去合金技术制备氧还原电催化剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧还原反应(ORR)在聚合物电解质燃料电池和质子交换膜燃料电池等燃料电池中发挥着重要的作用。氧还原的电催化剂包括纳米颗粒、大环及裂解产物、碳、硫族化合物、酶和相应的复合物等,它们都已经有所报道。在这些催化剂中Pt及Pt合金纳米颗粒是使用最广泛的氧还原催化剂,但是由于它资源匮乏、价格昂贵,因此在实际应用中受到很大的限制。因此对于研究和开发燃料电池的最大的挑战就是开发具有Pt的高活性及低成本的电催化剂。本文具体工作如下:
     1.以石墨烯为载体的Pt-Co纳米颗粒在碱性溶液氧还原反应中产生羟基自由基的研究
     以石墨烯为载体的Pt-Co纳米催化剂的电催化氧还原活性,和纯Pt相比合金催化剂显示出较高的氧还原活性。合金的组分影响氧还原的活性及速率常数、过氧化氢百分率、电子转移数。Pt:Co原子比从1:0.25到1:1时氧还原活性、速率常数、过氧化氢百分率随着Co原子含量的增加而升高,当Co含量高于50%时氧还原活性、速率常数、过氧化氢百分率减小。因此我们得到了催化剂的组分与氧还原的活性呈“火山型”的关系。在碱性溶液中氧还原过程中产生OH自由基,同时我们也发现催化剂的组分与OH自由基的产量也呈“火山型”的关系,其中Pt1Co1产生的OH自由基最多。该工作将为燃料电池新型催化剂的开发和利用提供有力的理论及实验依据,并为催化剂的改性和可控性地产生活性氧提供新思路、新方法。
     2.去合金的以石墨烯为载体的PtNi合金在酸碱溶液中对氧还原的影响
     在燃料电池中溶解过渡金属是一个不可避免的过程,在这项工作中主要研究了Pt_1Ni_x (x=0、0.25、0.5、1和2)在酸性电解液及碱性电解液中的氧还原活性及在碱性电解质中氧还原产生OH自由基。合金通过浸渍-液相还原方法得到,合金的电子和结构特性通过X-射线光电子能谱(XPS)、X-射线衍射(XRD)、透射电镜(TEM)及高分辨透射电镜(HRTEM)来表征,催化剂的ORR的性能通过循环伏安法(CV)和旋转环盘电极技术(RRDE)来表征,实验中发现无论是在酸性介质还是在碱性介质合金的氧还原活性总是高于纯Pt催化剂,氧还原过程中我们还发现去合金的PtNi催化剂比去合金前氧还原活性增大。在不同原子比的合金催化剂中Pt_1Ni_1@graphene始终具有较高的氧还原活性。在碱性溶液中过氧化氢中间产物在合金表面分解生成OH自由基,其检测通过对苯二甲酸做为捕获剂,通过荧光技术在线检测,其中Pt_1Ni_1@graphene产生的OH自由基最多。这对ORR催化剂的设计或许有很大的帮助。
Oxygen reduction reaction (ORR) plays an important role in fuel cells, such as polymer electrolyte fuel cells and proton exchange membrane fuel cells. Electrocatalysts including nanoparticles (NPs), macrocycles and pyrolysis products, carbons, chalcogenides, enzymes, and coordination complexes have been reported for ORR use and reviewed recently. Comparatively, among the reported electrocatalysts, NPs of platinum and platinum based alloy are the most widely used and studied catalysts. However, because of the high cost and low abundance of Pt, practical use and introduction of fuel cells into markets are limited. So the most critical challenges for the study and application of fuel cells have been to develop alternative electrocatalysts that will retain the high activity of Pt while lowering the cost.The main works are as follows:
     1. Generation of OH Radicals in Oxygen Reduction Reaction at Pt-Co Nanoparticles Supported on Graphene in Alkanline Solutions
     Pt-Co alloy nanoparticles supported graphene were studied for electrocatalytic oxygen reduction. The alloy catalysts showed higher ORR activity than pure Pt catalysts. The compositon of the alloy affected had effects on ORR activities and rate constants, proportion of hydroperoxide, number of electron transfer. In the region of 1:0.25 to 1:1 of the Pt:Co atomic ratio, ORR activities and rate constants, proportion of hydroperoxide increased with increasing Co content, but number of electron transfer decreased. When Co content was higher than 50 at.%, ORR activities and rate constants, proportion of hydroperoxide decreased. Thus, obtaining a volcano dependence of ORR activity upon alloy composition. OH radicals was found during ORR at alloy catalyst in alkaline solutions and the generation also had a volcano dependence of ORR activity upon alloy composition with Pt1Co1 alloy giving highest quantity of OH radicals. This study may be helpful to designing ORR alloy catalysts with higher activity but low yield of OH radicals, because OH radicals are detrimental to the membrane electrode assembly of fuel cells.
