,对非晶、微晶和多形三种氢化硅薄膜的1/f噪声测试分析说明薄膜的晶化使得薄膜结构的有序度更高,晶化降低了薄膜的1/f噪声。
     采用基于傅立叶热传导定律为理论基础的静态法测试了不同衬底温度下制备非晶硅薄膜的热导率,结果表明薄膜的热导率随衬底温度升高而增大。同时薄膜中存在Si-H键合的震动模造成热量损失也导致薄膜热导率降低。研究不同厚度的非晶、微晶和多形硅三种氢化硅薄膜的热导率结果表明微晶硅薄膜的晶化增大了薄膜的热导率。微晶硅薄膜的表面和薄膜底部存在和晶化率梯度一样的热导率梯度,即表面的热导率高,而薄膜底部的热导率低。多形硅薄膜的热导率和微晶硅相近,多形硅薄膜的热导率增加一方面归因子纳米硅晶粒的存在,同时薄膜内高的氢含量增大了薄膜的致密度,也使得薄膜的热导率增大。
     首次将多形硅薄膜用作微测辐射热计温阻层,以光学和热学设计理论为基础优化设计了微测辐射热计微桥结构。根据光学导纳矩阵理论,用Matlab软件模拟了不同厚度氮化钛厚度和不同谐振腔高度膜系的红外吸收率,谐振腔高度e=2.5μm时,微测辐射热计红外吸收率高,并且红外吸收率随氮化钛薄膜厚度增加而增大。综合考虑了微桥热导、热响应时间常数以及额定辐射功率下的桥面温升情况下,确定当多形硅厚度为0.1μm时,桥腿长度为25μm,宽为1μm时热导值和热响应时间满足微测辐射热计设计要求。
Hydrogenated silicon film attracts extensively attention due to its application on many kinds of microelectronic devices, such as infrared imaging system, solar cell and thin film transistor. Plasma enhanced chemical vapor deposition (PECVD) technique is the primary method which is used to prepare hydrogenated silicon film.
     In this dissertation, we changed the PECVD technique parameters, and deposited amorphous, microcrystalline and polymorphous silicon films. The microstructure, optical, electrical and thermal properties of hydrogenated silicon films were characterized by a series method. Polymorphous silicon film was selected to be thermal-resistance layer of micro-bolometer, and we optimized the structure of micro-bolometer through optical and thermal design.
     The refractive index and optical band gap of amorphous silicon were obtained by spectroscopy ellipsometry in FB model. The resuts demonstrate the value of refractive index and optical band gap of amorphous silicon film depends on substrates' temperature. The variation of total gas pressure also influences the deposition rate, optical band gap and extinctive coefficient of amorphous silicon film. Fourier-transform infrared spectrometer (FTIR) was used to characterize the information of Si-H in silicon film deposited on KBr substrate. The effect of substrate temperature and total gas pressure on hydrogen content in silicon film was confirmed.
     With the increasing of pure silane total gas pressure, we use XRD, Raman and FTIR method to demonstrate the phase transition of the produce of PECVD process occurred as a formation of amorphous silicon→polymorphous silicon→agglomeration→powder formation. However, when using strong hydrogen dilution silane as source gas, the phase transition is microcrystalline silicon→polymorphous silicon→agglomeration→powder formation. The crystalline mechanism difference of microcrystalline and polymorphous silicon was investigated by thermal gradient theoretical and hydrogen etching model. The volume crystalline fraction of microcrystalline silicon increases with the increasing of film thickness, and there is no such relation in polymorphous silicon film.
     The resistivity, squared resistance and temperature coefficient of resistance in hydrogenated silicon film decrease with the increasing of boron doping concentration. The resistance of amorphous silicon increases with the increment of measurement time for the surface oxide. The crystalline in silicon film results in the decreasing of resistivity and squared resistance, and the resistance decreases with Joule effect and exposed in light. The measurement of 1/f noise in amorphous, microcrystalline and polymorphous silicon film was performanced with a self-design semiconductor system. The results demonstrate microcrystalline and polymorphous silicon films have low 1/f noise for their crystallization make them better ordered than amorphous silicon film.
