基于纳米颗粒的电化学生物传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物分子参与完成生命体中的新陈代谢等许多生理过程,在这些生命过程中很多生物分子都要经历电子转移过程。从一定意义上讲,研究生命过程实质上就是研究生物体中的电子传递过程。电化学方法用来研究生物分子的电子传递过程有着特别的优势,不仅可以测定其基本的热力学和动力学参数,而且可以揭示生物体系中电子转移机理,对于制备电化学生物传感器以满足生物医学、环境检测和工业快速分析的需要具有重要意义。
     纳米材料具有独特的物理和化学特性,能促进生物分子的活性中心与电极间的直接电子交换,同时最大限度地保持生物分子的活性。因此,将纳米技术应用于生物分子电化学分析研究,有利于创新性地建立一些新理论、新技术和新方法,是一个很有前景的领域。
     本论文利用CdTe和CdSe纳米颗粒(量子点,QD)以及铂纳米颗粒作为修饰材料,构建了一系列新型生物传感器,并对其电化学性质进行了研究。主要研究结果如下:
     (1)将水溶性CdTe纳米颗粒和血红蛋白(Hb)混合修饰在玻碳(GC)电极表面,并用Nafion将其固定,制备了稳定的Nafion/Hb-CdTe/GC电极。利用循环伏安(CV)法和安培法详细研究Hb的直接电化学行为和对H_2O_2的催化动力学过程。实验表明,利用CdTe纳米颗粒可实现Hb的直接电化学,促进Hb与电极之间的电子传递,电子转移速率常数κ为0.068 s~(-1),传递系数α为0.59。同时,表面固定的Hb仍然保持对H_2O_2的催化活性,其表观米氏常数为17.7μM。修饰后的电极可用于检测H_2O_2,其线性检测范围为5.0×10~(-6)~4.5×10~(-5)M,检测限为8.4×10~(-7)M(S/N=3)。修饰电极具有较高的灵敏度,并具有较好的重现性和稳定性。
     (2)采用多种方式将脂溶性CdSe/ZnS量子点与辣根过氧化物酶(HRP)共同修饰到GC电极表面,实验表明,只有当脂溶性量子点以蒸发沉积的方式修饰时,HRP在该修饰电极上才能发生明显的直接电子传递,电子传递速率常数为5.80±0.70s~(-1)。紫外和红外光谱表明HRP在此电极表面的构象没有发生明显变化。进一步研究表明,此修饰电极对H_2O_2有良好的催化活性,其表观米氏常数为0.152 mM。修饰后的电极可用于检测H_2O_2,其线性检测范围为5.0×10~(-6)~1.0×10~(-4) M,检测限为2.84×10~(-7)M,且具有良好的可重复性和稳定性。这说明核壳结构的量子点可以实现蛋白质与电极的直接电子传递,且这一电化学行为与量子点在电极表面的修饰方式直接相关。
     (3)采用不同的手段对脂溶性CdSe/ZnS量子点在HRP表面的蒸发沉积进行表征,研究了沉积时间和沉积温度对HRP催化活性影响。确定了量子点的蒸发沉积的最佳条件,并对该条件下制备的修饰电极的电化学行为进行了详细的研究。结果表明,量子点于35℃下沉积7 hr对HRP的直接电子传递有很好的促进作用。在此条件下,量子点和HRP在电极表面的覆盖量分别为5.56×10~(-8)mol cm~(-2)和6.47×10~(-11)molcm~(-2),HRP的的电子传递速率为6.01 s~(-1)。
     (4)在负载有巯基丙酸修饰CdTe纳米颗粒的半胱氨酸(Cys)自组装修饰电极上固定了Trametes versicolor漆酶,利用循环伏安法和安培法研究了它的直接电化学行为和对抗坏血酸(AA)的催化动力学过程,发现漆酶在CdTe纳米颗粒存在情况下可与电极发生直接电子传递,电子传递速率常数κ为21.7 s~(-1),传递系数α为0.47。固定的漆酶保持对AA的催化活性,其表观米氏常数为0.47 mM。修饰后的电极可以用来检测溶液中的AA,其线性检测范围为1.0×10~(-5)~1.4×10~(-4) M,检测限为1.4×10~(-6)M(S/N=3),且具有较好的灵敏性、可重复性和稳定性。
     (5)使用循环伏安电沉积的方法,在铂盘电极上均匀地沉积了铂纳米颗粒。结果表明,该方法制备的铂纳米颗粒修饰铂电极(PNP/Pt)对水杨酸(SA)有良好的电催化氧化能力,可以在弱碱环境下检测SA,对SA的响应电流是修饰前的9.2倍,其线性检测范围为2.0×10~(-5)~5.0×10~(-4)4 M,并具有高的重复性和稳定性,能可靠地应用于SA的检测。
Biomolecules play important role in metabolism and other important physiologicalproeesses, which are charaeteristics of electron transfer between their oxidation andreduction states. Therefore, to study the proeess of life is to investigate the electrontransmition in essence. Electrochemical methods are applied widely in life scienceresearches to research the electron transfer process among the biomolecules, which notonly can obtain the basic thermodynamics and dynamics parameters, and show theelectron transfer mechanism as well. This is significant to understand the life process, andprepare the electrochemical biosensors to meet the needs of the biomedical, environmentaltest and rapid analysis of industrial.
     Due to their special physical and chemical properties, nanosturctured materials canactivate while active electrode surface, and promote the direct electron transfer betweenthe active center in biomolecule and the electrode surface. Therefore, the application ofNano-technology on electrochemical analysis of biological molecules is a promising aera.and conducive to the establishment of some new theories, new technologies and newmethods.
