基于手性Salen金属配合物的电化学传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器的研制已成为电分析化学研究领域中一个非常重要的课题,它们具有响应快、选择性较好、设备简单、操作简易、成本低廉和高灵敏性等众多优点,已广泛应用于食品分析、生物医药检测、环境监测等领域。本文主要研制了用于手性扁桃酸识别以及甲醛检测的电化学传感器。手性Salen及其配合物的设计和合成是研制高选择性电化学传感器的关键,本文合成了手性Salen-Cu(Ⅱ)、Salen-Co(Ⅲ)和Salen-Co(Ⅱ)配合物,并将其应用到电化学传感器中,讨论了传感器的构成、性能、选择性以及响应机理。主要有以下三个方面的工作:1.以3,5-二叔丁基水杨醛和(1R,2R)-环己二胺为原料,合成了手性(R,R)-N,N'-二(3,5-二叔丁基水杨醛)-1,2-环己二胺铜配合物[Salen-Cu(Ⅱ)],以该金属配合物作为载体制作对映异构PVC膜选择性电极(Salen-Cu/PVC)。由于手性Salen-Cu(Ⅱ)与手性扁桃酸(R-MA和S-MA)形成配合物的稳定性不同,电极能优先响应R-MA,线性范围为1.0×10-4~1.0×10-1mol/L,斜率为-52.1 mV/dec,检测限为6.0×10-mol/L,其对映异构选择性系数logK(?)为-2.17。2.合成了手性(R,R)-N,N’-二(3,5-二叔丁基水杨醛)-1,2-环己二胺钴配合物[Salen-Co(III)]作为PVC膜电极的载体。在优化条件下,将载体、增塑剂和PVC粉按一定比例制作PVC膜选择性电极(Salen-Co/PVC)。由于手性Salen-Co(Ⅲ)与手性扁桃酸(R-MA或S-MA)配位形成络合物的稳定性不同,电极能优先响应R-MA,对映异构选择性系数logKR,SPot为-2.36,线性范围为1.0×10-4~1.0×10-1mol/L,斜率为-55.7 mV/dec,检测限为2.0×10-5mol/L。3.以3,5-二叔丁基水杨醛和(1R,2R)-环己二胺为原料,合成了(R,R)-N,N'-二(3,5-二叔丁基水杨醛)-1,2环己二胺钴配合物[Salen-Co(Ⅱ)],以此作为化学修饰剂,利用直接混合法将化学修饰剂、液体石蜡和石墨粉按一定比例混合制作成修饰碳糊电极(Salen-Co/CPE)。实验表明,该电极对甲醛具有良好的电催化作用,氧化峰电流与甲醛的浓度在3.0x10-21.2x10-1mol/L的范围内具有良好的线性关系,检出限为3.33×10-3mol/L。
The study of electrochemical sensors has become a very important topic in analytical chemistry, which has been widely used in food analysis, biomedical detection, environmental monitoring and other fields due to its fast response, good selectivity, simple equipment and operation, low cost and high sensitivity, etc. In this paper, the electrochemical sensors were applied in recognition of chiral mandelic acid and detection for formaldehyde. To design and synthesize chiral Salen and its metal complexes are very vital for the developed electrochemical sensors with good selectivity, chiral Salen-Cu(II), Salen-Co(III) and Salen-Co(II) complexes have been synthesized and the electrochemical sensors were fabricated by using these compounds as recognition elements. Meanwhile, the sensor constitution, performance, selectivity and response mechanism were investigated. The main contents are as following:
     1. Chiral (R,R)-N,N'-bis(3,5-di-tert-butylsalicylaldehyde)-1,2-diaminocyclohexane copper complex [Salen-Cu(II)] was synthesized by 3,5-di-tert-butylsalicylaldehyde and (1R,2R)-diaminocyclo-hexane, which was prepared as the carrier of enantioseletive PVC membrane electrode (Salen-Cu /PVC). Due to the different stabilities of ligand complexes, which were formed by Salen-Cu(II) compound coordinating with chiral enantiomeric mandelic acid(R-MA or S-MA), the electrode can preferentially respond to R-mandelic acid, exhibiting near Nernstian response of-52.1 mV/dec in the concentration range from 1.0×10-4 to 1.0×10-1mol/L with a detection limit of 6.0×10-5mol/L and the enantioselectivity coefficient logKR,SPot,-2.17.