     The thermal conductivity measurement results of silicon films show thermal conductivity of amorphous silicon increase with the increment of substrate temperature, and the vibrational bonds in silicon film were demonstrated to reduce the thermal conductivity. The crystalline in silicon films increases the thermal conductivity of hydrogenated silicon films. There is a thermal conductivity gradient in microcrystalline silicon film similar as the crystalline gradient. The thermal conductivity of polymorphous silicon is nearly silimar as that of microcrystalline silicon film. Both nanocrystal and high hydrogen content contribute to the increment of thermal conductivity in polymorphous silicon film.
     Polymorphous silicon film was used to thermal-resistance layer in micro-bolometer. According to optical admittance matrix theory, relation between sensing film thickness, resonant cavity height of microbolometer and infrared absorptivity was simulated using FEA (Finite Element Analysis) MatLab software. Optimal film thickness and resonant cavity height for high infrared absorptivity ranging from 3~5 to 8~14μm atmosphere window infrared bands were achieved, which provides reliable evidence to improve the sensitivity of microbolometer.
引文
[1] A. Chowdhury, S. Mukhopadhyay, S. Ray. Effect of gas flow rates on PECVD-deposited nanocrystalline silicon thin film and solar cell properties. Solar Energy Materials and Solar Cells, 2008,92 (4): 385-392.
    
    [2] A. Focsa, I. Gordon, J.M. Auger, A. Slaoui, G. Beaucarne, J. Poortmans, C. Maurice. Thin film polycrystalline silicon solar cells on mullite ceramics. Renewable Energy, 2008, 33 (2): 267-272.
    [3] Z. H. Shen, M. Eguchi, T. Gotoh, N. Yoshida, T. Itoh, S. Nonomura. Localized oxidation influence from conductive atomic force microscope measurement on nano-scale I-V characterization of silicon thin film solar cells. Thin Solid Films, 2008, 516 (5): 588-592.
    [4] S. H. Kim, E. B. Kim, H. Y. Choi, M. H. Kang, J. H. Hur, J. Jang. A coplanar hydrogenated amorphous silicon thin-film transistor for controlling backlight brightness of liquid-crystal display. Solid-State Electronics, 2008,52 (3): 478-481.
    [5] S. M. Han, J. H. Park, S. G. Park, S. J. Kim, M. K. Han. Hydrogenation of nanocrystalline Si thin film transistors employing inductively coupled plasma chemical vapor deposition for flexible electronics. Thin Solid Films, 2007,515: 7442-7445.
    [6] M. Oudwan, Y. Djeridane, A. Abramov, B. Aventurier, P. R.Cabarrocas, F. TemplieR. Influence of process steps on the performance of microcrystalline silicon thin film transistors. Thin Solid Films, 2007, 515: 7662-7666.
    [7] X. M. Liu, H. J. Fang, L. T. Liu. Study on new structure uncooled a-Si microbolometer for infrared detection. Microelectronics Journal, 2008,38: 735-739.
    [8] X. M. Liu, H. J. Fang, L. T. Liu. Structure design of amorphous silicon thin film transistor used as uncooled infrared sensors. Infrared Physics & Technology, 2007, 50: 47-50.
    [9] J. Li, G P. Peterson. 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow. International Journal of Heat and Mass Transfer, 2007, 50: 2895-2904.
    [10] D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M.D. Foster, A.P. Sokolov, J.F. Maguire. Scanning nano-Raman spectroscopy of silicon and other semiconducting materials. Tip Enhancement, 2007, 55: 177-203.
    
    [11] P. Ballo, L. Harmatha, D. Donoval. Oxygen defect in silicon studied by semi-empirical calculations. Computational Materials Science, 2008,42 (2): 380-384.
    [12] K.Yoshioka, T. Sameshima, N. Sano. Progress in fabrication processing of thin film transistors. Solid-State Electronics, 2008, 52 (3): 359-364.
    [13] R. Goswami, B. Chowdhury, S. Ray. Solid phase crystallization of protocrystalline silicon films: Changes in structural and optical properties. Thin Solid Films, 2008, 516 (8): 2306-2313.
    [14] D.Y. Song, E. C. Cho, G Conibeer, C. Flynn, Y. D. Huang, M. A. Green. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Solar Energy Materials and Solar Cells, 2008, 92(4): 474-481.
