PAA模板中离子液体电沉积Sm-Co及Tb-Fe-Co合金纳米线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝(PAA)膜具有独特的、均匀的纳米级柱状孔阵列结构,以其为模板,在离子液体中采用电沉积方法制备磁性金属纳米线阵列,可得到具有优良的垂直磁各向异性和超高密度的磁记录介质,这对开发新型高密度存储材料具有重要意义。
     本文以0.3mol·L~(-1)草酸溶液为电解液,采用两次阳极氧化(一次阳极氧化1h,二次阳极氧化2h)制备多孔阳极氧化铝模板。氧化结束时,阶梯降压处理,以降低阻挡层厚度。之后,将多孔阳极氧化铝模板放入2g·L~(-1)氯化铁的饱和草酸水溶液扩孔液中扩孔处理5.5h。以该方法得到的多孔阳极氧化铝为阴极,在离子液体[BMIM]BF_4电解液中电沉积制备了Sm-Co合金纳米线阵列膜和Tb-Fe-Co合金纳米线阵列膜。
     电沉积得到的Sm-Co合金纳米线阵列膜中的纳米线中钐含量较高,其质量分数达到90%,纳米线的长度约为2μm,纳米线直径与多孔氧化铝模板的孔径相一致,约为70nm。XRD分析表明,Sm-Co合金纳米线的组成主要为SmCo5和Sm_2Co_(17)。
     通过正交试验确定了较优的脉冲电沉积Tb-Fe-Co合金的电解液组成为:Fe(BF_4)_2 0.75mol·L~(-1),Co(BF4)2 0.75mol·L~(-1),Tb(BF4)3 1.5mol·L~(-1),1,4-丁炔二醇2g·L~(-1)。在该镀液中进行电沉积,可以获得Tb含量最高为31mass%的Tb-Fe-Co三元合金。离子液体中制备的Tb-Fe-Co合金纳米线粗细均匀,纳米线直径与多孔氧化铝模板的孔径相一致,均为70nm左右。不同的电沉积时间,可得到不同纳米线长度(0.5~2.5μm)的Tb-Fe-Co合金纳米线阵列膜。XRD分析表明,Tb-Fe-Co合金纳米线组成主要为Tb_2Co_(17)和FeCo。磁性能测试结果表明,组装在多孔阳极氧化铝中的Sm-Co合金纳米线阵列膜具有明显的垂直磁各向异性,矩形比为0.30,矫顽力为314Oe。对组装在多孔阳极氧化铝中的Tb-Fe-Co合金纳米线阵列膜的测试表明,Tb含量低于20mass%时,Tb-Fe-Co合金纳米线阵列膜没有明显的垂直磁各向异性;当Tb含量大于20mass%时开始具有明显的垂直磁各向异性,随着Tb含量的增加,矫顽力(Hc)和剩余磁化强度(Mr)逐渐增大。
     针对Tb质量分数为31%的Tb-Fe-Co合金纳米线,研究了电沉积时间对Tb-Fe-Co合金纳米线阵列膜的磁性能的影响,结果表明,电沉积时间低于15min时,Tb-Fe-Co合金纳米线阵列膜没有明显的垂直磁各向异性;电沉积时间高于15min时,Tb-Fe-Co合金纳米线阵列膜有明显的垂直磁各向异性,随着沉积时间的延长,矫顽力(Hc)和剩余磁化强度(Mr)逐渐增大。电沉积时间为20min时纳米线阵列膜的垂直磁性能最好,Tb-Fe-Co合金纳米线阵列膜的矩形比为0.41,矫顽力为574Oe。
Porous anodic alumina (PAA) membrane has a unique uniform nano-columnar pore array structure, it can be used as the template when electrodeposite the magnetic metal nanowires in ionic liquid. The obtained magnetic metal nanowire is a kind of ultra-high density magnetic recording media with good perpendicular magnetic anisotropy. This has great importance for developing new high-density magnetic storage materials.
     In this paper, porous anodic alumina template was prepared in the electrolyte of 0.3 mol·L~(-1) oxalic acid with using two anodic oxidation (one hour the first time, then two hour continuously). Then potential was steped down to make the barrier layer thinner. The anodic oxidation of porous anodic alumina template was puted in 2g·L~(-1) ferric chloride solution saturated oxalic acid solution 5.5 hours. Then the Sm-Co alloy nanowire array film and Tb-Fe-Co alloy nanowire arrays film was prepared using the anodic oxidation of porous anodic alumina as cathode, ionic liquid [BMIM] BF4 as electrolyte.
