改性纳米TiO_2及其复合涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2是一种高活性的催化剂,在净化空气、处理污水等方面具有重要的应用价值。本文针对纳米TiO2粉体的光吸收仅限于紫外光区、量子产量低等不足,采用溶胶-凝胶法,以过渡金属元素、稀土元素单掺杂以及非金属元素和金属元素双掺杂来改善纳米TiO2的性质。针对纳米TiO2粉体分散到水介质中会产生催化剂难以回收再利用的问题,本文采用电化学的方法实现了与Ni-P基质共沉积,制备纳米TiO2复合涂层。利用X射线衍射、扫描电镜及电子能谱等方法表征了改性纳米粉体以及纳米复合涂层的组织结构、表面形貌和成分,研究了复合涂层的显微硬度并评价了改性纳米粉体和复合涂层的光催化性能。
     采用溶胶-凝胶法制备Ce-TiO2、Co-TiO2和Zn-TiO2粉体。通过改变热处理温度来控制改性纳米TiO2粉体的相变过程,可获得粒径小、纯度高的一元掺杂纳米TiO2光催化剂。改性TiO2的最佳的热处理温度为500℃。三种元素的最佳掺杂浓度分别为0.6%、0.5%、0.8%,其最佳光催化降解率分别为67%、75%、62%。
     在采用溶胶‐凝胶法制备Ce-TiO2、Co-TiO2和Zn-TiO2光催化剂的基础上,对三种粉末进行渗氮处理。N的掺杂提高了TiO2的光催化活性,三种粉末对甲基橙的降解率分别达到83%、94%、76%。
     Ni-Co-P-纳米TiO2复合涂层的电沉积液最佳配方为:TiO2为6g/L,施镀温度为60℃,表面活性剂为200mg/L,搅拌速度为200r/min,电流密度为5A/dm2,在最佳工艺配方条件下制备的复合涂层中纳米TiO2的复合量达到7.53%;在最佳工艺条件下制备的Ni-Co-P-纳米TiO2复合涂层的光催化性能与纳米TiO2粉体的光催化性能大致相近,略低于粉体的光催化性能。
Nano-TiO2 materials have great application values in wastewater treatment and air purification because of its high photocatalytic properties. Light absorption of nano-TiO2 powder is only limited in UV and nano-TiO2 has lower quantum yield. In this paper, rare-earth element or transistion metal element mono-doped nano-TiO2 and nonmetal element and metal element coped nano-TiO2 was prepaered to improve the properties of nano-TiO2 using sol-gel method. Catalyst is difficult to recovery and reuse when Nano-TiO2 powder were dispersed in water medium. To settle this problem, the nano-TiO2 particles were introduced into plating bath based on plating Ni-Co-P to make the nano-TiO2 particles and Ni、Co、P matrix co-deposit to obtain nano-TiO2 composite coatings. Microstructure, morphology and composition of doped nano-TiO2 and composite coatings were characterized by XRD, SEM and EDS techniques. The Micro-hardness of composite coatings was investigated as well as photocatalytic performance of doped nano-TiO2 and nano-TiO2 composite coatings.
     Ce-TiO2、Co-TiO2 and Zn-TiO2 powder was prepared by sol-gel method. The particle size and phase transformation process of one-element doped nano-TiO2 can be controlled by changing heat-treating temperature the one-element doped nano-TiO2 with small size and high purity were obtained. The result showed that temperature(500℃) was the best heat treatment temperature of the nano-TiO2 and the optimal concentration of the doping agent were 0.6, 0.5 and 0.8 % respectively. Correspondingly, photocatalytic decomposing rate of methyl orange solution were 67, 75 and 62% respectively.
     On the base of prepared Ce-TiO2, Co-TiO2 and Zn-TiO2 by sol-gel method, three kinds of powder were subjected to nitriding treatment. Doping nitrogen can improve the photocatalytic activities of TiO2. Their photocatalytic decomposing rate of methyl orange solution were up to 83, 94 and 76% respectively.