     In this thesis, some novel biosensors were constructed based on CdTe quantum dot(QD), CdSe QD and Platinum nanoparticle, and the electrochemical properties andcatalytic effects were studied. The main contents and results are summarized as follows:
     (1) Water-soluble CdTe nanoparticles and hemoglobin (Hb) were immobilized on aglassy carbon (GC) electrode with Nafion. The direct electrochemistry and the catalytickinetics of Hb on this surface were studied by cyclic voltammetry (CV) and current-timeamperomeric method. The results indicated that CdTe nanoparticles could effectivelypromote the direct electron transfer of Hb at the interface of a electrode. Theheterogeneous electron transfer rate constant, k, was calculated as 0.068 s~(-1) and thetransfer coefficient,α, was 0.59. The immobilized Hb still kept its catalytic activity toH_2O_2 reduction. The apparent Michaelis-Menten constant was calculated to be 17.7μM. Itwas also found that the modified electrode could be used as a sensor for H_2O_2; the linearrange of detection was 5.0×10~(-6)~4.5×10~(-5) M, with a detection limit of 8.4×10~(-7) M. The sensor exhibited high sensitivity, reproducibility and stability.
     (2) Horseradish peroxidase (HRP) and lipophilic CdSe/ZnS QD were incorporatedonto the surface of GC electrodes in various ways. It was found that HRP transferselectron directly onto the GC electrode only when the electrode was modified with QDthrough evaporative deposition. The heterogeneous electron transfer rate constant k was5.80±0.70 s~(-1). Absorption spectra and Fourier-transform infrared spectra showed that theconformation of HRP immobilized on the electrode has no obvious change. Further studiesindicated that immobilized HRP retains excellent catalytic activity to H_2O_2. The apparentMichaelis-Menten constant was calculated as 0.152 mM. It was also found that themodified electrode could be used as a sensor for H_2O_2, and the linear range of detectionwas 5.0×10~(-6)~1.0×10~(-4) M, with a detection limit of 2.84×10~(-7) M. The sensor exhibitedreproducibility, stability and relatively high sensitivity. The result indicated that core-shellQD could promote the direct electron transfer between protein and electrode, but theelectrochemical behavior strongly depend on modify method of QD.
     (3) Evaporative deposition of lipophilic CdSe/ZnS QD was characterized by variousways, the influence of deposition time and deposition temperature on the catalytic activeof HRP were studied. The results indicated that the direct electron transfer of HRP couldbe promoted preferably when QD was deposited 7 hours at 35℃. Under these conditions,the average coverages of QD and HRP on the electrode surface were 5.56×10~(-8) mol/cm~2and 6.47×10~(-11)mol/cm~2 respectively, and the heterogeneous electron transfer rate constantk of HRP is 6.01 s~(-1).
     (4) Laccase was immobilized on an electrode modified with a cysteineself-assembled monolayer and coated with functionalized quantum dots. The directelectrochemistry and the catalytic kinetics of Laccase on this surface was studied by CVand current-time amperomeric method. The immobilized laccase is capable of directlytransferring an electron, the heterogeneous electron transfer rate constant, k, wascalculated as 21.7 s~(-1) and the transfer coefficient,α, was 0.47. Immobilized laccaseretained its activity to oxidize ascorbic acid (AA), and the apparent Michaelis-Mentenconstant was found to be 0.47 mM. The modified electrode was used to linearlysense AA in the 1.0×10~(-5)~1.4×10~(-4) M concentration range, with a detection limitation of 1.4×10~(-6) M.
     (5) Pt nanoparticle was deposited on the Pt electrode by electro-chemical deposition,the prepared PNP/Pt electrode had good electrocatalytic oxidation response to salicylicacid (SA), and could detect SA in weak alkali condition, the response current was 9.2times that of Pt electrode, and the linear range of detection was 2.0×10~(-5)~5.0×10~(-4) M. ThePNP/Pt electrode has low detection limit, high repeatability and stability as SA sensor, canapplicate on the detection of salicylic acid reliably.
引文
[1] Liu Y, Qu XH, Guo HW, et al. Facile preparation of amperometric laccase biosensor with multifunctionbased on the matrix of carbon nanotubeschitosan composite. Biosens. Bioelectron., 2006, 21: 2195
    [2] Arkhypova VN, Dzyadevych SV, Soldatkin AP, et al. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta, 2001, 55: 919
    [3] Marty JL, Mionetto N, Noguer T, et al. Enzyme sensors for the detection of pesticides. Biosens. Bioelectron., 1993, 8: 273
    [4] Riedel K, Neumann B, Scheller FW, et al. Mikrobielle sensoren auf basis von respirations messungen. Chem. Ing. Tech., 1992, 64: 518
    [5] Kathrin S, Georg S. Biosensors for the analysis of pesticide residues. Analyt. Proc., 1993, 30: 73
    [6] 高慧丽,康天放,王小庆等.溶胶-凝胶法固定乙酰胆碱酯酶生物传感器测定有机磷农药.环境化学,2005,24,6:707
    [7] Freire RS, Dur(?)n N, Kubota LT, et al. Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds. Talanta, 2001, 54(4): 681
    [8] 杨瑞兰.碳纳米管修饰电极在电化学生物传感器中的应用研究.东北师范大学硕士学位论文,2008
    [9] Tkac J, Vostiar I, Gorton L, et al. Improved selectivity of microbial biosensor using membrane coating: Application to the analysis of ethanol during fermentation. Biosens. Bioelectron., 2003, 18: 1125