    [15] Z. H. Wang, Z. X. Li. Research on the Out-of-plane thermal conductivity of nanometer silicon film. Thin Solid Films, 2006, 515 (4): 2203-2206.
    [16] W. Ch. Hsiao, C. P. Liu, Y. L. Wang. Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition. Journal of Physics and Chemistry of Solids, 2008,69: 648-652.
    [17] I. H. Song, H. S. Shin, M.K. Han. Effects of hot-carrier stress on high performance poiycrystalline silicon thin film transistor with a single perpendicular grain boundary. Thin Solid Films, 2007, 515 (19): 7598-7602.
    [18] X. P. Zhu, H. Suematsu, W. H. Jiang, K. Yatsui. Structures and photoluminescence properties of silicon thin films prepared by pulsed ion-beam evaporation. Materials Science and Engineering: B, 2008,149 (1): 105-110.
    [19] R. K.Y. Fu, P. K. Chu. Fabrication and characteristics of novel microelectronic structures fabricated by plasma-based techniques. Surface and Coatings Technology, 2007, 201 (15): 6745-6751.
    [20] Y. Abdi, P. Hashemi, S. Mohajerzadeh, M. Jamei, M. D. Robertson, M.J. Burns, J.M. MacLachlan. Silicon nano-crystalline structures fabricated by a sequential plasma hydrogenation and annealing technique. Thin Solid Films, 2008, 516(10): 3172-3178.
    [21] N. Benouattas, L. Osmani, L. Salik, C. Benazzouz, M. Benkerri, A. Bouabellou, R. Halimi. Epitaxial growth of copper silicides by "bilayer" technique on monocrystalline silicon with and without native SiO_x. Materials Science and Engineering: B, 2006, 132 (3): 283-287.
    [22] S. B. Li, Z. M. Wu, Y. D. Jiang, W. Li, N. M. Liao, J. S. Yu. Noise in boron doped amorphous/microcrystallization silicon films. Applied Surface Science, 2008, 254 (11): 3274-3276.
    [23] J. H. Oh, K.W. Ahn, D.H. Kang, W. H. Park, J. Jang, Y. J. Chang, J. B. Choi, H.K. Min, C.W. Kim. Inverse staggered poly-Si thin-film transistor with non-laser crystallization of amorphous silicon. Solid-State Electronics, 2008, 52 (3): 482-486.
    [24] P. J. van den Oever, J. J. H. Gielis, M.C.M. van de Sanden, W.M.M. Kessels. Hot-wire deposition of a-Si:H thin films on wafer substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy. Thin Solid Films, 2008, 516 (5): 511-516.
    [25] B. Schroeder, M. Kupich, P. Kumar, D. Grunsky. Recent contributions of the Kaiserslautern research group to thin silicon solar cell R&D applying the HW(Cat)CVD. Thin Solid Films, 2008, 516 (5):722-727.
    [26] P. Gogoi, P. N. Dixit, P. Agarwal. Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells. Solar Energy Materials and Solar Cells, 2007,91(13): 1253-1257.
    [27] S. J. Park, Y. M. Ku, E. H. Kim, J. Jang, K. H. Kim, C. O. Kim. Selective crystallization of amorphous silicon thin film by a CW green laser. Journal of Non-Crystalline Solids, 2006,352: 993-997.
    [28] C. P. Lund, K. Luczak, T. Pryor, J. C. L. Cornish, P. J. Jennings, P. Knipe, F. Ahjum. Field and laboratory studies of the stability of amorphous silicon solar cells and modules. Renewable Energy, 2001, 22: 287-294.
    [29] A. A. Lapkin, V. M. Boddu, G. N. Aliev, B. Goller, S. Polisski, D. Kovalev. Photo-oxidation by singlet oxygen generated on nanoporous silicon in a LED-powered reactor. Chemical Engineering Journal, 2008,136: 331-336.
    [30] Y. Zhao, D. S. Li, J. Zhao, W. B. Sang, D. R. Yang, M. H. Jiang. Luminescence and photoconductivity properties of porous polycrystalline silicon. Current Applied Physics, 2008, 8 (2): 206-211.
    [31] J. Torres, H.M. Martinez, J. E. Alfonso, L.D. L6pez C. Optoelectronic study in porous silicon thin films. Microelectronics Journal, 2008,39: 482-484.