     The optimum process of electro-deposition of Ni-Co-P-nano-TiO2 composite coating is achieved: TiO2 content is 6g/L, bath temperature 60℃,surfactant content 200mg/L , stir speed 200r/min and current density 5A/dm2. The content of nano-TiO2 in the composite coating is up to 7.53%. The photocatalytic performance of Ni-Co-P-nano-TiO2 composite coating is slightly lower than nano-TiO2 powder.
引文
[1]薛茹君,吴玉程.无机纳米材料的表面修饰改性与物性研究[M].合肥:合肥工业大学出版社, 2009.
    [2]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002.
    [3] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
    [4] Brad S J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductor [J]. Journal of Photochemistry and Photobiology A, 1979, 10(59-68).
    [5] Ksibi M, Rossignol S, Tatibouet J, et al. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light [J]. Materials Letters, 2008, 62(26): 4204-4206.
    [6] Liu C, Tang X, Mo C, et al. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium [J]. Journal of Solid State Chemistry, 2008, 181(4): 913-919.
    [7] Chen S, Zhao W, Liu W, et al. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2 [J]. Applied Surface Science, 2008, 255(5, Part 1): 2478-2484.
    [8] Yang L, Dong S, Sun J, et al. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst [J]. Journal of Hazardous Materials, In Press, Accepted Manuscript.
    [9] Jang J S, Ham D J, Lakshminarasimhan N, et al. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation [J]. Applied Catalysis A: General, 2008, 346(1-2): 149-154.
    [10] Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst [J]. Journal of Catalysis, 2009, 266(2): 165-168.
    [11] Xia H, Zhuang H, Zhang T, et al. Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2 [J]. Materials Letters, 2008, 62(6-7): 1126-1128.
    [12] Shifu C, Lei C, Shen G, et al. The preparation of coupled SnO2/TiO2 photocatalyst by ball milling [J]. Materials Chemistry and Physics, 2006, 98(1): 116-120.
    [13]王延延,周国伟,徐会颖,等.光催化剂TiO2改性研究进展[J].硅酸盐通报, 2008, 27(3): 562-567.
    [14]邢丽贞,冯雷,陈华东.光催化氧化技术在水处理中的研究进展[J].水科学与工程技术, 2008, 32(1): 7-10.
    [15]卓成林,伍明华.纳米材料在环境保护方面的最新应用进展[J].化工时刊, 2004, 18(3): 5-8.
    [16] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface: principles mechanisms and selected results [J]. Chemical Reviews, 1995, 95(735-758).
    [17] T O, K S, M M. Photocatalytic activies of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution [J]. Journal of Physical Chemistry B, 2001, 105(2417-2420).
    [18] S B, J S, V S, et al. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase [J]. Applied Catalysis B, 2005, 58: 193-202.
    [19]胡曰博.有序介孔TiO2材料的合成、表征及应用[C].成都:四川大学, 2005.
    [20]马军委,张海波,蓝振波,等.纳米二氧化钛制备方法的研究进展[J].无机盐工业, 2006, 38(10): 5-7.
    [21]李大成,周大利,刘恒,等.纳米TiO2的制备[J].四川有色金属, 2003, 18(2): 1-8.
    [22]曹爱红,蓝心仁,袁启明.沉淀法制备TiO2纳米粉体的研究[J].硅酸盐学报, 2002, 30(S): 83-86.
    [23]赵旭,王子枕,赵敬哲,等.球形二氧化钛的制备[J].功能材料, 2000, 31(3): 303-305.
    [24] T N, T E, T I, et al. Hydrothermal synthesis of brookite [J]. Chemical Physics Letters, 1999, : 911-912.
    [25]余家国,熊建峰,程蓓.高活性二氧化钛光催化剂的低温水热合成[J].催化学报, 2005, 26(9): 745-749.
    [26]魏雨,于静,林玉龙,等.低温液相制备金红石型TiO2纳米晶须[J].高等学校化学学报, 2004, 25(11): 1996-1997.