     2. Effects of Acid Treatment of Pt-Ni Alloy Nanoparticles@Graphene on the Kinetics of the Oxygen Reduction Reaction in Acidic and Alkaline Solutions
     Acidic dissolution of transition metals from Pt based alloy catalysts for oxygen reduction reaction (ORR) is an unavoidable process during fuel cell operation. In this work we studied effect of acid treatment of graphene-supported Pt_1Ni_x (x=0, 0.25, 0.5, 1 and 2) alloys on the kinetics of the ORR in both alkaline and acidic solutions together with the generation of OH radicals in alkaline solutions. The alloy nanoparticles were synthesized through co-impregnation and chemical reduction. The electronic and structural features of the alloy were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The ORR performances were studied using cyclic voltammetry and rotating ring disk electrode techniques in 0.05 M H_2SO_4 and 0.1 M NaOH, respectively. The alloy catalysts were more active than pure Pt toward ORR, and after acid treatment the ORR activity of Pt-Ni alloy was enhanced in both acidic and alkaline media. The maximum activity of the Pt-based catalysts was found with ca. 50 at.% Ni content in the alloys (Pt_1Ni_1@graphene). OH radicals were generated through dissociation of hydroperoxide at the catalysts’surface and detected by fluorescence technique using terephthalic acid as capture reagent, which readily reacts with OH radical to produce highly fluorescent product, 2-hydroxyterephthalic acid. More OH radicals were found to be generated at Pt1Ni1@graphene catalyst. This work may be valuable to design ORR electrocatalysts with higher ORR activity but lower efficiency of OH radical generation.
引文
[1] Shukla AK, Raman RK, Choudhury NA, et al. Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells[J]. J. Electroanal. Chem. 2004,563 181–190.
    [2] Inaba M, Yamada H, Tokunaga J, et al. Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation[J]. Electrochem. Solid-State Lett. 2004,7(12):A474-A476.
    [3] Arman B, Stevens K, Vernstrom GD, et al. Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano-structured thin film support[J]. Electrochim. Acta 2007,53:688–694.
    [4] Chen W, Kim J, Sun S, et al. Composition Effects of FePt Alloy Nanoparticles on the Electro-Oxidation of Formic Acid[J]. Langmuir 2007,23:11303-11310.
    [5] Stamenkovic VR, Fowler B, Mun BS, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science 2007,315(5811):493-497.
    [6] He W, Wu X, Liu J, et al. Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation[J]. J. Phys. Chem. C 2009,113:10505-10510.
    [7] Kim J, Lee Y, Sun S. Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction[J]. J. Am. Chem. Soc. 2010,132(14):4996-4997.
    [8] Cheng F, Shen J, Ji W, et al. Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction[J]. ACS Appl. Mater. Interfaces 2009,1:460-466.
    [9] Xiao W, Wang D, Lou XW. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction[J]. J. Phys. Chem. C 2010,114 (3):1694–1700.
    [10] Roche I, Chainet E, Chatenet M, et al. Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism[J]. J. Phys. Chem. C 2007,111:1434-1443.
    [11] Zhi M, Zhou G, Hong Z, et al. Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxide fuel cell Energy Environ[J]. Sci. 2011,4:139-144.
    [12] Gong K, Du F, Xia Z, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science 2009,323:760-764.
    [13] Shao Y, Zhang S, Engelhard MH, et al. Nitrogen-doped graphene and its electrochemical applications[J]. J. Mater. Chem. 2010,20:7491-7496.
    [14] Tang Y, Allen BL, Kauffman DR, et al. Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups[J]. J. Am. Chem. Soc. 2009,131 (37):13200–13201.
    [15] Choi J-Y, Hsu RS, Chen Z. Highly Active Porous Carbon-Supported Nonprecious Metal?NElectrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells[J]. J. Phys. Chem. C 2010,114 (17):8048–8053.
    [16] Yuan X, Zeng X, Zhang H-J, et al. Improved Performance of Proton Exchange Membrane Fuel Cells with p-Toluenesulfonic Acid-Doped Co-PPy/C as Cathode Electrocatalyst[J]. J. Am. Chem. Soc. 2010,132 (6):1754–1755.
    [17] Guo J, Hsu A, Chu D, et al. Improving Oxygen Reduction Reaction Activities on Carbon-Supported Ag Nanoparticles in Alkaline Solutions[J]. J. Phys. Chem. C 2010,114(10):4324-30.
    [18] Raghuveer V, Manthiram A, Bard AJ. Pd-Co-Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. J. Phys. Chem. B 2005,109:22909-22912.