     2. Chiral (R,R)-N,N'-bis(3,5-di-tert-butyl salicylaldehyde)-1,2-diaminocyclohexane cobalt complex [Salen-Co(III)] was employed as the chiral selector of PVC membrane electrode, which was synthesized via 3,5-di-tert-butyl salicylaldehyde and (1R,2R)-diaminocyclohexane. Under the optimized conditions, the selective PVC membrane electrode was prepared by uniformly mixing the carrier, plasticizer and PVC powder in a certain percentage (Salen-Co/PVC). Attributed to the different stabilities of ligand complexes that was formed by coordinated bond between Salen-Co(Ⅲ) compound and chiral enantiomeric mandelic acid(R-MA or S-MA), the electrode displayes near Nernstian slope of -55.7 mV/dec in a linear range of 1.0×10-4 to 1.0×10-1 mol/L for R-mandelic acid with a detection limit of 2.0×10-5 mol/L and an enantioselectivity coefficient logKR,SPot,-2.36.
     3. Chiral (R,R)-N,N'-bis(3,5-di-tert-butyl salicylaldehyde)-1,2-diaminocyclohexane cobalt complex [Salen-Co(II)] has been used as a chemical modifier, which was synthesized via 3,5-di-tert-butyl salicylaldehyde and (1R,2R)-diaminocyclohexane. Salen-Co(II) modified carbon paste electrode (Salen-Co/CPE) have been fabricated by directly mixing of chemical modifiers, paraffin oil and graphite powder in proportion. The devoleped electrode exhibits a good electrocatalytic activity for formaldehyde by chronoamperometry and a linear range from 3.0×10-2 to 1.2×10-1mol/L with the detection limit of 3.33×10-3mol/L were obtained.
引文
[1]狄长安,现代传感器技术与应用.第1版.北京:兵器工业出版社,2007,1-3.
    [2]李娟,传感器与检测技术.第1版.北京:冶金工业出版社,2009,14.
    [3]宋雪臣,传感器与检测技术.第1版.北京:人民邮电出版社,2009,14-17.
    [4]周传德,传感器与测试技术.第1版.重庆:重庆大学出版社,2009,23-26.
    [5]Benjamin J.P., Jae H.S., Mark H.S., Electrochemical Sensors. Anal.Chem.,2008,80: 4499-4517.
    [6]Janata J., Introduction:Modern Topics in Chemical Sensing. Chem.Rev.,2008,108:327-328.
    [7]何金田,苏运东,传感器原理与应用.第1版.河南:科学技术出版社,1996,1-2.
    [8]Pasco N., Jeffries C., Davis Q., et al., Characterisation of a thermophilic L-glutamate dehydro-genase biosensor for amperometric determination of L-glutamate by flow injection analysis. Biosens. Bioelectron.,1999,14:171-178.
    [9]Michael S., Rainer F., Bernd G., et al., The lipoxygenase sensor, a new approach in essential fatty acid determination in foods. Biosens. Bioelectron.,1997,12:1089-1099.
    [10]Gajovic N., Warsinke A., Scheller F.W., Comparison of Two Enzyme Sequences for a Novel L-Malete Biosensor. J.Chem Technol.Biotechnol.,1997,68:31-36.
    [11]Guilbault G.G., Hock B., Schmid R., A Piezoelectric Immunobiosensor for Atrazine in Drink Water. Biosens. Bioelectron.,1992,7:411-419.
    [12]Volpe G, Mascini M., The Research of Biosensor for the Fishes' fresh extent. Talanta,1996, 43:283-289.
    [13]Shin S.J., Yamanaka H., Endo H., et al., The Detection of Ornithine by Electrochemical Biosensor. Anal.Chim.Acta,1998,346:159-164.
    [14]Xu W.J., Chai Y.Q., Yuan R., et al., A Nitrite-Selective Potential Sensor Based on an Aluminum-Phthalocyanine Complex as the Ionophore. J.Southwest University,2008,30: 37-41.
    [15]Marko V.G., Emneus J., Gorton L., et al., Development of enzyme based amperometric sensors for the determination of phenolic compounds. TrAC. Trends Anal.Chem.,1995,14:319-328.
    [16]Normura Y., Ikebukuro K., Yokoya K., et al., A novel microbial sensor for anionic surfactant determination. Anal.Lett.,1994,27:3095-3097.
    [17]Marty J.L., Mionetton, Nogure T., et al., Enzyme sensors for the detection of pesticides. Biosens. Bioelectron.,1993,8:273-280.
    [18]Hiroaki S., Tamiya E., Karube I., An amperometric sensor for carbon dioxide based on immobilized bacteria utilizing carbon dioxide. Anal.Chim. Acta,1987,199:85-91.
    [19]李贵荣,王永生,吕昌银,阿托品选择电极的研制和应用,分析试验室,1998,17(4):13-16.
    [20]张淑敏,赫春香,汪秀龄,诺氟沙星离子选择性电极的研制和应用,分析试验室,1999,18(4):95-97.