    [32] D. R. Huanca, Francisco J. Ramirez-Fernandez, Walter J. Salced. Porous silicon optical cavity structure applied to high sensitivity organic solvent sensor. Microelectronics Journal, 2008, 39: 499-506.
    [33] S. Veprek, V. Marecek. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transpor. Solid-State Electronics, 1968, 11(7): 683-684.
    [34]A.F.B.Braga,S.P.Moreira,P.R.Zampieri,J.M.G.Bacchin,P.R.Mei.New processes for the production of solar-grade polycrystalline silicon:A review.Solar Energy Materials and Solar Cells,2008,92:418-424.
    [35]Y.Wang,X.Geng,H.Stiebig,F.Finger.Stability of microcrystalline silicon solar cells with HWCVD buffer layer.Thin Solid Films,2008,516:733-735.
    [36]R.L.Stolk,H.Li,R.H.Franken,J.W.A.Sch(u|¨)ttauf,C.H.M.van der Werf,J.K.Rath,R.E.I.Schropp.Improvement of the efficiency of triple junction n-i-p solar cells with hot-wire CVD proto- and microcrystalline silicon absorber layers.Thin Solid Films,2008,516(5):736-739.8
    [37]M.Brinza,G.J.Adriaenssens,A.Abramov,P.R.Cabarrocas.Influence of deposition parameters on hole mobility in polymorphous silicon.Thin Solid Films,2008,515(19):7504-7507.
    [38]A.V.Kharchenko,V.Suendo,P.R.Cabarrocas.Plasma studies under polymorphous silicon deposition conditions.Thin Solid Films,2003,427:236-240.
    [39]施敏.半导体器件物理与工艺,第二版,苏州:苏州大学出版社,2002.522-524.
    [40]刘恩科,朱秉升,罗基升.半导体物理学.北京:国防工业出版社,1994.341-342.
    [41]D.L.Staebler,C.R.Wronski.Reversible conductivity changes in discharge-produced amorphous Si.Appl.Phys.Lett.,1977,31:292-294.
    [42]L.T.Canham.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.Appl.Phys.Lett.,1990,57:1046-1048.
    [43]A.G.Cullis,L.T.Canham,P.D.J.Calcott.The structural and luminescence properties of porous silicon.J.Appl.Phys.,1997,82:909.
    [44]W.S Wei,G.Y.Xu,J.L.Wang,T.M.Wang.Raman spectra of intrinsic and doped hydrogenated nanocrystalline silicon films.Vacuum,2007,81(5):656-662.
    [45]Y.L.He,C.Z.Yin,G G Cheng,L.C.Wang,X.G Liu,G.Y.Hu.The structure and properties of nanosize crystalline silicon films.J.Appl.Phys.1994,75:797-803.
    [46]J.Koh,A.S.Ferlauto,P.I.Rovira.Evolutionary phase diagrams for plasma-enhanced chemical vapor deposition of silicon thin films from hydrogen-diluted silane.Appl.Phys.Lett.,1999,75:2286-2288.
    [47]A.Fontcuberta i Morral,P.R.Cabarrocas.Shedding light on the growth of amorphous,polymorphous,protocrystalline and microcrystalline silicon thin films.Thin Solid Films,2001,383:161-164.
    [48]P.R.Cabarrocas,A.Fontcuberta i Morral,Y.Poissant.Growth and optoelectronic properties of polymorphous silicon thin films.Thin Solid Films,2002,403-404:39-46.
    [49]徐刚毅.纳米硅薄膜及相关器件的研究:[博士学位论文].兰州:兰州大学,2000.
    [50]陈红.氢化纳米硅薄膜的光学常数和室温可见发光研究:[博士学位论文].上海:上海交通大学,2007.
    [51]张万杰,董良,岳瑞峰,刘理天.非晶硅TFT室温红外探测器的光学特性研究.仪器仪表学报,2003,24:300-306.
    [52]钱祥忠.高像质非晶硅薄膜晶体管液晶显示器的研究:[博士学位论文].成都:电子科技大学.2003.
    [53]T.Schimert,D.Ratcliff,J.Brady,S.Ropson,R.Gooch,B.Ritchey.Low cost,low power uncooled a-Si-based micro infrared camera for unattended ground sensor applications.SPIE conference on unattended ground sensor technologies and applications.Orlando,Florida:SPIE,1999,3713:101-111.