     The nanowires in Sm-Co alloy nanowire array film have a high content of samarium, which can reach 90% by weight. The nanowire has a length about 2μm, 70nm in diameter, which was consistent with pore size of the porous anodic alumina template, there are two main crystal structure in Sm-Co alloy nanowire array film, SmCo_5 and Sm_2Co_(17).
     To obtain a high content of Tb in Tb-Fe-Co nanowire, the composition of electrolyte was determined by orthogonal experiments, the result is: the concentration of Fe(BF4)2 is 0.75 mol·L~(-1), the concentration of Co(BF_4)_2 is 0.75 mol·L~(-1), the concentration of Tb(BF4)3 is 1.5 mol·L~(-1), the concentration of 1,4 - butynediol is 2g·L~(-1), in this condition, the content of Tb in Tb-Fe-Co nanowire can reach 31% in weight. The diameter of Tb-Fe-Co nanowire was about 70nm, which was consistent with the pore size of porous anodic alumina template, the length of the Tb-Fe-Co nanowire was from 0.5μm to 2.5μm, crystal structure of Tb-Fe-Co nanowire are Tb_2Co_(17) and FeCo.
     Magnetic testing of Sm-Co alloy nanowire array film shows that it has obvious perpendicular magnetic anisotropy. Squareness ratio was 0.30, the coercivity was 314Oe. Magnetic testing of Tb-Fe-Co with different Tb content show that perpendicular magnetic anisotropy is not significant when the content of Tb is less than 20 mass %, with the increase of Tb content, both the the coercivity (Hc) and remanent magnetization (Mr) increase, Tb-Fe-Co show obvious perpendicular magnetic anisotropy when the content of Tb greater than 20 mass %.
     Then the Tb content is fixed at 31 mass%, magnetic testing of Tb-Fe-Co alloy nanowire array film with different deposition time was performed. The result show that perpendicular magnetic anisotropy is not obvious when the deposition time less than 15min, with the increase of deposition time, both the coercivity (Hc) and remanent magnetization (Mr) increased, Tb-Fe-Co show obvious vertical magnetic anisotropy when the deposition time greater than 15min. Tb content is 31 mass%, deposition time is 20min, the rectangular ratio was 0.41, the coercivity was 574Oe.
引文
1郭伟,赵争强,王飞.超高密度磁记录的课题与展望.信息记录材料. 2004, 5(3): 49-54.
    2 J. Sayama, T. Asahi, K. Mizutani. Newly Developed SmCo5 Thin Film with Perpendicular Magnetic Anisotropy. Journal of Applied Physics. 2004, 37(85): 5640-5642.
    3黄致新,章平,王辉等.纵向磁记录介质研究进展.信息记录材料. 2006, 7(6): 22-26.
    4聂向富,马丽,郭革新等.磁记录材料及测量.河北师范大学学报. 2005, 29(5): 473-476.
    5王辉,黄致新等.硬盘磁记录介质的发展与展望.信息记录材料. 2006, 7(3): 28-32.
    6 I wasaki, S, Deveopment of perpen dicular magnetic recording conference [J]. Journal of Magnetism and Magnetic Materials. 2005, 287:1-8.
    7 J. Sayama, T. Asahi, K. Mizutani. Newly developed SmCo5 thin film with perpendicular magnetic anisotropy. Journal of Applied Physics. 2004, 37(85): 5640-5642.
    8 F. Keller, M. S. Hunter, D. L. Robinson. Structural features of oxide coatings on aluminum.[J]. Electrochem Society. 1953, 100: 411-419.
    9 C. R. Martin. Nanomaterials: A membrane based synthetic approach [J]. Science. 1994, 266: 1961-1966.
    10 H. Masuda, K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina. Science. 1995, 268: 1466-1468.
    11 T. T. Albrecnt, J. Schotter, G. K. Kastle, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates [J]. Science. 1997, (254): 1312.
    12 K. Ima, T.Yoshlmura, T. Uotam, et al. Noble - metal nantubes(Pt, Pd, Ag) from lyotropic mixed - surfactant liquid - crystal templates [J]. Angew Chem Int Ed. 2004, 43(2): 228-232.
    13 Z. J. Yan, D. S. Xue. Synthesis of ultrafine amorphous Fe-B alloy nanoparticles using anodic aluminum oxide templates [J]. J Mater Science. 2008, 43: 771-774.