    [10] Volpe G, Mascini M. Enzyme sensors for determination of fish freshness. Talanta, 1996, 43: 283
    [11] Wilney JRS, Phabyanno RL, Lauro TK, et al. Determination of nitrite in food samples by anodic voltammetry using a modified electrode. Food Chem., 2009, 113: 1206
    [12] 黄加栋,宋昭,杨钰等.基于溶胶-凝胶技术结合多壁纳米碳管化学修饰电极的方法制备高灵敏葡萄糖生物传感器的研究.高技术通讯,2006,16,5:492
    [13] 王晓丽,张芬芬,陈燕等.碳纳米管修饰的尿酸传感器的研制及应用.化学传感器,2003,23:55
    [14] Yang YH, Yang MH, Wang H, et al. Inhibition biosensor for determination of nicotine. Anal. Chim. Acta, 2004, 509: 151
    [15] Wang HS, Li TH, Jia WL, et al. Highly selectiveand sensitive determination of dopamine using Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens. Bioelectron., 2006, 22: 664
    [16] Li YX, Lin XQ. Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by a covalently modified glassy carbon electrode. Sensor Actuator B, 2006, 115: 134
    [17] Dzyadevych SV, Arkhypova VN, Soldatkin AP, et al. Amperometric enzyme biosensors: past, present and future. ITBM-RBM, 2008, 29: 171
    [18] Deng CY, Li MR, Xie QJ, et al. Construction as well as EQCM and SECM characterizations of a novel Nafion/glucose oxidase-glutaraldehyde/poly(thionine) /Au enzyme electrode for glucose sensing. Sensor Actuator B, 2007, 122: 148
    [19] Chen HJ, Wang YL, Liu Y, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film. Electrochem. Commun., 2007, 9: 469
    [20] 喻玖红.新型二氧化钛溶胶-凝胶仿生界面与生物传感研究.南京大学博士学位论文,2003
    [21] Quan D, Kim YS, Shin W, et al. Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. J. Electroanal. Chem., 2004, 561: 181
    [22] Zhang SX, Wang N, Yu HJ, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry, 2005, 67: 15
    [23] Zhang SX, Wang N, Niu YM, et al. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sensor Actuator B, 2005, 109: 367
    [24] 吴奕辉.几种生物分子在化学修饰电极上的电化学行为研究.中南大学硕士学位论文,2005
    [25] 杨绍明.辣根过氧化物酶多层膜酶电极的构筑及其应用.浙江大学博士学位论文,2006
    [26] Decher G, Hong JD, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process. Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992, 210: 831
    [27] Sun YP, Zhang X, Shen JC, et al. Supramolecular assembly of alternating porphyrin and phthalocyanine layers based on electrostatic interactions. Macromol. Chem. Phys., 1996, 197: 147
    [28] 陈志春,徐善浩,林汉枫等.LBL分子沉积法制备葡萄糖氧化酶电极.物理化学学报,2004,20:93
    [29] Anzai J, Kobayashi Y, Suzuki Y, et al. Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin-biotin interaction. Sensor Actuator B: Chem., 1998, 52: 3
    [30] Rajesh A, Pandey SS, Takashima W, et al. Simultaneous co-immobilization of enzyme and a redox mediator in polypyrrole film for the fabrication of a amperometric phenol biosensor. Curr. Appl. Phys., 2005, 5: 184
    [31] Pandey PC, Mishra AP. Novel potentiometric sensing of creatinine. Sens. Actuator B, 2004, 99: 230
    [32] Vedrine C, Fabiano S, Tran-Minh C, et al. Amperometric tyrosinase based biosensor using an electorgenerated polythiophene film as an entrapment support. Talanta, 2003, 59: 535
    [33] 渠凤丽.新型纳米线阵列及碳纳米管复合体系的电化学生物传感器研究.湖南大学博士学位论文,2008
    [34] Updike SJ and Hicks GP. Reagentless substrate analysis with immobilized enzymes. Science, 1967, 158: 270
    [35] Gorton G, Csoregi E, Dominguez E, et al. Selective detection in flow analysis based on combination of immobilized enzymes and chemically modified electrodes. Anal. Chim. Acta, 1991, 250: 203
    [36] Hendry SP, Cardosi MF, Neuse EW, et al. Polyferrocenes as mediators in amperometric biosensors for glucose. Anal. Chim. Acta, 1995, 281: 453
    [37] Katrlik J, Brandsteter R, Svorc J, et al. Mediator type of glucose microbial biosensor based on Aspergillus niger. Anal. Chim. Acta, 1997, 356: 217
    [38] Wang J, Golden T. Metalloporphyrin chemically modified glass carbon electrodes as catalytic voltammetric sensors. Anal. Chim. Acta, 1989, 217: 343
    [39] Leech D, Wang J, Smyth MR, et al. Electrocatalytic detection of streptomycin and related antibiotics at ruthenium dioxide modified graphite-epoxy composite electrodes. Analyst, 1990, 115: 1447
    [40] Qing J, Liu Y, Liu H, et al. Immobilization of horseradish peroxidase with regenerated silk fibroin membrane and its application to tetrathiafulvalene mediating H_2O_2 sensor. Biosens. Bioelectron., 1997, 12: 1213
    [41] Niu J, Lee JY. Renewable-surface graphite-ceramic enzyme sensors for the determination of hypoxanthine in fish meat. Anal. Commun., 1999, 36: 81
    [42] Cenas NK, Kulys JJ. Biocatalytic oxidation of glucose on the conductive charge transfer complexes. Bioelectrochem. Bioenerg., 1981, 8: 103
    [43] Ni F, Feng H, Gorton L, et al. Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH oxidation. Langmuir, 1990, 6: 66
    [44] Schlereth DD, Katz E, Schmidt HL. Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for NADH oxidation. Electroanal., 1994, 6: 725
    [45] Tian Y, Mao L, Okajima T, et al. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal. Chem., 2002, 74: 2428
    [46] Wang J. 40 years of advances and challenges. Electroanal, 2001, 13:983
    [47] 李伟.氧化还原蛋白质在纳米材料修饰电极上的直接电化学研究.延边大学硕士学位论文,2007
    [48] Bond AM. New understandings gained from chemical and electrochemical investigations of redox reactions of electron transfer metalloproteins and enzymes: relevance to voltammetric(amperometric) biosensors. Anal. Proc., 1993, 30: 218