    [54]C.Vedel,J.L.Martin,J.L.O.Buffet.Amorphous silicon based uncooled microbolometer IRFPA.SPIE conference on infrared technology and applications ⅩⅩⅤ.Orlando,Florida:SPIE,1999,3698:276-284.
    [55]J.Brady,T.Schimert,D.Ratcliff,R.Gooch,B.Ritchey.Advances in amorphous silicon uncooled IR system.SPIE conference on infrared technology and applications ⅩⅩⅤ.Orlando,Florida:SPIE,1999,3698:161-167.
    [56]A.Astier,A.Arnaud,J.Ouwier-Buffet,J.Yon.Advanced packaging development for very low cost uncooled IRFPA.Infrared components and their applications.Bellingham:SPIE,2005,5640:107-116.
    [57]R.A.Wood.Uncooled thermal imaging with monolithic silicon focal plans.Proc.SPIE,1993,2020:330-339.
    [58]S.S.Ogawa,M.Okabe,Y.S.Ikeda,T.K.Itoh,N.Yoshida,S.C.Nonomura.Applications of microcrystalline hydrogenated cubic silicon carbide for amorphous silicon thin film solar cells.Thin Solid Films,2008,516(5):740-742.
    [59]P.Gogoi,P.N.Dixit,P.T.Agarwal.Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells.Solar Energy Materials and Solar Cells,2007,91(13):1253-1257.
    [60]W.T.Charles,I.Eugene,T.Bobby,H.L.Moutinho,P,Stradins,H.M.Branz.Breakdown physics of low-temperature silicon epitaxy grown from silane radicals.Physical Review B,2006,74:235428.1- 235428.5.
    [61] H. Vach, Q. Brulin. Controlled Growth of Silicon Nanocrystals in a Plasma Reactor. Physical Review Letters, 2005,95: 165502.1-165502.4.
    [62] Marieke K. van Veen, R. E .1. Schropp. Amorphous silicon deposited by hot-wire CVD for application in dual junction solar cells. Thin Solid Films, 2002,403-404: 135-138.
    [63] P. Gogoia, P. N. Dixitb, P. Agarwala. Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells. Solar Energy Materials & Solar Cells, 2007,91:1253-1257.
    [64] C. Iliescu, B. T. Chen. Thick and low-stress PECVD amorphous silicon for MEMS applications. Journal of Micromechanics and Microengineering, 2008,18: 015024.1-015024.8
    [65] X. Y. Liu, P. K. Chu, C. X. Ding. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition. Materials Chemistry and Physics, 2007,101 (1): 124-128.
    
    [66] A. H. Mahan, S. P. Ahrenkiel, R. E. I. Schropp, H. Li, D. S. Ginley. A comparison of grain nucleation and grain growth during crystallization of HWCVD and PECVD a-Si:H films. Thin Solid Films, 2008, 516 (5): 529-532.
    [67] J. D. Cohen, S. Datta, K. M. Palinginis, A. H. Mahan, E. Iwaniczko, Y. Q. Xu, H. M. Branz. Defect analysis of thin film Si-based alloys deposited by hot-wire CVD using junction capacitance methods. Thin Solid Films, 2008, 516 (5): 663-669.
    [68] I. M. P. Aarts, J. J. H. Gielis, P. M. J. Grauls, C. M. Leewis, M. C. M. van de Sanden, W. M. M. Kessels. Real-time study of HWCVD a-Si:H film growth using optical second harmonic generation spectroscopy. Thin Solid Films, 2006,501:70-74.
    [69] S. B. Li, Z. M. Wu, Y. D. Jiang, W. Li, N. M. Liao, J. S. Yu. Structure and 1/f noise of boron doped polymorphous silicon films. Nanotechnology, 2008,19:085706.1-085706.6.
    [70] G Lucovsky, R. J. Nemanich, J. C. Knights. Structural interpretation of the vibrational spectra of a-Si: H alloys. Physical Review B, 1979,19 (4):2064-2073.
    [71] H. V. Lohneysen, H. J. Schink, W. Beyer. Direct experimental evidence for molecular hydrogen in amorphous Si:H. Physical Review Letters, 1984, 52 (7): 549-552.