    [21]Hopkala H., Misztal G., Wieczorek A., Tramadol Selective PVC Membrane Electrodes and Their Analytical Application. Pharmazie,1998,53:869-871.
    [22]Sergei V.D., Yaroslav I.K., Valentina N.A., et al., Application of Enzyme Field-Effect Transist-ors for Determination of Glucose Concentrations in Blood Serum.Biosens. Bioelectron.,1999, 14:283-287.
    [23]袁若,曹淑瑞,柴雅琴,等,血红蛋白/带正电的纳米金层层自组装膜修饰电极的制备及其电催化性能,中国科学(B辑:化学),2007,37(2):170-177.
    [24]Yin B., Yuan R., Chai Y.Q., et al., Amperometric glucose biosensors based on layer-by-layer assembly of chitosan and glucose oxidase on the Prussian blue-modified gold electrode. Biotechnol. Lett.,2008,30:317-322.
    [25]吴守国,袁倬斌,电分析化学原理.合肥:中国科学技术大学出版社,2006,8-45.
    [26]俞汝勤,离子选择性电极分析法.第1版.北京:人民教育出版社,1980,18-27.
    [27]Johan B., Ari I., Andrzej L., Potentiometric Ion Sensors. Chem. Rev.,2008,108:329-351.
    [28]Eric B., Yu Q., Electrochemical Sensors. Anal.Chem.,2006,78:3965-3983.
    [29]朱明华,仪器分析.第三版.北京:高等教育出版社,2000,107-142.
    [30]吴守国,蒲国刚,等,电分析化学原理,合肥:中国科学技术大学出版社,2006,18-24.
    [31]Moody G.J., Oke R.B., Thomas J.D.R., A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst,1970,95:910-918.
    [32]俞汝勤,离子选择性电极分析法,北京:人民教育出版社,1980,75-77.
    [33]Yuan R., Song Y.Q., Chai Y.Q., et al., Design of Schiff base complexes of Co (II) for the preparation of iodide-selective polymeric membrane electrodes. Talanta,1999,48:649-657.
    [34]Mohammad R.G, Morteza R., Mohammad R.P., et al., Highly Selective PVC Membrane Electrodes Based on Co(II)-Salen for Determination of Nitrite Ion. Anal.Sci.,2003,19: 1127-1131.
    [35]Ardakany M.M, Ensafi A.A, Naeimi H., et al., Highly selective lead(II) coated-wire electrode based on a new schiff base. Sens.Actuat B,2003,96:441-445.
    [36]Mashhadizadeh M.H, Shoaei I.S., Monadi N.,A novel ion selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II). Talanta,2004,64: 1048-1052.
    [37]Hassouna M.E.M., Elsucary S.A.A., Graham J.P., N,N'-bis(3-methyl-1-phenyl-4-benzylidine -5-pyrazolone)propylenediamine schiff base as an eutral carrier for silver(I)ion-selective electrode. Sens.Actuators B,2010,146:79-90.
    [38]Soleymanpour A., Hanifi A., Kyanfar A.H., Polymeric Membrane and Solid Contact Electrodes Based on Schiff Base Complexes of Co(III) for Potentiometric Determination of Perchlorate Ions. Bull.Korean Chem.Soc.,2008,29:1774-1780.
    [39]Soleymanpour A., Mehrorang G., Rajabi H.R., et al., Highly Selective Perchlorate Membrane Electrode Based on Cobalt(III) Schiff Base as a Neutral Carrier. Chinese J.Chem.,2009,27 :258-266.
    [40]Shamsipur M., Soleymanpour A., Akhond M,. et al. Iodide-selective carbon paste electrodes based on recently synthesized Schiff base complexes of Fe(III). Anal.Chim.Acta,2001,450: 37-44.
    [41]Mohammad R.G., Morteza R., Mohammad R.P., et al. Highly Selective PVC-Membrane Electrodes Based on Co(II)-Salen for Determination of Nitrite Ion. Anal.Sci.,2003,19: 1127-1131.
    [42]Soleymanpour A., Hamidi E., Nasseri M.A.,Chemically Modified Carbon Paste Electrode for Determination of Sulfate Ion by Potentiometric Method. Electroanalysis,2006,18:1598-1604.
    [43]Ganjali M.R., Poursaberi T., Babaei L.H., Rouhani S., et al., Highly selective and sensitive copper (Ⅱ) membrane coated graphite electrode based on a recently synthesized schiff's base. Anal.Chim.Acta,2001,440:81-87.
    [44]Ganjali M.R., Mirnaghi F.S., Norouzi P., et al., Novel Pr(III)-selective membrane sensor based on a new hydrazide derivative. Sens.Actuatorsors.B,2006,115:374-378.