    [49] Shen L, Hu N. Heme protein films with polyamidoamine dendrimer: direct electro-chemistry and electrocatalysis. Biochim. Biophys. Acta Bioenerg., 2004, 1608: 23
    [50] Xian YZ, Zhou YY, Xian Y. Preparation of poly(vinylpyrrolidone)-protected Prussian blue nanoparticles-modified electrode and its electrocatalytic reduction for hemoglobin. Anal. Chim. Acta, 2005, 546: 139
    [51] Eddows MJ, Hill HAO. Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem. Soc. Chem. Commun., 1977, 21: 771
    [52] Yeh P, Kuwana T. Reversible electrode reaction of cytochrome c. Chem. Lett., 1977, 10: 1145
    [53] Tarasevich MR, Yaropolov AI, Bogdanovskaya VA, et al. Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectrochem. Bioenerg., 1979, 6: 393
    [54] 曲晓刚,乔专虹,董绍俊等.细胞色素C的电化学行为研究.分析化学,1994,12:1267
    [55] Feng JJ, Xu JJ, Chen HY. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem. Commun., 2006, 8: 77
    [56] 邹小智.纳米材料/血红蛋白修饰电极的电化学行为及其应用研究.华中师范大学硕士学位论文,2007
    [57] Zhang T, Tian BZ, Kong JL, et al. A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. Anal. Chim. Acta, 2003, 480: 199
    [58] 朱孝信.超微细粉末材料的发展.材料开发与应用,1998,13:28
    [59] Palani Raj WR, Sasthav M, Cheung HM, et al. Polymerization of single-phase microe-mulsions: Dependence of polymer morphology on microemulsion structure. Polymer, 1995, 36: 2637
    [60] Finot MO, Braybrook GD, McDermott MT, et al. Characterization of electro-chemically deposited gold nanocrystals on glassy carbon electrodes. J. Electroanal. Chem., 1999, 246: 234
    [61] Wang Q, Kuo YC, Wang YW. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J. Phys. Chem. B., 2006, 110: 16860
    [62] Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Advan. Mater., 2006, 18(15): 1953
    [63] Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016
    [64] Nann T. Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem. Commun., 2005(13): 1735
    [65] Lakowicz JR, Gryczynski I, Gryczynski Z, et al. Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. Anal. Biochem., 2000, 280(1): 128
    [66] Lu Q, Hu SS, Pang DW, et al. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem. Commun., 2005, 20: 2584
    [67] Xu YX, Liang JG, Hu SS, et al. A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J. Biol. Inorg. Chem., 2007, 12: 421
    [68] Liu Q, Lu XB, Li J, et al. Direct electrochemistry of glucose oxidase and electro-chemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron., 2007, 22: 3203
    [69] Du D, Chen S, Song D, et al. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens. Bioelectron., 2008, 24: 475
    [70] Liu MC, Shi GY, Zhang L, et al. Quantum dots modified electrode and its application in electroanalysis of hemoglobin. Electrochem. Commun., 2006, 8:305
    [71] 刘汉范.高分子稳定金属纳米簇的合成及催化研究.中国科学院院刊,2001,16(1):40
    [72] 许程,潘牧,唐浩林等.催化剂用纳米铂的制备方法研究.电池工业,2006,11(5):350
    [73] Wang ZH, Qiu KY. Electrocatalytic oxidation of formic acid on platinum nanoparticle electrode deposited on the nichrome substrate. Electrochem. Commun., 2006, 8: 1075
    [74] Chen XX, Li N, Schuhmann W, et al. Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochem. Commun., 2007, 9: 1348
    [75] 储海虹,吴莹,屠一锋.铂溶胶修饰电极对鲁米诺电化学发光的增敏作用.分析化学,2006,9:1303
    [76] 王存嫦,鲁亚霜,阳明辉等.基于铂纳米线阵列的葡萄糖生物传感器.化学传感器,2007,27:29
    [77] Wu ZY, Chen LG, Yu RQ. Platinum nanoparticle-modified carbon fiber ultramicro-electrodes for mediator-free biosensing. Sensor. Actuator B, 2006, 119: 295
    [78] Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J. phys. D: Appl. Phys., 2003, 36: 167
    [79] Marinella G, Sandros, Gao, et al. A Modular Nanoparticle-Based System for Reagentless Small Molecule Biosensing. J. Am. Chem. Soc., 2005, 127:12198
    [80] Liu BH, Cao Y, Kong JL, et al. Amperometric biosensor based on a nanoporous ZrO_2 matrix. Anal. Chim. Acta, 2003, 478: 59
    [81] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor Ⅴ: Leiden mutation using disposable pencil graphite electrodes. Anal. Chem., 2003, 75(9): 2181
    [82] Wang J, Oscar R, Ronen P, et al. Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster. Electrochem. Commun., 2003, 5(1): 83
    [83] Wang L, Wang E. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun., 2004, 6:49
    [84] Wang J, Liu GD, Polsky R, et al. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun., 2002, 4(9): 722
    [85] Authier L, Grossiord C, Berssier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal. Chem., 2001, 73(18): 4450
    [86] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor Ⅴ: Leiden mutation using disposable pencil graphite electrodes. Anal. Chem., 2003, 75(9): 2181
    [87] Wang J, Oscar R, Ronen P, et al. Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster. Electrochem. Commun., 2003, 5(1): 83
    [88] Wang L, Wang E. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun., 2004, 6: 49
    [89] Wang J, Liu GD, Polsky R, et al. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun., 2002, 4(9): 722
    [90] Zhao YD, Bi YH, Zhang WD, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H_2O_2. Talanta, 2005, 65: 489
    [91] Bi YH, Huang ZL, Zhao YD, et al. The interface behavior and biocatalytic activity of superoxide dismutase at carbon nanotube. Biosens. Bioelectron., 2006, 21(7): 1350