    [19] Fernandez JL, Raghuveer V, Manthiram A, et al. Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells[J]. J. Am. Chem. Soc. 2005,127:13100-13101.
    [20] Yu TH, Sha Y, Merinov BV, et al. Improved Non-Pt Alloys for the Oxygen Reduction Reaction at Fuel Cell Cathodes Predicted from Quantum Mechanics[J]. J. Phys. Chem. C 2010,114(26):11527-11533.
    [21] Mano N, Fernandez JL, Kim Y, et al. Oxygen Is Electroreduced to Water on a“Wired”Enzyme Electrode at a Lesser Overpotential than on Platinum[J]. J. Am. Chem. Soc. 2003,125:15290-15291.
    [22] Fei JF, Song HK, Tayhas G, et al. A Biopolymer Composite that Catalyzes the Reduction of Oxygen to Water[J]. Chem. Mater. 2007,19:1565-7150.
    [23] Zhang J, Mo Y, Vukmirovic MB, et al. Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles[J]. J. Phy. Chem. B 2004,108:10955-10964
    [24] Zhang J, Lima FHB, Shao MH, et al. Platinum Monolayer on Nonnoble Metal?Noble Metal Core?Shell Nanoparticle Electrocatalysts for O2 Reduction[J]. J. Phys. Chem. B 2005,109:22701-22704.
    [25] Xing Y, Cai Y, Vukmirovic MB, et al. Enhancing Oxygen Reduction Reaction Activity via Pd-Au Alloy Sublayer Mediation of Pt Monolayer Electrocatalysts[J]. J. Phys. Chem. Lett. 2010,1(21):3238-3242.
    [26] Ghosh T, Vukmirovic MB, DiSalvo FJ, et al. Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties[J]. J. Am. Chem. Soc. 2010,132 (3):906–7.
    [27] Shao M, Shoemaker K, Peles A, et al. Pt Monolayer on Porous Pd-Au Alloys as Oxygen Reduction Electrocatalysts[J]. J. Am. Chem. Soc. 2010;132(27):9253-9255.
    [28] Zhou W-P, Sasaki K, Su D, et al. Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction[J]. J. Phys. Chem. C 2010,114(19):8950-8957.
    [29] Gong K, Su D, Adzic RR. Platinum-Monolayer Shell on AuNi0.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction[J]. J. Am. Chem. Soc. 2010,132(41):14364-14366.
    [30] Hirunsit P, Balbuena PB. Stability of Pt Monolayers on Ir-Co Cores with and without a Pd Interlayer[J]. J. Phys. Chem. C 2010,114(30):13055-13060.
    [31] Koh S, Strasser P. Electrocatalysis on Bimetallic Surfaces: Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying[J]. J. Am. Chem. Soc. 2007,129(42):12624-12625.
    [32] Mani P, Srivastava R, Strasser P. Dealloyed Pt-Cu Core-Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes[J]. J. Phys. Chem. C 2008,112(7):2770-2778.
    [33] Mayrhofer KJJ, Hartl K, Juhart V, et al. Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation[J]. J. Am. Chem. Soc. 2009,131(45):16348-16349.
    [34] Yang R, Leisch J, Strasser P, et al. Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction[J]. Chem. Mater. 2010,22(16):4712-4720.
    [35] Dutta I, Carpenter MK, Balogh MP, et al. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst[J]. J. Phys. Chem. C 2010;114(39):16309-16320.
    [36] Sarkar A, Manthiram A. Synthesis of Pt@Cu Core?Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells[J]. J. Phys. Chem. C 2010,114 (10):4725–4732.
    [37] Krylova G, Dimitrijevic NM, Talapin DV, et al. Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence[J]. J. Am. Chem. Soc. 2010,132(26):9102-9110.
    [38] Ramírez-Caballero GE, Balbuena PB. Dissolution-Resistant Core-Shell Materials for Acid Medium Oxygen Reduction Electrocatalysts[J]. J. Phys. Chem. Lett. 2010,1(4):724-728.
    [39] Zhou H, Zhou W-p, Adzic RR, et al. Enhanced Electrocatalytic Performance of One-Dimensional Metal Nanowires and Arrays Generated via an Ambient, Surfactantless Synthesis[J]. J. Phys. Chem. C 2009,113 (14):5460–5466.
    [40] Guo S, Dong S, Wang E. Raspberry-like Hierarchical Au/Pt Nanoparticle Assembling Hollow Spheres with Nanochannels: An AdvancedNanoelectrocatalyst for the Oxygen Reduction Reaction[J]. J. Phys. Chem. C 2009,113:5485-5492.
    [41] Wang C, Daimon H, Sun S. Dumbbell-like Pt/Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction[J]. Nano Lett. 2009,9:1493-1496.