    14 L. Mengke, W. Chengwei, L. Hulin. Synthesis of ordered Si nanowire arrays in porous anodic aluminum oxide templates [J]. Chinese Science Bulletin. 2001,(21): 1793-1796.
    15 H. Y. Jung, S. M. Jung, G. H. Gu, et al. Anodic aluminum oxide membrane bonded on a silicon wafer for carbon nanotube field emitter arrays [J]. Applied Physics Letters. 2006, 89, 013121.
    16 W. Shia, Y. Shen, D. Ge,et al. Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation [J]. Journal of Membrane Science. 2008, (325): 801-808.
    17 Z. Lu, F. Zhang, X. Lei, L. Yang, et al. In situ growth of layered doublehydroxide films onanodic aluminum oxide/aluminum and its catalytic feature in aldol condensation of acetone [J]. Chemical Engineering Science. 2008, (63): 4055-4062.
    18 D. S. Kim, H S. Lee, J. Lee, et al. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold [J]. Microsyst Technol. 2007, (13): 601-606.
    19 Y. C. Hua, L. Gorkova, W. Breya, et al. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. Journal of Magnetic Resonance. 2005, (173): 322–327.
    20 Y. C. Sui, J. M. Saniger. Characterization of anodicporous alumina by AFM [J]. Materials Letters. 2001, (48):127-136.
    21杨培霞,安茂忠等.高度有序多孔极氧化铝模板的制备.材料科学与工艺. 2007, 15(1): 87-94.
    22 P. X. Yang, M. Z. An, H. F. Guo. Study on formation process of porous anodic film in sulfuric/oxalic acid mixture electrolyte. The 14th national conference on electrochemistry. 2005: 10-27.
    23 S. Stojadinovic, R. Vasilic, I. Belca, M. Tadic, et al. Structural and luminescence characterization of porous anodic oxide films on aluminum formed in sulfamic acid solution [J]. Applied Surface Science. 2008, (255): 2845-2850.
    24 K. Lim, G. H. Jeong, I. S. Park, et al. Fabrication of electrodeposited Co–Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate [J]. Journal of Magnetism and Magnetic Materials. 2007, (310): 841-842
    25 C. L. Xu, H. Li, G. Y. Zhao, H. L. Li. Electrodeposition and magnetic properties of Ni nanowire arrays on anodic aluminum oxide/Ti/Si substrate [J]. Applied Surface Science. 2006, (253): 1399-1403.
    26 D. Wan, Y. Wang, Z. Zhou, et al. Fabrication of the ordered FeS2 (pyrite) nanowire arrays in anodic aluminum oxide [J]. Materials Science andEngineering B. 2005, (122): 156-159.
    27 M. Li, C. W. Wang, H. L. Li. Synthesis of ordered Si nanowire arrays in porous anodic aluminum oxide templates [J]. Chinese Science Bulletin. 2001, (21): 1793-1796.
    28 Y. C. Sui, J. A. Gonza, J. M. Saniger. Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template [J]. Carbon. 2001, (39): 1709-1715.
    29 S. Sugden, H. Wilkins, CLVXIL-the Parachor and Chemical Constitution Part Ⅶ. Fused Metals and Salts. [J]. Chemical. Society. 1929: 1291-1298.
    30 F. H. Hurley, T. P. Wier, Electrodeposition of Metals from Fused Quaternary Ammonium Salts. [J]. Electrochem. Society. 1951, 98(2):203~208.
    31 J. Uller, R. T. Carlin, H. C. Delong,et al. Structure of 1-ethyl-3- methylimidazolium hexafluoro phosphate: made for room temperature molten salts. [J]. Chemical. Society. Chemical. Commun. 1994, 299-301.
    32 P. Bonh?te, A. P. Dias, N. Papageorgiou, et al. Hydrophobic Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chemical. 1996, (35): 1168-1178.
    33胡德荣,张新位,赵景芝.离子液体简介.首都师范大学学报(自然科学版). 2005, 26(2):40-45.
    34徐加民,安茂忠等.离子液体中电沉积铁工艺的研究[J].电镀与环保. 2009, 29(6): 5-8.
    35 C. A. Zell, W. Freyland. In situ STM and STS study of Co and Co-Al Alloy Electrodeposition from an Ionic Liquid. Langmuir. 2003, 19(18): 7445-7450.
    36杨培霞,安茂忠,苏彩娜等.离子液体中钴的电沉积行为.物理化学学报. 2008, 24(11): 2032-2036.