    [92] 陈晓君,张敏,杨娅等.纳米溶胶-凝胶膜修饰电极及电化学催化性能,分析化学,2002,30:972
    [93] Zhao Q, Guan LH, Gu ZN, et al. Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis, 2005, 17(1): 85
    [94] Lim SH, Wei J, Lin JY, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron., 2005, 20(11): 2341
    [95] Zhao GC, Yin ZZ, Zhang L, et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2. Electrochem. Commun., 2005, 7(3): 256
    [96] Jia Z, Liu J, Shen YB. Fabrication of a template-synthesized gold nanorod- modified electrode for the detection of dopamine in the presence of ascorbic acid.Electrochem. Commun., 2007, 9(12): 2739
    [97]Manso J, Mena ML, Y(?)(?)ez-Sede(?)o P, et al. Electrochemical biosensors based on colloidal gold-carbon nanotubes composite electrodes. J. Electroanal. Chem., 2007,603:1
    [98]Wu BY, Hou SH, Chen Q, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens. Bioelectron.,2007, 22: 838
    [99]Jiang HJ, Zhao Y, Yang H. Synthesis and electrochemical properties of single-walled carbon nanotube-gold nanoparticle composites. Mater. Chem. Phy.,2009,114:879
    [100]Zhuo Y, Yuan PX, Yuan R, et al. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials, 2009, 30:2284
    [101]Du D, Chen SZ, Cai J, et al. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta, 2008, 74: 766
    [102]Cai WY, Xu Q, Zhao XN, et al. Porous gold-nanoparticle-CaCO3 hybrid material preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry. Chem. Mater., 2006,18: 279
    [103]Salimi A, Sharifi E, Noorbakhsh A, et al. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles direct electron transfer and electrocatalytic activity. Biosens. Bioelectron., 2007, 22: 3146
    [104]Zhang Y, He PL, Hu NF. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis.Electrochim. Acta, 2004, 49: 1981
    [105]Sun W, Wang DD, Li GC, et al. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim.Acta, 2008, 53:8217
    [106]Huang YX, Zhang WJ, Li GX, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21:817
    [107] Liu MC, Shi GY, Jin LT. ZnS quantum dots derived a reagentless uric acid biosensor. Talanta, 2006, 68: 1353
    [108] Yang J, Zhang RY, He PG, et al. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose. Electrochem. Commun., 2008,10:1889
    [109] Zhao S, Zhang K, Sun CQ, et al. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 2006, 69: 10
    [110] Liu CY, Hu JM. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film.Biosens. Bioelectron., 2009,24: 2149
    [111] Cao DF, Hu NF. Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe_3O_4 nanoparticles in their layer-by-layer self-assembly films. Biophys. Chem., 2006, 121: 209
    [112] Feng JJ, Hildebrandt P, Murgida DH. Silver nanocoral structures on electrodes: a suitable platform for protein-based bioelectronic devices. Langmuir, 2008, 24: 1583
    [113] Gooding JJ, Wibowo R, Liu JQ, et al. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc, 2003, 125: 9006
    [114] Armstrong FA. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions. J. Chem. Soc. Dalton Trans., 2002,661
    [115] Liu HY, Rusling JF, Hu NF. Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes and silica nanoparticles. Langmuir, 2004, 20:10700
    [116] Wade RS, Castro CE. Oxidation of heme proteins by alkylhalides. J. Am. Chem.Soc, 1973,95:231
    [117] Chen J, St(?)cklein W, Scheller FW, et al. Electrochemical determination of human hemoglobin by using ferrocene carboxylic acid modified carbon powder microelectrode. Anal. Lett., 2003, 36: 2049
    [118] Ye J, Baldwin RP. Catalytic reduction of myoglobin and. hemoglobin at chemically modified electrodes containing methylene blue. Anal. Chem., 1988, 60: 2263
    [119] He XY, Zhu L. Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: Redox thermodynamics and electrocatalysis to nitric oxide. Electrochem.Commun.,2006, 8:615
    [120] Lu Q, Zhou T, Hu SS. Direct electrochemistry of hemoglobin in PHEA and its catalysis to H_2O_2. Biosens. Bioelectron., 2007,22: 899
    [121] Sun H, Hu NF. Size effect of polystyrene (PS) latex beads on electrochemical and electrocatalytic activity of layer-by-layer films of heme protein-coated PS beads with polyelectrolytes. J. Electroanal. Chem., 2006, 588: 207
    [122] Liu SQ, Dai ZH, Chen HY, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor.Biosens. Bioelectron., 2004,19: 963
    [123] Zhao S, Zhang K, Bai Y, et al. Glucose oxidase/colloidal gold nanoparticles immobilized in nation film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry, 2006, 69: 158
    [124] L(?) YF, Yin YJ, Wu P, et al. Direct electrochemistry and bioelectrocatalysis of myoglobin at a carbon nanotube-modified electrode. Acta Phys-Chim. Sin., 2007,23:5
    [125] Dai ZH, Liu SQ, Ju HX, et al. Direct electron transfer reactivity and enzymatic activity of hemoglobin in a hexagonal mesoporous silica membrane. Biosens.Bioelectron., 2004, 19:861
    [126] Bruchez MJ, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013
    [127] Cao YC, Liu TC, Zhao YD, et al. Quantum dot optical encoded polystyrene beads for DNA detection. J. Biomed. Opt., 2006,11(5): 054025-1
    [128] Huang YX, Zhang WJ, Li GX, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21:817
    [129] Zhuo Y, Yuan R, Chai YQ, et al. Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface for a-1-fetoprotein determinations. Sens. Actuator B, 2006, 114:631