    [42] Zhang H, Yin Y, Hu Y, et al. Pd@Pt Core-Shell Nanostructures with Controllable Composition Synthesized by a Microwave Method and Their Enhanced Electrocatalytic Activity toward Oxygen Reduction and Methanol Oxidation[J]. J. Phys. Chem. C 2010,114(27):11861-11867.
    [43] Sarkar A, Vadivel Murugan A, Manthiram A. Pt-Encapsulated Pd?Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells[J]. Langmuir 2010,26 (4):2894-2903.
    [44] Zhang Y, Huang Q, Zou Z, et al. Enhanced Durability of Au Cluster Decorated Pt Nanoparticlesfor the Oxygen Reduction Reaction[J]. J. Phys. Chem. C 2010,114 (14):6860–6868.
    [45] Yang J, Zhou W, Cheng CH, et al. Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst[J]. ACS Appl. Mater. Interfaces 2010,2(1):119-126.
    [46] Yancey DF, Carino EV, Crooks RM. Electrochemical Synthesis and Electrocatalytic Properties of Au@Pt Dendrimer-Encapsulated Nanoparticles[J]. J. Am. Chem. Soc. 2010,132 (32):10988–10989.
    [47] Ghosh S, Retna Raj C. Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures: An Efficient Electrocatalyst for Fuel Cell Application[J]. J. Phys. Chem. C 2010,114 (24):10843–10849.
    [48] Wanjala BN, Loukrakpam R, Luo J, et al. Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction[J]. J. Phys. Chem. C 2010,114 (41):17580–17590.
    [49] Santos LGRA, Freitas KS, Ticianelli EA. Heat treatment effect of Pt–V/C and Pt/C on the kinetics of the oxygen reduction reaction in acid media[J]. Electrochim. Acta 2009,54:5246-5251.
    [50] Komanicky V, Iddir H, Chang K-C, et al. Shape-Dependent Activity of Platinum Array Catalyst[J]. J. Am. Chem. Soc. 2009,131:5732-5733.
    [51] Zhang J, Yang H, Fang J, et al. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra[J]. Nano Lett. 2010,10 (2):638–644.
    [52] Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, et al. Imaging Structure Sensitive Catalysis on Different Shape-Controlled Platinum[J]. J. Am. Chem. Soc. 2010,132 (16):5622–5624.
    [53] Jin W, Du H, Zheng S, Xu H, et al. Comparison of the Oxygen Reduction Reaction between NaOH and KOH Solutions on a Pt Electrode: The Electrolyte-Dependent Effect[J]. J. Phys. Chem. B 2010,114 (19):6542–6548.
    [54] Wang C, Vliet Dvd, Chang K-C, et al. Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity[J]. J. Phys. Chem. C 2009,113 (45):19365–193658.
    [55] Yang H, Vogel W, Lamy C, et al. Structure and Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction[J]. J. Phys. Chem. B 2004,108(30):11024-11034.
    [56] Stamenkovic V, Schmidt TJ, Ross PN, et al. Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces[J]. J. Phys. Chem. B 2002,106:11970-11979.
    [57] Mukerjee S, Srinivasan S, Soriaga MP, et al. Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD, XAS, and Electrochemical Studies[J]. J. Phys. Chem. 1995,99:4577-4589.
    [58] Perez J, Gonzalez ER, Ticianelli EA. Oxygen electrocatalysis on thin porous coating rotatingplatinum electrodes[J]. Electrochim. Acta 1998,44:1329-1339.
    [59] Genies L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media[J]. Electrochim. Acta 1998,44:1317-27.
    [60] Shukla AK, Neergat M, Bera P, et al. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells[J]. J. Electroanal. Chem. 2001,504.
    [61] Stamenkovic V, Schmidt TJ, Ross PN, et al. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces[J]. J. Electroanal. Chem. 2003,554:191-199.
    [62] Roche I, Cha?net E, Chatenet M, et al. Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism[J]. J. Phys. Chem. C 2007,111 (3):1434–1443.
    [63] Subban CV, Zhou Q, Hu A, et al. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells[J]. J. Am. Chem. Soc. 2010,132 (49):17531–17536.
    [64] Chen Z, Higgins D, Tao H, et al. Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications[J]. J. Phys. Chem. C 2009,113 (49):21008–21013.
    [65] Lyth SM, Nabae Y, Moriya S, et al. Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction[J]. J. Phy. Chem. C 2009,113:20148-20151.
    [66] Yu D, Zhang Q, Dai L. Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction[J]. J. Am. Chem. Soc. 2010,132 (43):15127–15129.
    [67] Yang S, Zhao G-L, Khosravi E. First Principles Studies of Nitrogen Doped Carbon Nanotubes for Dioxygen Reduction[J]. J. Phys. Chem. C 2010,114 (8):3371–3375.