    [45]Ganjali M.R., Norouzi P., Daftari A., et al.,Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates schiff s base. Sens.Actuators B,2007,120:673-678.
    [46]Ganjali M.R., Rezapour M., Norouzi P., et al., A new pentadentate S-N schiff' base as a novel ion-ophore in construction of a novel Gd(Ⅲ) membrane sensor. Electroanalysis,2005,17: 2032-2036.
    [47]Ganjali M.R., Norouzi P., Akbari-Adergani B., Thulium(III) ions monitoring by a novel Thulium(III) microelectrode based on a S-N schiff base. Electroanalysis,2007,19:1145-1151.
    [48]Ganjali M.R, Tamaddon A., Norouzi P., et al., Novel Lu(III) membrane sensor based on a new asymmetrically S-N schiff's base. Sens Actuators B,2006,120:194-199.
    [49]Gupta V.K, Pal M.K., Singh A.K., Comparative study of Ag(I) selective poly(vinylchloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6. Anal.Chim.Acta,2009,631:161-169.
    [50]Gupta V.K., Singh A.K., Gupta B., Schiff bases as cadmium(II) selective ion ophores in polymeric membrane electrodes. Anal.Chim.Acta,2007,583:340-348.
    [51]Gupta V.K., Singh A.K., Gupta B., A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal.Chim.Acta,2006,575:198-204.
    [52]Gupta V.K., Goyal R.N., Pal M.K., et al., Comparative studies of praseodymium(III) selective sensors based on newly synthesized schiff s bases. Anal.Chim.Acta,2009,653:161-166.
    [53]Gupta V.K., Pal M., Singh A.K., Comparative evaluation of Dy(III) selective poly(vinyl)choride based membrane electrodes of macrocyclic tetraimine schiff's bases. Talanta,2009,79:528-533.
    [54]Yuan R., Chai Y.Q., Liu D., et al., Schiff Base Complexes of Cobalt(II) as Netutral Carriers for Highly Selective Iodide Electrodes. Anal.Chem.,1993,65:2572-2575.
    [55]Yuan R., Wang X.L., Xu L., et al., Highly selective thiocyanate electrode based on bis-bebzoin-semitriethylenetetraamine binuclear copper(II) complex as neutral carrier. Electrochem.Commun.,2003,5:717-721.
    [56]Xu L., Yuan R., Chai Y.Q., Wang X.L., A novel salicylate-selective electrode based on a Sn(IV) complex of salicylal-imino acid Schiff base. Anal.Bioanal.Chem,2005,381:781-787.
    [57]Ye G.R., Chai Y.Q., Yuan R., et al., A mercury (Ⅱ) ion-selective electrode based on N,N-dimethyl formamide-salicylacylhydrozone as a neutral carrier. Anal.Sci.,2006,22: 579-583.
    [58]Ma Y.H., Yuan R., Chai Y.Q., et al., Potentiometric Membrane Electrode for Cr (III) Ion Based on a New Aryl Amide Bifunctional Bridging Ligand as a Neutral Carrier. J.Chin.Chem.Soc., 2009,56:676-682.
    [59]Ma Y.H., Yuan R., Chai Y.Q., et al., New Ni(II) Ion-Selective Electrode Based on the N-S Schiff Base Ligand as Neutral Carrier in PVC Matrix. Anal.Lett.,2009,42:1942-1960.
    [60]Ma Y.H., Yuan R., Chai Y.Q., et al., A new aluminum (Ⅲ)-selective potentiometric sensor based on N, N'-propanediamide bis(2-salicylideneimine) as a neutral carrier. Mater.Sci.Eng.C, 2010,30:209-213.
    [61]Ma Y.H., Yuan R., Chai Y.Q., et al., A highly selective polymeric membrane barium (II) electrode based on macrocyclic tetrabasic ligand as a neutral carrier. Anal.Bioanal.Chem., 2009,395:855-862.
    [62]Guo J.X., Chai Y.Q., Yuan R., et al., A Fast Response Strontium (II) Selective Polymeric Membrane Sensor Based on 1-Benzothiazol-3-Benzoyl-Thiocarbamide as Neutral Carrier. Sensor Lett.,2010,8:596-601.
    [63]金利通,化学修饰电极.上海:华东师范大学出版社,1992,6-9.
    [64]董绍俊,车广礼,谢远武,化学修饰电极.北京:科学出版社,2003,1-13.
    [65]Estevez-Hernandez O., Naranjo-Rodriguez I., Reguera E., et al., Evaluation of carbon paste electrodes modified with 1-furoylthioureas for the analysis of cadmium by differential pulse anodic stripping voltammetry. Sens.Actuators B,2007,123:488-494.