    [130] Lin ZB, Su XG, Zhang H. Studies on quantum dots synthesized in aqueous solution for biological labeling. Chem. J. Chinese Univ., 2003,24: 216
    [131] Zhang H, Yang B. X-ray photoelectron spectroscopy studies of the surface composition of highly luminescent CdTe nanoparticles in multilayer films. Thin Solid Films, 2002,418: 169
    [132] Faulkner LR. Electrochemical Method, Fundamental and Applications (2nd edn.).New York: Wiley, 2001
    [133] Bi YH, Huang ZL, Zhao YD. Interactions of cytochrome c with DNA at glassy carbon surface. Biophys. Chem., 2005,116(3): 193
    [134] Shen XC, Liou XY, Ye LP, et al. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J. Colloid Interface Sci., 2007, 311: 400
    [135] Liu SQ, Dai ZH, Ju HX, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens.Bioelectron., 2004, 19: 963
    [136] Chen SH, Yuan R, Chai YQ, et al. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron., 2007, 22:1268
    [137] Shi GY, Sun ZY, Liu MC, et al. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO_2 with vapor-surface sol-gel deposition.Anal. Chem., 2007, 79:3581
    [138] Liu HH, Tian ZQ, Pang DW, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens. Bioelectron., 2004, 20:294
    [139] Dong SJ, Che GL, Xie YW, et al. Chemically modified electrodes. Beijing, Science Press, 1995: 442
    [140] Blankman JI, Shahzad N, Miller CJ, et al. Direct Voltammetric Investigation of the Electrochemical Properties of Human Hemoglobin: Relevance to Physiological Redox Chemistry. Biochemistry, 2000, 39: 14806
    [141]Laviron E. The use of linear potential sweep voltammetry and of A. C.voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem., 1979,100: 263
    [142]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979, 101: 19
    [143]Laviron E, Roullier L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: application to modified electrode. J. Electroanal. Chem., 1980, 115: 65
    [144]Lineweaver H, Burk DJ. Determination of enzyme dissociation constants. J. Am.Chem. Soc, 1934, 56:658
    [145]Kamin RA, Willson GS. Glucose biosensor based on layer by layer assembly of multiwalled carbon nanotubes and polyallylamine. Anal. Chem, 1980, 52:1198
    [146]Wu YH, Hu SS. Biosensors based on direct electron transfer in redox proteins.Microchim. Acta, 2007, 159:1
    [147]Jeuken LJC, Cornell SD, Henderson PJF, et al. Redox enzymes in tethered membranes. J. Am. Chem. Soc, 2006, 128: 1711
    [148]Andreu R, Ferapontova EE, Gorton L, et al. Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J. Phys. Chem. B, 2007, 111: 469
    [149]Zhang WJ, Li GX. Third-generation biosensors based on the direct electron transfer of proteins. Anal. Sci., 2004, 20: 603
    [150]Kafi AKM, Lee DY, Park SH, et al. Development of peroxide biosensor of thiolated- viologen and hemoglobin-modified gold electrode. Microchem. J., 2007,85:308
    [151]Zhao JG, Henkens RW, Stonehuerner J, et al. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes. J. Electroanal. Chem., 1992, 327:109
    [152]Xiao Y, Ju HX, Chen HY. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta, 1999, 391: 73
    [153]Fan CH, Suzuki I, Chen Q, et al. An unmediated hydrogen peroxide sensor based on a hemoglobin-SDS film modified electrode. Anal. Lett., 2000, 33: 2631
    [154] Huang YX, Zhang WJ, Xiao H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21:817
    [155] Zhang Y, He PL, Hu NF. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta, 2004,49: 1981
    [156] Zhao YD, Zhang WD, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actuator B Chem., 2002,87: 168
    [157] Xu YX, Liang JG, Hu CG, et al. A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J. Biol. Inorg. Chem.,2007, 12:421
    [158] Liu Q, Lu XB, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.Biosens. Bioelectron., 2007, 22: 3203
    [159] Wang HQ, Liu TC, Cao YC, et al. A flow cytometric assay technology based on quantum dots-encoded beads. Anal. Chim. Acta, 2006, 580:18
    [160] Harbury HA. Oxidation-reduction potentials of horseradish peroxidase. J. Biol.Chem., 1957,225:1009
    [161] Liu SQ, Ju HX. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal. Biochem., 2002, 307:110
    [162] Chen X, Ruan C, Kong J, et al. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolyltic graphite electrode. Anal. Chim. Acta, 2000, 412: 89
    [163] Maehly AC, Colowick SP, Kaplan NO. Plant Peroxidase: Methods in nzymology,New York, Academic Press, 1955, 11: 807
    [164] Bond AM. Modern polarographic methods in analytical chemistry, New York,Marcel Dekker, 1980:27
    [165] Ferri T, Poscia A, Santucci R. Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part Ⅰ. A voltammetric and Spectroscopic study.Bioelectrochem. Bioenerg., 1998,44: 177
    [166] Ferri T, Poscia A, Sanrucci R. Chemically immobilized enzyme electrode for hydrogen peroxide determination. Bioelectrochem. Bioenerg., 1998, 45: 221
    [167] Li J, Dong S. The electrochemical study of oxidation-reduction properties of horseradish peroxidase. J. Electroanal. Chem., 1997,431: 19
    [168] Liu Y, Yuan R, Chai YQ, et al. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/Nafion-modifled platinum disk electrode.Sens. Actuator B Chem., 2006,115: 109