    [27] Cheng P, Zheng M, Jin Y, et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method [J]. Materials Letters, 2003, 57(20): 2989-2994.
    [28]胡安正,唐朝群. Sol-Gel法制备纳米TiO2的原料配比和胶凝过程机理探研[J].功能材料, 2003, 33(4): 394-397.
    [29]席细平,陈小宾,王伟,等.液相法制备纳米二氧化钛粉体的工艺研究[J].河南化工, 2006, 23(12): 26-28.
    [30] Lee J H, Yang Y S. Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation [J]. Materials Chemistry and Physics, 2005, 93(1): 237-242.
    [31]牛新书,许亚杰,张学治,等.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料, 2003, 34(5): 548-549.
    [32] Sonawane R S, Dongare M K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight [J]. Journal of Molecular Catalysis A: Chemical, 2006, 243(1): 68-76.
    [33] Zhang C, He H, Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature [J]. Applied Catalysis B: Environmental, 2006, 65(1-2): 37-43.
    [34] Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    [35]陈建华,王晓林,张培新,等.纳米二氧化钛粉末离子掺杂研究[J].广西大学学报(自然科学版), 2005, 30(1): 44-50.
    [36] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269-271.
    [37] Kambe S, Fujii M, Kawai T, et al. Photocatalytic hydrogen production with Cd(S, Se) solid solution particles: Determining factors for the highly efficient photocatalyst [J]. Chemical Physics Letters, 1984, 109(1): 105-109.
    [38] Tae Kwon Y, Yong Song K, In Lee W, et al. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction [J]. Journal of Catalysis, 2000, 191(1): 192-199.
    [39]李晓红,徐自力,于连香,等. TiO2/SiO2纳米粒子气相光催化降解甲苯的研究[J].吉林大学学报(理学版), 2005, 43(2): 247-251.
    [40] Cheng Q, Li C, Pavlinek V, et al. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties [J]. Applied Surface Science, 2006, 252(12): 4154-4160.
    [41] Sayilkan F, Asilturk M, Kiraz N, et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate [J]. Journal of Hazardous Materials, 2009, 162(2-3): 1309-1316.
    [42] Barakat M A. Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension [J]. Journal of Hydro-environment Research, In Press, Uncorrected Proof.
    [43] Lydakis-Simantiris N, Riga D, Katsivela E, et al. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis [J]. Desalination, 2010, 250(1): 351-355.
    [44] Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis [J]. Water Research, 2006, 40(6): 1276-1286.
    [45]邓南生,吴峰.环境光化学[M].北京:化学工业出版社, 2003.
    [46] Ao C H, Lee S C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner [J]. Chemical Engineering Science, 2005, 60(1): 103-109.
    [47] Taranto J, Frochot D, Pichat P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4m3 close-loop reactor [J]. Separation and Purification TechnologyAdvanced Technologies for Environmental Remediation, 2009, 67(2): 187-193.
    [48]韩玮.绿色化学、纳米技术与环境保护[J].中国环保产业, 2004, 10(8): 46-48.
    [49]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社, 2006.
    [50]屠振密,韩书梅,杨哲龙,等.防护装饰性镀层[M].北京:化学工业出版社, 2004.
    [51]陈范才,肖鑫,周琦,等.现代电镀技术[M].北京:中国纺织出版社, 2009.
    [52]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社, 2002.
    [53]朱诚意.国内复合镀层最新紧张与应用[J].电镀与环保, 1998, (6): 3-6.
    [54]张玉峰. Ni-P-纳米Si3N4微粒复合刷镀工艺研究[J].电镀与精饰, 2001, (1): 5-7.
    [55]李卫东,周晓荣,左正忠,等.电沉积复合镀层的研究现状[J].电镀与涂饰, 2000, 19(5): 45-48.
    [56]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [57]赵晓兵,陈志刚.纳米复合材料及其制备技术综述[J].江苏大学学报(自然科学版), 2003, 23(4): 52-56.
    [58]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004.