    37 W. Freyland, C. A. Zell, S. Zein, et al. Nanoscale Electrodeposition of Metals and Semiconductors from Ionic Liquids. Electrochimica Acta. 2003, 48(20-22): 3053-3061.
    38 J. F. Huang, I. W. Sun. Electrochemical Acta. 2004, 49: 3251.
    39李汝雄.绿色溶剂2离子液体的合成及应用.北京:化学工业出版社. 2004.
    40 S. Z. E. Abedin, A. Y. Saad, H. K. Farag, et al. Electrochimica Acta. 2007, (52): 2746.
    41 F. Endres, M. Bukowski, R. Hempelman, et al. Angew Chem Int Ed. 2003, (42): 3428.
    42杨培霞,安茂忠,郑环宇等.在氯化1-甲基-3-乙基咪唑离子液体中电沉积金属钴的研究.第十届全国有机电化学会议. 2006: 296-300.
    43 Y. Katayama, S. Dan, T. Miura, et al. Elect rochemical behavior of silver in 12et hyl232met hylimidazolium tet rafluoroborate molten salt [J]. Journal of the Elect rochemical Society. 2001, 148(2): 102-105.
    44 R. Eric, Schreiter, E. H. Jonat, et al . A room temperature molten salt prepared f rom AuCl3 and 12et hyl232 met hylimidazolium chloride [J]. Inorganic Chemistry. 1999, 38(17): 3935-3937.
    45 P. Koronaios, R. A. Osteryoung. Buffering of 12et hyl232 met hylimidazolium chloride/ aluminum chloride ionic liquids using alkali metal bromides and iodides [J]. Journal of t he Elect rochemical Society. 2001, 148 (12): 483-488.
    46 S. Z. E. Abedin, E. M. Moustafa, R. Hempelmann, et al. Chemical Physics Chemical. 2006, 7: 1535.
    47 P. Y. Chen, Y. F. Lin, I. W. Sun. Elect rochemist ry of gallium in the Lewis acidic aluminum chloride212et hyl232 met hylimidazolium chloride room-temperature molten salt [J]. Journal of t he Electrochemical Society. 1999, 146 (9): 3290-3294.
    48 W. Freyland, C. A. Zell, S. Z. E. Abedin, et al. Electrochimica Acta. 2003, 48: 3053.
    49 S. Z. E. Abedin, A. Y. Saad, H. K. Farag, et al. Electrochimica Acta. 2007, 52: 2746.
    50 F. Endres, C. Schrodt. In situ STM studies on germanium tetraiodide elect roreduction on Au (111) in t he room temperature molten salt 12butyl232met hylimidazolium hexafluorophosphate [J]. Physical Chemistry Chemical Physics. 2000, 2 (24): 5 517-5 520.
    51 T. Tsuda, T. Nohira, Y. Ito. Electrochimica Acta. 2001, 46: 1891.
    52 Y. Cast rillejo, et al. [J] Electroanal Chemical. 2005, 579: 343.
    53 M. R. Ali, A. Nishikata, T. Tsuru. Electrodeposition of Al-Ni Intermetallic Compounds from Aluminum Chloride-N-(n-butyl)pyridinium Chloride Room Temperature Molten Salt. [J]. Electroanal. Chemical. 2001, 513: 111-118.
    54 T. Tsuda, C. L. Hussey, G. R. Stafford. [J] Electrochemical Society. 2005, 152 (9): C620
    55 J. A. Mitchell, W. R. Pitner, C. L. Hussey, et al. [J] Electrochemical Society. 1996, 143(11): 3448.
    56 Q. Zhu, C. L. Hussey, G. R. Stafford. [J] Electrochemical Society. 2001, 148 (2):C88.
    57 T. Tsuda, C. L. Hussey, G. R. Stafford, et al. [J] Electrochemical Society. 2004, 151 (7): C447
    58 T. Tsuda, C. L. Hussey, G. R. Stafford. [J] Electrochemical Society. 2003, 150(4): C234.
    59 M. C. Lin, P. Y. Chen, I. W. Sun. [J] Electrochemical Society. 2001, 148(10): C653.
    60 P. Y. Chen, I. W. Sun. [J] Electrochimica Acta. 2001, 46(8): 1169.
    61 J. F. Huang, I. W. Sun. Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid [J]. Electrochimica Acta. 2004, 49(19): 3251-3258.
    62 P. Y. Chen, I. W. Sun. Electrochemical Study of Copper in a Basic 1-ethyl- 3-methylimidazolium Tetrafluoroborate Room Temperature Molten Salt. Electrochimica Acta. 1999, 45:441~450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700