    [66]Siroueinejad A., Abbaspour A., Shamsipur M., Electrocatalytic Oxidation and Determination of Sulfite with a Novel Copper-Cobalt Hexacyanoferrate Modified Carbon Paste Electrode. Electroanalsis,2009,21:1387-1393.
    [67]Cardoso W.S., Dias V.N., Costa W.M., et al., Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes:preparation and catalytic activity towards methanol /ethanol oxidation. J.Appl.Electrochem.,2009,39:55-64.
    [68]Diaz-Diaz G., Blanco-Lopez M.C., Lobo-Castanon M.J., et al., Chloroperoxidase Modified Electrode for Amperometric Determination of 2,4,6-Trichlorophenol. Electroanalysis,2009, 21:1348-1353.
    [69]Naik R.R., Swamy B.E.K., Chandra U., et al., Separation of Ascorbic Acid, Dopamine and Uric Acid by Acetone/Water Modified Carbon Paste Electrode:A Cyclic Voltammetric Study. Int.J. Electrochem.Sci.,2009,4:855-862.
    [70]Niranjana E., Kumara Swamy B.E., Raghavendra Naik R., et al., Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode:A cyclic voltammetric study. J.Electroanal.Chem.2009,631:1-9.
    [71]Espinosa A.M., Sanjose M.T., Tascon M.L., et al., Electrochemical behaviour of Bismuth(V) and Bismuth(III) compounds at a carbon paste electrode.Application to the study of the superconductor BiSrCaCuO. Electrochim.Acta,1991,36:1561-1571.
    [72]Rekha,Swamy B.E.K.,Deepa R,et al.Electrochemical Investigations of Dopamine at Chemically Modified Alcian Blue Carbon Paste Electrode:A Cyclic Voltammetric Study, Int.J. Electrochem.Sci.,2009,4(6):832-845.
    [73]Shamsipur M., Najafi M., Hosseini M.R.M., et al., Electrocatalytic Behavior of a Carbon Paste Electrode Modified with Iron(III) tetracyanophenylporphyrin Chloride Towards Dioxygen Reduction. Pol.J.Chem.,2009,83:1173-1183.
    [74]Kagan K., Burcu M., Dilsat O., et al., Electrochemical DAN biosensor for the determination of benao[a]pyrene-DNA adducts. Anal.Chim.Acta,2001,450:45-52.
    [75]Ravichandran K., Baldwin R.P., Phenylenediamine-containing chemically modified carbon paste electrodes as catalytic voltam metric sensors. Anal.Chem.,1983,55:1586-1591.
    [76]Gelbert M.B., Curran D.J., Alternating current voltammetry of popamine and ascorbic acid at carbon paste and stearic acid modified carbon paste electrodes. Anal.Chem.,1986,58:1028-1032.
    [77]徐桂英,王凤平,唐丽娜,碳糊电极和化学修饰碳糊电极的制备及性能综述,化学研究,2008,19(3):108-112.
    [78]Radi A., Anodic voltammetric assay of lansop razole and omep razole on a carbon paste electrode. J.Pharm.Biomed.Anal.,2003,31:1007-1012.
    [79]Sanaa M., Mamia E.R., Aziz A., et al., Carbon paste electrode bulk-modified with the conducting polymerpoly(1,8-diaminonaph-thalene):Application to lead determination. Microchimi.Acta,2003,143:195-204.
    [80]Kooshki M., Shamsb E., Selective response of dopamine in the presence of ascorbic acid on carbon paste electrode modified with titanium phosphated silica gel. Anal.Chim.Acta,2007, 587:110-115.
    [81]魏培海,李关宾,陈立仁,NO2-的芯片毛细管电泳-修饰碳糊电极电化学检测,色谱,2005,23(3):258-260.
    [82]Kalcher K., Voltammetric determination of trace amounts of gold with a chemically modified carbon paste electrode. Anal.Chimica Acta,1985,177:175-182.
    [83]周忠亮,纳米材料电化学传感器及环境监测应用研究:[博士学位论文].北京:北京工业大学,2010.4-5.
    [84]Srinivasan K., Kochi J.K., Synthesis and molecular structure of oxochromium(V) cations, coordination with donor ligands. Inorg.Chem.1985,24:4671-4679.
    [85]Zhang W., Loebach J.L., Jacobsen E.N., et al., Enantioselective epoxidation of unfunctionalized olefins catalyzed by(salen) manganese complexes. J.Am.Chem.Soc.,1990, 112:2801-2803.