    [59] Guliemi N. Kinetics of the deposition of inert particles from electrolytic baths [J]. Journal of the electrochemical society, 1972, 119: 1009-1012.
    [60] K H. Electrodeposition of composite layers [J]. Finishing, 1997, 21(1): 28-30.
    [61] Gz C. Microstructure of electrodeposited Ni-W-P-SiC composite coatings [J]. Transactions of nonferrous metals society of China( English edition), 1997, 7(1): 22-24.
    [62]姚素微,刘冰,郭鹤桐,等. Ni-Co-P非晶态合金的电沉积及其性能研究[J].化工学报, 1996, 47(1): 48-51.
    [63]朱龙章,张庆元.电沉积镍-钴-碳化钨复合镀层的研究[J].电镀与涂饰, 1999, 18(1): 426.
    [64]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2006.
    [65]张元广,陈友存.纳米TiO2微球的制备及光催化性能研究[J].材料科学与工程学报, 2003, 21(1): 60-63.
    [66]胡科研.基于渗透玻璃膜的纳米二氧化钛光催化剂研究[D].合肥:中国固体物理研究所, 2007.
    [67] Kyriaki E, Karakitson, E X, et al. Effects of altervalent cation doping of TiO2 on its performance as aphotocatalyst for Cleavage [J]. Physics and Chemistry, 1993, 97: 1148-1189.
    [68]井立强,孙晓君,蔡伟民,等.掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J].化学学报, 2003, 61(8): 1241-1245.
    [69]崔玉民,范少华,张颖.铈掺杂TiO2光催化降解甲基橙的研究[J].稀有金属, 2006, 30(4): 469-474.
    [70]张小丽,毛健,侯廷红,等. Ce改性TiO2纳米粒子的制备及光催化活性[J].稀有金属材料与工程, 2006, 35(z2): 124-128.
    [71]刘秀华,何小波,傅依备. Co掺杂对TiO2光催化剂结构与性能的影响[J].化学学报, 2008, 66(14): 1725-1730.
    [72]张美红,丁士文,王振兴,等.化学自组装合成Sn掺杂的纳米TiO2介孔材料及其光催化性能[J].中国科学B辑化学, 2005, 35(3): 206-211.
    [73]吴玉程,陈挺松,解挺,等.纳米TiO2稀土元素掺杂改性与光催化性能研究[J].功能材料, 2005, 1(36): 124-125.
    [74]杨建,薛向欣,王文忠,等.氧化物添加剂对TiO2相变和晶粒生长的影响机制[J].功能材料, 2005, 36(7): 978-980.
    [75]金丽娜,史志铭,闫龙. Zn2+掺杂对TiO2相变温度和晶粒尺寸的影响[J].人工晶体学报, 2007, 36(3): 631-633.
    [76]余锡宾,王桂华,罗衍庆,等. TiO2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版), 2000, 29(1): 75-82.
    [77]毛磊,童仕唐,张海禄,等.过渡元素离子表面改性锐钛型TiO2光催化活性规律探讨[J].武汉科技大学学报(自然科学版), 2006, 29(1): 66-68.
    [78]王岩,赵辉,张纪伟,等.氮掺杂TiO2可见光光催化研究进展[J].河南化工, 2008, 25(5): 5-9.
    [79]任凌,杨发达,张渊明,等.氮掺杂TiO2光催化剂的制备及可见光催化性能研究[J].无机化学学报, 2008, 24(4): 541-546.
    [80]冯光建,刘素文,修志亮,等.氮掺杂二氧化钛纳米粉体的制备及光催化性能的研究[J].中国粉体技术, 2008, 14(3): 39-42.
    [81]钱天才,王绍华. TiO2掺杂La和Ce离子光催化薄膜的微结构与催化特性研究[J].分析测试学报, 2006, 3(25): 53-56.
    [82]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社, 2000.
    [83]杨海燕.化学镀Ni-Co-P合金工艺、组织结构和性能的研究[D].太原:太原理工大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700