    [169] Hild WA, Breunig M, Goepferich A. Quantum dots-Nanosized probes for the exploration of cellular and intracellular targeting. Eur. J. Pharm. Biopharm., 2008,68: 153
    [170] Sharma SN, Pillai ZS, Kamat PV. Photoinduced Charge Transfer between CdSe Quantum Dots and p-Phenylenediamine. J. Phys. Chem. B, 2003, 107: 10088
    [171] Han MY, Gao XH, Su JZ, et al. Quan-tum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotech., 2001, 19: 631
    [172] Goldman ER, Anderson GP, Tran PT, et al. Conjugation of luminescentquantum dots with antibodies using an engineeredadaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem., 2002, 74: 841
    [173] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21:41
    [174] Pan BF, Cui DX, He R, et al. Covalent attachment of quantum dot on carbon nanotubes. Chem. Phys. Lett., 2006, 417: 419
    [175] Liu B, Ren T, Zhang JR, et al. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water. Electrochem. Commun., 2007, 9: 551
    [176] Huang YX, Zhang WJ, Li GX. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21:817
    [177] Xu YX, Liang JG, He ZK. A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J. Biol. Inorg. Chem.,2007, 12: 421
    [178]Liu Q, Lu XB, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron., 2007,22: 3203
    [179]Ma GX, Lu TH, Xia YY. Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black. Bioelectrochemistry, 2007, 71:180
    [180]Zhao S, Zhang K, Bai Y. Glucose oxidase/colloidal gold nanoparticles immobilized in Nation film on glassy carbon electrode: Direct electron transfer and electro-catalysis. Bioelectrochemistry, 2006, 69: 158
    [181]Xu JM, Li W, Yin QF, et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode. J.Colloid Interface Sci., 2007, 315: 170
    [182]Liu MC, Shi GY, Jin LT, et al. Quantum dots modified electrode and its application in electroanalysis of hemoglobin. Electrochem. Commun., 2006, 8: 305
    [183]Lu Q, Hu SS, Pang DW, et al. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem.Commun., 2005, 28: 2584
    [184]E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979, 101: 19
    [185]Harbury HA. Oxidation-reduction potentials of horseradish peroxidase. J. Biol.Chem., 1957,225: 1009
    [186]Murray RW, in: A. J. Bard (Ed. ), Electroanaytical Chemistry, New York, Marcel Dekker, 1984, 13: 191
    [187]Dennison C. Investigating the structure and function of cupredoxins. Coord. Chem.Rev., 2005, 249: 3025
    [188]Shleev S, Tkac J, Christenson A, et al. Direct electron transfer between copper-containing proteins and electrodes. Biosens. Bioelectron., 2005, 20: 2517
    [189]Xu F. Oxidation of phenols, anilines and benzene thiols by fungal laccases:correlation between activity and redox potentials as well as halide inhibition.Biochemistry, 1996, 35: 7608
    [190]Kuznetsov BA, Shumakovich GP, Koroleva OV, et al. On applicability of laccaseas label in the mediated and mediatorless electroimmunoassay: effect of distance on the directelec tron transfer between laccase and electrode. Biosens.Bioelectron., 2001,16:73
    [191] Barton SC, Kim HH, Binyamin G, et al. The "Wired" laccase cathode: high current density electroreduction of 02 to water at +0. 7V (NHE) at pH5. J. Am. Chem.Soc,2001,123:5802
    [192] Karamyshev AV, Shleev SV, Koroleva OV, et al. Laccase-catalyzed synthesis of conducting polyaniline. Enzyme Microb. Technol., 2003, 33: 556
    [193] Shuttleworth KL, Bollag JM. Soluble and immobilized laccase ascatalysts for the transformation of substituted phenols. Enzyme Microb. Technol., 1986, 8: 171
    [194] Gomes SASS, Nogueira JMF, Rebelo MJF. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron., 2004, 20: 1211
    [195] Quan D, Woonsup S. Modification of electrode surface for covalent immobilization of laccase. Mat. Sci. Eng. C, 2004, 24:113
    [196] Vianello F, Ragusa S, Cambria MT, et al. A high sensitivity amperometric biosensor using laccase as biorecognition element. Biosens. Bioelectron., 2006, 21:2155
    [197] Odaci D, Timur S, Pazarlioglu N, et al. Determination of phenolic acids using Trametes versicolor laccase. Talanta, 2007, 71:312
    [198] Ling X, Lin YQ, Yu P, et al. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim.Acta., 2007, 52: 4144
    [199] Zawisza I, Rogalski J, Opallo M. Electrocatalytic reduction of dioxygen by redox mediator and laccase immobilized in silicate thin film. J. Electroanal. Chem., 2006,588: 244
    [200] Isabel WCEA, Yu XL, Rina A, et al. Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols. Tetrahedron, 2006, 62: 6659
    [201] Bruchez MJ, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013
    [202] Huang YX, Zhang WJ, Xiao H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21: 817
    [203] Xu YX, Liang JG, Hu CG, et al. A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots. J. Biol.Inorg. Chem.,2007, 3: 421
    [204] Xu F, Palmer AE, Yaver DS, et al. Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper. J. Biol. Chem., 1999,274: 12372
    [205] Shleev S, Christenson A, Serezhenkov V, et al. Electrochemically controlled redox transformations of Tl and T2 copper sites in native Trametes hirsuta laccase at bare gold electrode. Biochem. J., 2005, 385: 745