    [72] I. Solomon, M. P. Schmidt. Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy. Physical Review B, 1988,38(18): 13263-13270.
    
    [73] R. Saleh, N. H. Nickel, K. V. Maydell. Laser crystallization of compensated hydrogenated amorphous silicon thin films. Journal of Non-Crystalline Solids, 2006, 352: 1003-1007.
    [74]W.Hahn,M.Boshta,K.B(a|¨)rner,R.Braunstein.The charge transport properties of a-Si:H thin films under hydrostatic pressure.Materials Science and Engineering:B,2006,130:184-188.
    [75]M.T.Gutierrez,J.Carabe,J J.Gandia,A.Solonko.Effect of preparation conditions on the properties of glow-discharge intrinsic amorphous silicon.Solar Energy Materials and Solar Cells,1992,26:259-268.
    [76]G.van Elzakker,V.Nadazdy,ED.Tichelaar,J.W.Metselaar,M.Zeman.Analysis of structure and defects in thin silicon films deposited from hydrogen diluted silane.Thin Solid Film,2006,511-512:252-257.
    [77]A.Baclolu,A.O.Kodolba,(O|¨)zcan(O|¨)kt(u|¨).Optimisation of the RF power density to obtain good quality hydrogenated amorphous silicon films in a home-made glow discharge system Optical Materials,2004,25,(3):335-339.
    [78]李世彬,吴志明,朱魁鹏,蒋亚东,李伟,廖乃镘.气体压强对非晶硅薄膜光学特性的影响.光电子.激光,2008,19:351-356.
    [79]S.B.Li,Z.M.Wu,W.Li,N.M.Liao,Y.D.Jiang.Investigation of the microstructure and optical properties of hydrogenated polymorphous silicon films prepared with pure silane.Philosophical Magazine,2007,87:5539-5549.
    [80]T.Daimaru,A.Tahata,T.Mizutani.Structure of amorphous and microcrystalline silicon thin films prepared at various gas pressures and gas flow rates by hot-wire chemical vapor deposition.Thin Solid Films,2006,501:102-106.
    [81]冯仁华.PECVD法制备本征/掺硼纳米非晶硅薄膜及其性能研究.[硕士学位论文].杭州:浙江大学,2007.
    [82]P.R.Cabarrocas,S.Hamma,S.N.Sharma,G.Viera,E.Bertran,J.Costa.Nanoparticle formation in low-pressure silane plasmas:bridging the gap between a-Si:H and μc-Si films.Journal of Non-Crystalline Solids,1998,227-230:871-875.
    [83]U.Schmidt,W.Ibach,J.M(u|¨)ller,K.Weishaupt,O.Hollricher.Raman spectral imaging-A nondestructive,high resolution analysis technique for local stress measurements in silicon.Vibrational Spectroscopy,2006,42:93-97.
    [84]R.C.Teixeira,I.Doia,M.B.P.Zakia,J.A.Diniz,J.W.Swart.Micro-Raman stress characterization of polycrystalline silicon films grown at high temperature.Materials Science and Engineering B,2004,112:160-164.
    [85]A.R.Forouhi,I.Bloomer.Optical dispersion relations for amorphous semiconductors and amorphous dielectrics.Physical Review B,1986,34:7018-7026.
    [86]L.Jiao,I.Chen,R.W.Collins,An improved analysis for band edge optical absorption spectra in hydrogenated amorphous silicon from optical and photoconductivity measurements.Applied Physics Letters,1998,72(9):1057-1059.
    [87]I.Sakata,Y.Hayashi,M.Yamanaka,H.Karasawa.A new characterization parameter for hydrogenated amorphous silicon:B Journal of Applied Physics,1981,52(6):4334-4336.
    [88]A.A.Langford,M.L.Fleet,B.P.Nelson,W.A.Lanford,N.Maley.Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon.Phys.Rev.B,1992,45,13367-13377.
    [89]D.Beeman,R.Tsu,M.F.Thorpe,Structural information from the Raman spectrum of amorphous silicon.Physical Review B,1985,32(2):874-878
    [90]W.E.Carlos,P.C.Taylor.~1H NMR in a-Si.Physical Review B,1982,26(7):3605-3616.