    [68] Chen R, Li H, Chu D, Wang G. Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions[J]. J. Phys. Chem. C 2009,113:20689-20697.
    [69] Chen W, Akhigbe J, Brückner C, et al. Electrocatalytic Four-Electron Reduction of Dioxygen by Electrochemically Deposited Poly{[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)} [J]. J. Phys. Chem. C 2010,114 (18):8633–8638.
    [70] Olson TS, Pylypenko S, Atanassov P, et al. Anion-Exchange Membrane Fuel Cells: Dual-Site Mechanism of Oxygen Reduction Reaction in Alkaline Media on Cobalt?Polypyrrole Electrocatalysts[J]. J. Phys. Chem. C 2010,114 (11):5049–59.
    [71] Peng X, Koczkur K, Nigro S, et al. Fabrication and electrochemical properties of novel nanoporous platinum network electrodes[J]. Chem. Commun. 2004:2872-2873.
    [72] Holt-Hindle P, Nigro S, Asmussen M, et al. Amperometric glucose sensor based on platinum-iridium nanomaterials[J]. Electrochem. Commun. 2008,10(10):1438-1441.
    [73] Hou Y, Kondoh H, Che R, et al. Ferromagnetic FePt nanowires: Solvothermal reduction synthesis and characterization[J]. Small 2006,2(2):235-238.
    [74] Jeon T-Y, Yoo SJ, Cho Y-H, et al. Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Pt-Ni Alloy Nanoparticles[J]. J. Phys. Chem. C 2009,113 (45):19732–19739.
    [75] Salgado JRC, Antolini E, Gonzalez ER. Structure and Activity of Carbon-Supported Pt-Co Electrocatalysts for Oxygen Reduction[J]. J. Phys. Chem. B 2004,108:17767-17774.
    [76] Yang W, Wang Y, Li J, et al. Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction[J]. Energy Environ. Sci. 2010,3:144-149.
    [77] Kou R, Shao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction[J]. Electrochem. Commun. 2009,11:954-957.
    [78] Yue Q, Zhang K, Chen X, et al. Generation of OH radicals in oxygen reduction reaction at Pt–Co nanoparticles supported on graphene in alkaline solutions[J]. Chem. Commun. 2010,46:3369-3371.
    [79] Kim JY, Yang ZG, Chang C-C, et al. A Sol-Gel-Based Approach to Synthesize High-Surface-Area Pt-Ru Catalysts as Anodes for DMFCs[J]. J. Electrochemi. Soc. 2003,150:A1421-A31
    [80] Venkateswara Rao C, Viswanathan B. ORR Activity and Direct Ethanol Fuel Cell Performance of Carbon-Supported Pt?M (M = Fe, Co, and Cr) Alloys Prepared by Polyol Reduction Method[J]. J. Phys. Chem. C 2009;113 (43):18907–18913.
    [81] Xu T, Lin C, Wang C, et al. Synthesis of Supported Platinum Nanoparticles from Li?Pt Solid Solution[J]. J. Am. Chem. Soc. 2010,132 (7):2151–2153.
    [82] Sode A, Li W, Yang Y, et al. Electrochemical Formation of a Pt/Zn Alloy and Its Use as a Catalyst for Oxygen Reduction Reaction in Fuel Cells[J]. J. Phys. Chem. B 2006,110:8715-8722.
    [83] Ballarin B, Gazzano M, Scavetta E, et al. One-Step Electrosynthesis of Bimetallic Au-Pt Nanoparticles on Indium Tin Oxide Electrodes: Effect of the Deposition Parameters[J]. J. Phys. Chem. C 2009,113:15148-15154.
    [84] Amanda Musgrove AS, Bizzotto D. Stability of PtZn Nanoparticles Supported on Carbon in Acidic Electrochemical Environments[J]. J. Phys. Chem. C 2010,114 (1):546–53.
    [85] Yeager E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure[J]. J. Mol Catal. 1986,38:5-25
    [86] Chen CY, Yang P. Performance of an air breathing direct methanol fuel cell[J]. J. Power Sources 2003,123:37-42.
    [87] Liu J, Lagger G, Tacchini P, et al. Generation of OH radicals at palladium oxide nanoparticle modified electrodes, and scavenging by fluorescent probes and antioxidants[J]. J. Electroanal.Chem. 2008,619-620:131-136.
    [88] Borup R, Meyers J, Pivovar B, et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem. Rev. 2007,107:3904-3951.
    [89] Duong HT, Rigsby MA, Zhou WP, et al. Oxygen Reduction Catalysis of the Pt3Co Alloy in Alkaline and Acidic Media Studied by X-ray Photoelectron Spectroscopy and Electrochemical Methods[J]. J. Phys. Chem. C 2007,111:13460-13465.