    [86]Irie R., Noda K., Ito Y., et al., Enantioselective epoxidation of unfunctionalized olefins using chiral (salen) manganese(III) complexes. Tetrahedron Lett.,1990,31:7345-7348.
    [87]Irie R., Ito Y., Katsuki T., Donor ligand effect in asymmetric epoxidation of unfunctionalized olefins with chiral salen complexes. Synlett.1991,4:265-266.
    [88]Jacobsen H., Cavallo L., A possible mechanism for enantioselectivity in the chiral epoxidation of olefins with [Mn(salen)] catalysts. Chem.Eur. J.,2001,7:800-807.
    [89]Kim S., Ko H.,Son S., et al., Enantioselective syntheses of (+)-decursinol and (+)-trans-decursi-Dinol. Tetrahedron Lett.,2001,42:7641-7643.
    [90]Jacobson E.N., Zhang W., Muci A.R.L., Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J.Am.Chem.Soc.,1991,113:7063-7064.
    [91]Palucki M., Mccormick G.K, Jacobsen E.N., Low temperature asymmetric epoxidation of unfunctionalized olefins cataluzed by (Salen)Mn(Ⅲ) complexes. Tetrahetron Lett.,1995,36: 5457-5460.
    [92]Zhao S.S., Zhao J.Q., Zhao D.M., Enantioselective epoxidation of non-functionalized alkenes using carbohydrate based salen-Mn(III) complexes, Carbohydr.Res.,2007,342:254-258.
    [93]Marco B., Pier G.C., Paolo M., et al., Kinetic Resolution of Epoxides by a C-C Bond-Forming Reaction:Highly Enantioselective Addition of Indoles to cis, trans, and meso Aromatic Epoxides Catalyzed by [Cr(salen)] Complexes. Angew.Chem.,2004,116:86-89.
    [94]Zheng X.L., Jones C.W., Weck M., Poly(styrene)-SupportedCo-Salen Complexes as Efficient Recyclable Catalysts for the Hydrolytic Kinetic Resolution of Epichlorohydrin. Chem.Eur.J., 2006,12:576-583.
    [95]Goyal P., Zheng X.L., Week M., Enhanced Cooperativity in Hydrolytic Kinetic Resolution of Epoxides using Poly (styrene) Resin-Supported Dendronized Co-(Salen) Catalysts. Adv.Synth. Catal.,2008,350:1816-1822.
    [96]曾苏,手性药物与手性药理学.第1版.杭州:浙江大学出版社,2002,8-12.
    [97]Millot M.C., Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J.Chromatogr.B,2003,797: 131-159.
    [98]Massolini G., Temporini C., Calleri E., Penicillin G acylase as chiral selector in LC and CE: Exploring the origins of enantioselectivity. J. Chromatogr. B,2008,875:20-29.
    [99]Xu M.H., Lin J., Hu Q.S., et al., Fluorescent Sensors for the Enantioselective Recognition of Mandelic Acid:Signal Amplification by Dendritic Branching. J.Am.Chem.Soc.,2002,124: 14239-14246.
    [100]Jun H., Recent progresses in protein-based chiral stationary phases for enantioseparations in liquidchromatography. J.Chromatogr.B,2008,875:12-19.
    [101]Ward T.J., Baker B.A., Chiral Separations. Anal.Chem.,2008,80:4363-4372.
    [102]翁文,韩景立,陈友遵,等,手性传感器研究进展,化学进展,2007,19(11):1820-1825.
    [103]Yasaka Y., Yamamoto T., Kimura K., et al., Simple Evaluation of Enantiomer-Selectivity of Crown Ether Using Membrane Electrode. Chem.Lett.,1980,9:769-772.
    [104]Stefan-van Staden R.I., Nejem R.M., Cyclodextrins-based enantioselective,potentiometric membrane electrodes for L-vesamicol assay in serum samples. Sens.Actuators B,2006,117: 123-127.
    [105]Stefan-van Staden R.I., Ratko A.A., Enantioselective, potentiometric membrane electrodes based on cyclodextrins:Application for the determination of R-baclofen in its pharmaceutical formulation. Talanta,2006,69:1049-1053.
    [106]Nejem R.M., Stefan R.I., Van Staden J.F., et al., Enantioanalysis of L-2-hydroxyglutaric acid in urine samples using enantioselective, potentiometric membrane electrodes based on maltodextrins. Talanta,2005,65:437-440.
    [107]Yin X.L., Ding J.J., Zhang S., et al., Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens. Bioelectron.,2006, 21:2184-2187.
    [108]Ward T.J., Ward K.D., Chiral Separations:Fundamental Review. Anal.Chem.,2010,82: 4712-4722.