    [91]A.Cavallini,D.Cavalcoli,M.Rossi,A.Tomasi,S.Pizzini,D.Chrastina,G.Isella.Defect analysis of hydrogenated nanocrystalline Si thin films.Physica B:Condensed Matter,2007,401-402:519-522.
    [92]E.Schmich,N.Schillinger,S.Reber.Silicon CVD deposition for low cost applications in photovoltalcs.Surface and Coatings Technology,2007,201:9325-9329.
    [93]L.Dong,R.F.Yue,L.T.Liu,S.Xia.Design and fabrication of single-chip a-Si TFT-based uncooled infrared sensors.Sensors and Actuators A:Physical,2004,116(2):257-263.
    [94]J.Meier,R.Fl(u|¨)ckiger,H.Keppner.Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior? Appl.Phys.Lett.,1994,65:860-862.
    [95]杨恢东.衬底温度对微晶硅薄膜沉积与结构特征的影响.光电子·激光,2005,16(6):646-649.
    [96]T.Repmann,B.Sehrbrock,C.Zahren.Microcrystalline silicon thin film solar modules on glass.Solar Energy Materials and Solar Cells,2006,90:3047-3053.
    [97]张晓丹,朱锋,赵颖,薛俊明,孙建,耿新华,熊绍珍.VHF-PECVD制备微晶硅材料及电池初步研究.太阳能学报,2004,25(6):789-793.
    [98]候国付,薛俊明,孙建,郭群超,张德坤,任慧志,赵颖,耿新华,李乙钢.高压PECVD 技术沉积硅基薄膜过程中硅烷状态的研究.物理学报,2007,56(2):1177-1181.
    [99]俞远高,候国付,王锐,薛俊明,赵颖,耿新华,杨瑞霞.微晶硅材料及其在太阳能电池中的应用.激光与光电子学进展,2006,43(8):48-55.
    [100]A.Matsuda.Growth mechanism of microcrystalline silicon obtained from reactive plasmas.Thin Solid Films,1999,337:1-6.
    [101] B. Strahm, A. A. Howling, L. Sansonnens, Ch. Hollenstein, U. Kroll, J. Meier, Ch. Ellert, L. Feitknecht, C. Ballif. Mcirocrystalline silicon deposited at high rate on large areas from pure silane with efficient gas utilization. Solar Energy Materials & Solar Cell, 2007,91:495-502.
    [102] H Aguas, L. Raniero, L. Pereira, A. S. Viana, E. Fortunato, R. Martins. Role of rf frequency on the structure and composition of polymorphous silicon films. Journal of Non-Crystalline Solids, 2004, 338-340: 183-187.
    [103] A. Fontcuberta i Morral, R. Brenot, E. A. G. Hamers, R. Vanderhaghen, P. R. Cabarrocas. In situ investigation of polymorphous silicon deposition. Journal of Non-Crystalline Solids, 2000,266-269: 48-53.
    [104] A. Fontcuberta i Morral, P. R. Cabarrocas, C. Clerc. Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements. Physical Review B, 2004,69: 125307-125306.
    [105] N. Chaabane, A. V. Kharchenko, H. Vach, P. R. Cabarrocas. Optimization of plasma parameters for the production of silicon nano-crystals. New Journal of Physics, 2003, 5: 37.1-37.15.
    [106] B. Kalache, A. I. Kosarev, R. Vanderhaghen, P.R. Cabarrocas. Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties. Journal of Applied Physics, 2003,93: 1262-1268
    [107] S. Sriraman, S. Agarwal, E. S. Aydil, D. Maroudas. Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature, 2002,418 (6893): 62-65.
    [108] P. R. Cabarrocas, T. Nguyen-Tran, Y. Djeridane, A. Abramov, E. Johnson, G. Patriarche. Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices. Journal of Physics D: Applied Physics, 2007,40: 2258-2266.
    [109] J. Perrin, P. Molinas-Mata, P. Belenguer. Ion drag and plasma-induced thermophoresis on particles in radiofrequency glow discharges. Journal of Physics D: Applied Physics, 1994, 27: 2499-2507.