    [90] Stamenkovic VR, Mun BS, Mayrhofer KJJ, et al. Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys: Pt-Skin versus Pt-Skeleton Surfaces[J]. J. Am. Chem. Soc. 2006,128:8813-8819.
    [91] Kitchin JR, N?rskov JK, Barteau MA, et al. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals[J]. J. Chem. Phys. 2004,120:10240-10246.
    [92] Appleby AJ, Savy M. Kinetic of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide Application to porous and rotating ring-disk electrodes[J]. J. Electroanal. Chem. 1978,92:15-30.
    [93] Appel M, Appleby AJ. A ring-disk electrode study of the reduction of oxygen on active carbon in alkaline solution[J]. Electrochim. Acta 1978,23(11):1243-1246.
    [94] Arenz M, Schmidt TJ, Wandelt K, et al. The Oxygen Reduction Reaction on Thin Palladium Films Supported on a Pt(111) Electrode[J]. J. Phys. Chem. B 2003,107:9813-9819.
    [95] Prakash J, Joachin H. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim[J]. Acta 2000;45:2289-2296.
    [96] Xu J, Huang WH, McCreery RL. Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes[J]. J. Electroanal. Chem. 1996,410(2):235-242.
    [97] Wang Y, Balbuena PB. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H2O2[J]. J. Chem. Theory Comput. 2005,1:935-943.
    [98] Wang F, Hu SS. Studies of electrochemical reduction of dioxygen with RRDE. Electrochim. Acta 2006,51:4228-4235.
    [99] Zurilla RWR, Sen K, Yeager E. The Kinetics of the Oxygen Reduction Reaction on Gold in Alkaline Solution[J]. J. Electrochem. Soc. 1978,125:1103-1109.
    [100] Kundu S, Nagaiah TC, Xia W, et al. Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction[J]. J. Phys. Chem. C 2009,113:14302-14310.
    [101] Kurak KA, Anderson AB. Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites[J]. J. Phys. Chem. C 2009,113:6730-6734.
    [102] Matter PH, Zhang L, Ozkan US. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J]. J. Catal. 2006,239:83-96.
    [103] Matter PH, Wang E, Millet J-MM, et al. Characterization of the Iron Phase in CNx-BasedOxygen Reduction Reaction Catalysts[J]. J. Phys. Chem. C 2007,111:1444-1450.
    [104] Jaouen F, Dodelet J-P. O2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2 Electroreduction, H2O2 Electroreduction, and H2O2 Disproportionation[J]. J. Phys. Chem. C 2009,113:15422-15432.
    [105] Jaouen F. O2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part II: A Porous-Electrode Model To Predict the Quantity of H2O2 Detected by Rotating Ring-Disk Electrode[J]. J. Phys. Chem. C 2009,113:15433-43.
    [106] Mayrhofer KJJ, Blizanac BB, Arenz M, et al. The Impact of Geometric and Surface Electronic Properties of Pt-Catalysts on the Particle Size Effect in Electrocatalysis[J]. J. Phys. Chem. B 2005,109:14433-14440.
    [107] Wakabayashi N, Takeichi M, Uchida H, et al. Temperature Dependence of Oxygen Reduction Activity at Pt?Fe, Pt?Co, and Pt?Ni Alloy Electrodes[J]. J. Phys. Chem. B 2005,109:5836-5841.
    [108] Miyatake K, Omata T, Tryk DA, et al. Oxygen Reduction at the Pt/Carbon Black-Polyimide Ionomer Interface[J]. J. Phys. Chem. C 2009,113:7772-8.
    [109] Schneider A, Colmenares L, Seidel YE, et al. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes[J]. Phys. Chem. Chem. Phys. 2008,10:1931-1943.
    [110] Fierro C, Anderson AB, Scherson DA. Electron donor-acceptor properties of porphyrins, phthalocyanines, and related ring chelates: a molecular orbital approach[J]. J. Phys. Chem. A 1988,92:6902-6907.
    [111] Liu H, Song C, Tang Y, et al. High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts[J]. Electrochim. Acta 2007,52:4532-8.
    [112] Kobayashi M, Hidai S, Niwa H, et al. Co oxidation accompanied by degradation of Pt–Co alloy cathode catalysts in polymer electrolyte fuel cells[J]. Phys. Chem. Chem. Phys. 2009,11:8226-8230.
    [113] Lai F, Sarma LS, Chou H, et al. Architecture of Bimetallic PtxCo1-x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy[J]. J. Phys. Chem. C 2009,113:12674-12681.
    [114] Paulus UA, Wokaun A, Scherer GG, et al. Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts[J]. J. Phys. Chem. B 2002;106:4181-4191.
    [115] Yano H, Kataoka M, Yamashita H, et al. Oxygen Reduction Activity of Carbon-Supported Pt-M (M=V, Ni,Cr, Co, and Fe) Alloys Prepared by Nanocapsule Method[J]. Langmuir 2007,23:6438-6445.