    [206] Shleev S, Khalunina A, Morozova O, et al. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry, 2005,67: 115
    [207] SenthilKumar SM, ChandrasekaraPillai K, Thangamuthu R. Direct amperometric determination of L-ascorbic acid (VitaminC) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals. Sensor Actuator B, 2007, 120:745
    [208] Wu J, Suls J, Sansen W. Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem. Commun., 2000, 2: 90
    [209] Zhang LY, Liu Y, Chen T. Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/L-cysteine-modified gold electrode. Microchim. Acta., 2009, 164: 161
    [210] Wang XY, Watanabe H, Uchiyama S. Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane. Talanta, 2008, 74: 1681
    [211] Baldrian P. Fungal laccases-occurrence and properties. Microbiol. Rev., 2006, 30:215
    [212] Hoffmann AA, Dias SLP, Rodrigues JR, et al. Methylene blue immobilized on cellulose acetate with titanium dioxide: an application as sensor for ascorbic acid. J.Braz. Chem. Soc, 2008, 19: 943
    [213] Wang XY, Watanabe H, Uchiyama S. Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane. Talanta, 2008, 74:1681
    [214] Nassef HM, Civit L, Fragoso A, et al. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film. Analyst, 2008,133: 1736
    [215]Kumar SS, Narayanan SS. Amperometric sensor for the determination of ascorbic acid based on cobalt hexacyanoferrate modified electrode fabricated through a new route. Chem. Pharm. Bull, 2006, 54: 963
    [216]Luo XL, Xu JJ, Zhao W, et al. Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO_2 nanoparticles. Anal. Chim. Acta, 2004,512:57
    [217]Wang JS, Wang JX, Wang Z, et al. Electrocatalytic oxidation of ascorbic acid at polypyrrole nanowire modified electrode. Synthet. Metal, 2006, 156: 610
    [218]Ambrosi A, Morrin A, Smyth MR, et al. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal. Chim. Acta., 2008,609: 37
    [219]Navalon R, Blanc M, Olmo D, et al. Simultaneous determination of naproxen,salicylic acid and acetylsalicylic acid by spectrofluorimetry using partial least-squares (PLS) multivariate calibration. Talanta, 1999,48: 469
    [220]Sena MM, Trevisan MG, Poppi RJ. Combining standard addition method and second-order advantage for direct determination of salicylate in undiluted human plasma by spectrofluorimetry. Talanta, 2006, 68:1707
    [221]Croubels S, Maes A, Baert K, et al. Quantitative determination of salicylic acid and metabolites in animal tissues by liquid chromatography-tandem mass spectrometry.Anal. Chim. Acta, 2005, 529:179
    [222]Goss JD. Improved liquid chromatography of salicylic acid and some related compounds on a phenyl column. J. Chromatogr. A, 1998, 828: 267
    [223]Kakkar T, Mayersohn M. Simultaneous quantitative analysis of methyl salicylate,ethyl salicylate and salicylic acid from biological fluids using gas chromatography-mass spectrometry. J Chromatogr. B, 1998, 718: 69
    [224]Rivas GA, Calatayud JM. FIA-AAS determination of salicylic acid by a solid-phase reactor of copper carbonate incorporated in polyester resin beads.Talanta, 1995,42: 1285
    [225]Campanella L, Gregori E, Tomassetti M. Salicylic acid determination in cow urine and drugs using a bienzymatic sensor. J. Pharmaceut. Biomed. Anal., 2006,42: 94
    [226]Izaoumen N, Aguilera CLM, Rodriguez NI, et al. (3-Sonogel- Carbon electrodes: A new alternative for the electrochemical determination of catecholamines. Talanta,2009, 78: 370
    [227]Chen Y, Guo LR, Chen W, et al. 3-mercaptopropylphosphonic acid modified gold electrode for electrochemical detection of dopamine. Bioelectrochemistry, 2009, 75:26
    [228]Torriero AAJ, Luco JM, Raba J, et al. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta, 2004, 62: 247
    [229]Campanella L, Gregori E, Tomassetti M. Salicylic acid determination in cow urine and drugs using a bienzymatic sensor. J. Pharmaceut. Biomed. Anal., 2006, 42: 94
    [230]Heli H, Hajjizadeh M, Jabbari A. et al. Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles. Anal. Biochem.,2009,388:81
    [231]Kannan P, John SA. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal. Biochem., 2009, 386: 65
    [232]Hrapovic S, Liu YL, Luong JHT, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem., 2004, 76: 1083
    [233]Birkin PR, Elliot JM, Watson YE. Electrochemical reduction of oxygen on mesoporous platinum microelectrodes, Chem. Commun., 2000, 17: 1693
    [234]Wang ZH, Qiu KY. Electrocatalytic oxidation of formic acid on platinum nanoparticle electrode deposited on the nichrome substrate. Electrochem. Commun.,2006,8: 1075
    [235]Selvaraj V, Grace AN, Alagar M. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated singlewalled carbon nanotubes. J. Colloid Interface Sci., doi: 10. 1016/j. jcis. 2009.1.20
    [236]Wang J, Jiang M, Lu F. Electrochemical quartz crystal microbalance investigation of surface fouling due to phenol oxidation. Electroanal. Chem., 1998, 444: 127
    [237]Ai SY, Wang QJ, Li H. Study on production of free hydroxyl radical and its reaction with salicylic acid at lead dioxide electrode. J. Electroanal. Chem., 2005,578:223
    [238] Supalkova V, Petrek J, Havel L, et al. Electrochemical sensors for detection of acetylsalicylic acid. Sensors, 2006, 6: 1483

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700