    [109]Giannetto M., Mori,G., Notti A., et al., Discrimination between Butylammonium Isomers by Calix[5]arene-Based ISEs. Anal.Chem.,1998,70:4631-4635.
    [110]Kaniewska M., Sikora T., Kataky R., et al., Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination. J.Biochem.Bioph.Methods, 2008,70:1261-1267.
    [111]Yang Y.Y, Hou J.Y., Li B.X., et al., Enantioselective ITO Electrode Modified with Chiral Salen Co(II) Complex. Chem.Lett.,2010,39:690-692.
    [112]Xu L., Yang Y.Y., Wang Y.Q., et al., Chiral salen Mn(III) complex-based enantioselective potentiometric sensor for L-mandelic acid. Anal.Chim.Acta,2009,653:217-221.
    [113]高静,贺莹,姜艳军,扁桃酸的酶促光学拆分,化工学报,2006,57(12):2926-2932.
    [114]Guo H.S., Kim J.M., Pham X.H., et al., Predicting the Enantioseparation Efficiency of Chiral Mandelic Acid in Diastereomeric Crystallization Using a Quartz Crystal Microbalance. Cryst. Growth Des.,2011,11:53-58.
    [115]臧健,王志军,吴怡祖,扁桃酸的光学拆分,精细化工中间体,2005,35(1):50-52.
    [116]Zheng H.X., Dhileepkumar K., et al., First practical synthesis of enantiomerically pure (R)-and (S)-desmethylsibutramine (DMS) and unambiguous determination of their absolute configuration by single-crystal X-ray analysis.Tetrahedron:Asymmetry,2002,13:107-109.
    [117]Jozef D., Piotr L., Jan O., et al., New procedures for the resolution of chiral tert-butylphenyl phosphine oxide and some of its reactions. Tetrahedron:Asymmetry,1999,10:2757-2763.
    [118]Zhou Y.X., Nagaoka T., Levon K., et al., Chiral Ligand Exchange Potentiometric Aspartic Acid Sensors with Polysiloxane Films Containing a Chiral Ligand N-Carbobenzoxy-Aspartic Acid. Anal. Chem.,2009,81:1888-1892.
    [119]Shamsipur M., Yousefi M., Hosseini M.,et al., A Schiff Base Complex of Zn(Ⅱ) as a Neutral Carrier for Highly Selective PVC Membrane Sensors for the Sulfate Ion. Anal.Chem.,2001, 73:2869-2874.
    [120]Bakker E., Qin Y, Electrochemical Sensors. Anal.Chem.,2006,78:3965-3984.
    [121]Patel B., Kumar A., Menon S.K., Thiocyanate:selective membrane electrode based on macrotricyclic binuclear Cu(II)-Schiff base complex. J.Inclusion Phenom.Mol.Recognit. Chem.,2009,64:239-247.
    [122]Allen C.F.H., Gates J.W., o-n-Butoxynitrobenzene[Ether, butyl o-nitrophenyl]. Org.Synth., 1955,3:140-142.
    [123]Schanz H.J., Linseis M.A., Gilheany D.G., Improved resolution methods for (R,R)- and (S,S)-cyclohexane-1,2-diamine and (R)- and (S)-binol. Tetrahedron:Asymmetry,2003,14: 2763-2769.
    [124]Larrow J.F., Jacobsen E.N., Gao Y., et al., A Practical Method for the Large-Scale Preparation of [N,N-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane diaminato(2-)] manganese (Ⅲ) Chloride a HighlyEnantioselective Epoxidation Catalyst. J.Org.Chem.,1994, 59:1939-1942.
    [125]Larrow J.F., Jacobsen E. N., (R,R)-N,N'-bis(3,5di-tertbutylsalicylidene)1,2-Cyclohexandeiamino Manganese(Ⅲ) Chloride, a Highly Enantioselective Epoxidation Catalyst. Org.Synth,1997,75: 1-6.
    [126]Larrow J.F., Jacobsen E.N., Asymmetric Processes Catalyzed by Chiral (Salen)Metal Bomplexes. Organomet.Process Chem.,2004,6:123-152.
    [127]Moody G.L., Oke R.B., Thomas J.D.R., A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst,1970,95:910-918.
    [128]Ammann D., Pretsch E., Simon W., et al., Lipophilic salts as membrane additives and their influence on the properties of macro- and micro-electrodes based on neutral carriers. Anal.Chim.Acta.,1985,171:119-129.
    [129]Rosatzin T., Bakker E., Simon W., et al., Lipophilic, immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Anal.Chim.Acta.,1993,280: 197-208.
    [130]Umezawa Y., Umezawa K., Sato H., Recommended methods for reporting KA,Bpot values commission on analytical nomenclature. Pure Appl.Chem.,1995,67:507-518.