    [110] M. Kopani, E. Pincik, H. Kobayashi, M. Takahashi, N. Fujiwara, R. Brunner, M. Jergel, L. Ortega. On a presence of Si_mH_n clusters in a-Si:H/c-Si structures. Applied Surface Science, 2006,252 (21): 7722-7725.
    [111] S. B. Li, Z. M. Wu, W. Li, N. M. Liao, J. S. Yu, Y. D. Jiang. Influence of microcrystallization on noise in boron-doped silicon film. Physica Status Solidi (a), 2007, 204 (12): 4292-4297.
    [112] J. C. Knights, R. A. Street, D. K. Biegelsen. Luminescence studies of plasma-deposited hydrogenated silicon.Physical Review B,1978,18:1880-1891.
    [113]H.Wong.Low-frequency noise study in electron devices:review and update.Microelectronics Reliability,2003,43:585-599.
    [114]J.Zi,H.B(u|¨)scher,C.Falter,W.Ludwig,K.M.Zhang,X.D.Xie.Raman shift in Si nanocrystals.Applied Physics Letters,1996,69(2):200-202.
    [115]S.B.Li,Z.M.Wu,Y.D.Jiang,W.Li,N.M.Liao,J.S.Yu.Noise in boron doped amorphous/microcrystallization silicon films.Applied Surface Science,2008,254(11):3274-3276.
    [116]宋青林.薄膜热学特性研究.[博士学位论文].北京:中国科学院电子学研究所,2004.
    [117]J.Callaway.Model for lattice thermal conductivity at low temperature.Physical Review B,1959,113:1046-1051.
    [118]M.G.Holland.Analysis of lattice thermal conductivity.Physical Review B,1963,132(6):2461-2471.
    [119]G.Chen,C.L.Tien.Measurement of thermal diffusivity of GaAs/AlGaAs thin-film structures,Journal of heat transfer,1994,116:325-331.
    [120]R.Berman.Thermal conduction in Solids,Oxford:Oxford University Press.,1976,73-75:23.
    [121]E.H.Sondheimer.The mean free path of electrons in metals.Advance Physics,1952,1:1-42.
    [122]R.Berman,E.Foster,J.M.Ziman.Thermal conduction in artificial sapphire crystals at low temperatures.Proceeding of Royal Society A,1995,231:130-144.
    [123]M.Asheghi,Y.K.Leung,S.S.Wong.Phonon-boundary scattering in thin silicon layers.Applied Physics Letters,1997,71(13):1978-1981.
    [124]R.Berman.Thermal conduction in solids.Oxford:Oxford University Press.,1976.
    [125]J.M.Ziman.Electrons and phonons,Oxford:Oxford University Press.,1960.221-223.
    [126]D.S.Matsumoto,L.Reynoldsc,A.C.Anderson.Thermal boundary resistance at metal-epoxy interface.Physical Review B,1977,16:3303-3307.
    [127]P.Sverdrup.Advanced electro-thermal modeling and simulation techniques for deep sub micron devices.Stanford University Techon,2000.
    [128]S.Ahmed,R.Liske,T.Wunderer,M.Leonhardt,R.Ziervogel,C.Fansler,T.Grotjohn,J.Asmussen,T.Schuelke.Extending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films.Diamond and Related Materials,2006,15:389-393'
    [129]J.Alvarez-Quintana,J.Rodriguez-Viejo.Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample.Sensors and Actuators A:Physical,2008, 142(1):232-236.
    [130]杨晓瑜.微测辐射热计光学、电学性能及其阵列设计.[硕士学位论文].成都:电子科技大学,2006.
    [131]陈超.微测辐射热计结构设计及其敏感材料的噪声分析.[硕士学位论文].成都:电子科技大学.2007.
    [132]李世彬,吴志明,蒋压东,李伟,廖乃镘.非晶硅微测辐射热计热学和光学分析.传感技术学报,2006,19(5):1721-1724.
    [133]S.B.Li,Z.M.Wu,N.M.Liao,Y.D.Jiang,W.Li,J.S.Yu.Optical Property analysis of microbolometer based on MEMS.International Conference and Exhibition on Integration and Commercialization of Micro and Nanosystems,Sanya,China,Jan.2007:259-263.
    [134](美)徐泰然著,王晓浩译.MEMS和微系统-设计与制造.北京:机械工业出版社,2004:225-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700