    [116] Schulenburg H, Muller E, Khelashvili G, et al. Heat-Treated PtCo3 Nanoparticles as Oxygen Reduction Catalysts[J]. J.Phys.Chem.C 2009,113:4069-77.
    [117] Chen S, Sheng WC, Yabuuchi N, et al. Origin of Oxygen Reduction Reaction Activity on Pt3Co Nanoparticles: Atomically Resolved Chemical Compositions and Structures[J]. J. Phys. Chem.C 2009,113(3):1109-25.
    [118] Lima FHB, Zhang J, Shao MH, et al. Catalytic Activity?d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solution[J]. J. Phys. Chem. C 2007;111:404-410.
    [119] Obradovic MD, Grgur BN, Vracar LM. Adsorption of oxygen containing species and their effect on oxygen reduction on Pt3Co electrode[J]. J. Electroanal. Chem. 2003,548:69-78.
    [120] Lima FHB, Ticianelli EA. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum–cobalt electrodes in alkaline media[J]. Electrochim. Acta 2004,49:4091-4099.
    [121] Kiros Y. Electrocatalytic properties of Co, Pt, and Pt-Co on carbon for the reduction of oxygen in alkaline fuel cells[J]. J. Electrochem. Soc. 1996,143:2152-2157.
    [122] Xiong L, Manthiram A. Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cells[J]. J. Mater. Chem. 2004,14:1454-1460.
    [123] Li Y, Tang L, Li J. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites[J]. 2009,11(4):846-849.
    [124] Hummers WSJ, Offeman RE. Preparation of Graphitic Oxide[J]. J. Am. Chem. Soc. 1958,80 (6):1339.
    [125] Chen W, Kim J, Sun SH, et al. Electrocatalytic Reduction of Oxygen by FePt Alloy Nanoparticles[J]. J. Phys. Chem. C 2008,112:3891-2398.
    [126] Ye H, Crooks RM. Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction[J]. J. Am. Chem. Soc. 2007,129:3627-3633.
    [127] Kumar S, Zou S. Electroreduction of O2 on Uniform Arrays of Pt and PtCo Nanoparticles[J]. Electrochem. Commun. 2006,8(7):1151-7
    [128] Zhang J, Vukmirovic MB, Xu Y, et al. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates[J]. Angew. Chem. Int. Ed. 2005,44:2132-2135.
    [129] Stamenkovic V, Mun BS, Mayrhofer KJJ, et al. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. Int. Ed. 2006,45:2897-2901.
    [130] Bron M, Bogdanoff P, Fiechter S, et al. Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction[J]. J. Electroanal. Chem. 2001,500:510-517.
    [131] Sarapuu A, Vaik K, Schiffrin DJ, et al. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution[J]. J. Electroanal. Chem. 2003;541:23-29.
    [132] Tammeveski K, Kontturi K, Nichols RJ, et al. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes[J]. J. Electroanal. Chem. 2001,515:101-12.
    [133] Kruusenberg I, Alexeyeva N, Tammeveski K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes[J]. Carbon 2009,47:651-658.
    [134] Hossaina MS, Tryka D, Yeagera E. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2[J]. Electrochim. Acta 1989,34:1733-1737
    [135] Schmidt TJ, Stamenkovic V, Arenz M, et al. Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification[J]. Electrochim. Acta 2002;47:3765-76.
    [136] Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys[J]. J. Electroanal. Chem. 1999,460:258.
    [137] Wroblowa HS, Pan YC, Razumney G. Studies of electrochemical reduction of dioxygen with RRDE, A new mechanistic criterion[J]. J. Electioanal. Chem. 1976,69:195-201.
    [138] Trasatti S. Electrocatalysis: understanding the success of DSA?[J]. Electrochim. Acta 2000,45:2377-85.
    [139] Watanabe M, Tsurumi K, Mizukami T, et al. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells[J]. J. Electrochem. Soc. 1994,141:2659-2668.
    [140] Appleby AJ. Electrocatalysis and fuel cells[J]. Catal. Rev. 1971,4:221-244.
    [141] Mukerjee S, Srinivasan S, Soriaga MP, et al. Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction[J]. J. Electrochem. Soc. 1995,142:1409.
    [142] Hammer B, N?rskov JK. Theoretical surface science and catalysis—calculations and concepts[J]. Adv. Catal. 2000,45:71-129.
    [143] Xu Y, Ruban AV, Mavrikakis M. Adsorption and Dissociation of O2 on Pt/Co and Pt?Fe Alloys[J]. J. Am. Chem. Soc. 2004,126:4717-25.