    [131]Chaniotakis N.A., ParkS.B., Meyerhoff M.E., Salicylate-selective membrane electrode based on tin(Ⅳ)-tetraphenylporphyrin. Anal.Chem.,1989,61:566-570.
    [132]Li L.J., Yang D.J., Gao Y.S., Synthesis and crystal structure of a novel Salen-copper(Ⅱ) complex. Chem.J.Internet,2010,12:4-5.
    [133]徐志固,现代配位化学.北京:化学工业出版社,1987,142-148.
    [134]黄雅燕,肖美添,石贤爱,等,毛细管电泳法测定发酵液中的扁桃酸对映体含量,药物分析杂志,2004,24(5):460-463.
    [135]Anker P., Wieland E., Ammann D., et al., Neutral Carrier Based Ion-Selective for the Deter-mination of Total Calcium in Blood Serum. Anal.Chem.,1981,53:1970-1974.
    [136]Horvath V., Takacs T., Horval G., et al., Enantiomer-Selectivity of Ion-selective Electrodes Based on a Chiral Crown-ether Ionophore. Anal.Lett.,1997,30:1591-1609.
    [137]Sadeghi S., Fathi F., Esmaeili A. A., et al., Novel triiodide ion-selective polymeric membrane electrodes based on some transition metal-Schiff base complexes Sens.Actuators B,2006, 114:928-935.
    [138]Ganjali M.R., Poursaberi T., Basiripour F., et al., Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium-Schiff's base complex. Fresenius J.Anal. Chem.,2001,370:1091-1095.
    [139]Zhou W., Chai Y.Q., Yuan R., Wu X., et al., Potentiometric Iodide Selectivity of Polymer Mem -brane Sensors Based on Co(Ⅱ) Triazole Derivative. Electroanalysis,2008,20: 1434-1439.
    [140]Buhlmann P., Pretsch E., Bakker E., Carrier-Based Ion-Selective Electrodes and Bulk Optodes.2. Ionophores for Potentiometric and Optical Sensors. Chem.Rev.,1998,98: 1593-1687.
    [141]Herschkovitz Y., Eshkenazi I., Campbell C.E., et al., An Electrochemical Biosensor for Formaldehyde. J.Electroanal.Chem.,2000,491:182-187.
    [142]Kim H., Kim Y.D., Cho S.H., Formaldehyde Exposure Levels and SerumAntibodies to Formaldehyde- Human Serum Albumin of Korean Medical Students. Arch.Environ. Health, 1999,54:115-118.
    [143]阙惠芬,袁陈敏,甲醛与人体健康,环境与健康杂志,1993,10(1):46-48.
    [144]Teixeira L.S.G., Leao E.S., Dantas A.F., et al., Determination of formaldehyde in Brazilian alcohol fuels byflow-injection solid phase spectrophotometry. Talanta,2004,64:711-715.
    [145]Li Q., Oshima M., Motomizu S., Flow-Injection Spectrofluorometric Determination of Trace Amounts of Formaldehyde in Water after Derivatization with Acetoacetanilide. Talanta,2007, 72:1675-1680.
    [146]McClenny W.A., Oliver K.D., Jacumin H. J., et al., Ambient Level Volatile Organic Compound (VOC) Monitoring Using Solid Adsorbents-recent USEPA Studies. J.Environ. Monit.,2002,44:695-705.
    [147]Possanzini M., Palo V. D., Simultaneous Determination of HCHO, CH3CHO and O(x) in Ambient Air by Hydrazine Reagent and HPLC. Anna.Chim.,2003,93:149-156.
    [148]陈文,向仕学,王正猛,等,单扫描极谱法测定果、蔬中有机磷农药残留量,分析测定技术与仪器,2001,7(4):242-245.
    [149]杨宏洲,邓友全,Au/PAni/GC电极的制备及对甲醛的电催化氧化研究,化学学报,2002,60(4):569-573.
    [150]Kawthekar R.B., Bi W.T., Kim G.J., Synthesis and application of bimetallic chiral [Co(salen)]-type complexes:a new catalytic approach to synthesis of optically pure β-blockers via kinetic resolution of epichlorohydrin. Appl.Organomet.Chem.,2008,22: 583-591.
    [151]Maria B.B., Electrochemical Oxidation of Formaldehyde on Gold and Silver. Electrochim. Acta,1992,30:1193-1198.
    [152]Kwon M., Kim G.J., Synthesis of polymeric salen complexes and application in theenantio-selective hydrolytic kinetic resolution of epoxides as catalysts. Catalysis Today,2003,87: 145-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700