    [144] Vukmirovic MB, Zhang J, Sasaki K, et al. Platinum monolayer electrocatalysts for oxygen reduction[J]. Electrochim. Acta 2007,52:2257-2263.
    [145] Paulus UA, Wokaun A, Scherer GG, et al. Oxygen reduction on bare and Pt monolayer-modified Ru(0001), Ru(100) and Ru nanostructured surfaces[J]. Electrochim. Acta 2002,47:3787-3798.
    [146] Greeley J, Norskov JK. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations[J]. Electrochim. Acta 2007,52:5829-36.
    [147] Shao MH, Huang T, Liu P, et al. Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction[J]. Langmuir 2006,22:10409-15.
    [148] Climent V, Markovic NM, Ross PN. Kinetics of Oxygen Reduction on an Epitaxial Film of Palladium on Pt(111) [J]. J. Phys. Chem. B 2000,104:3116-20.
    [149] Wang JX, Markovic NM, Adzic RR. Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects[J]. J. Phys. Chem. B 2004,08:4127-33.
    [150] Fernández JL, Walsh DA, Bard AJ. Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning ElectrochemicalMicroscopy. M?Co (M: Pd, Ag, Au) [J]. J. Am. Chem. Soc. 2005,127:357-365.
    [151] Jayasayee K, Dam VAT, Verhoeven T, et al. Oxygen Reduction Kinetics on Electrodeposited PtCo as a Model Catalyst for Proton Exchange Membrane Fuel Cell Cathodes: Stability as a Function of PtCo Composition[J]. J. Phys. Chem. C 2009,113:20371-20380.
    [152] Markovic NM, Gasteiger HA, Ross JPN. Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution: Rotating Ring DiskPt(hkl) Studies[J]. J. Phys. Chem. 1996,100:6715-6721.
    [153] Yang HH, McCreery RL. Elucidation of the mechanism of dioxygen reduction on metal-free carbon electrodes[J]. J. Electrochem. Soc. 2000,147:3420-3428.
    [154] Maldonado S, Stevenson KJ. Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes[J]. J. Phys. Chem. B 2005,109:4707-4716.
    [155] Tang W, Lin H, Kleiman-Shwarsctein A, et al. Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte[J]. J. Phys. Chem. C 2008,112:10515-10519.
    [156] Damjanovic A, Genshaw MA, Bockris JOM. Hydrogen peroxide formation in oxygen reduction at gold electrodes II. alkaline solution[J]. J. Electroanal. Chem. 1967,15:173-80.
    [157] Ono Y, Matsumura T, Kitajima N, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals[J]. J. Phys. Chem. 1977,81:1307-11.
    [158] Hiroki A, LaVerne JA. Decomposition of Hydrogen Peroxide at Water-Ceramic Oxide Interfaces[J]. J. Phys. Chem. B 2005,109:3364-70.
    [159] Giamello E, Calosso L, Fubini B, et al. Evidence of stable hydroxyl radicals and other oxygen radical species generated by interaction of hydrogen peroxide with magnesium oxide[J]. J. Phys. Chem. 1993,97:5735-5740.
    [160] Lin S-S, Gurol MD. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications[J]. Environ. Sci. Technol. 1998,32 1417-1423.
    [161] Weiss J. The Free Radical Mechanism in the Reactions of Hydrogen peroxide[J]. Adv. Catal. 1952,4:343.
    [162] Balbuena PB, Calvo SR, Lamas EJ, et al. Adsorption and Dissociation of H2O2 on Pt and Pt-Alloy Clusters and Surfaces[J]. J. Phys. Chem. B 2006,110:17452-17459.
    [163] Gewirth AA, Thorum MS. Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges[J]. Inorg. Chem. 2010,49(8):3557-3566.
    [164] Jaouen F, Dodelet J-P. Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs[J]. Electrochim. Acta 2007,52:5975-5984.
    [165] Qu L, Liu Y, Baek J-B, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano 2010,4(3):1321-1326.
    [166] Ikeda T, Boero M, Huang S-F, et al. Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction[J]. J. Phy. Chem. C 2008,112:14706-14709.
    [167] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation ofstructure and morphology and their use as metal-free catalysts[J]. J. Mater. Chem. 2008,18:4893-908.
    [168] Cheng F, Su Y, Liang J, et al. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media[J]. Chem. Mater. 2010,22(3):898-905.
    [169] Adler SB. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes[J]. Chem. Rev. 2004,104:4791-4843.
    [170] Mao L, Zhang D, Sotomura T, et al. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochim. Acta 2003,48:1015-1021.
    [171] Cao DX, Wieckowski A, Inukai J, et al. In situ synchrotron X-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction[J]. J.Electrochem. Soc. 2006,153:A869-A874.
    [172] Fournier J, Lalande G, Cote R, et al. Activation of Various Fe-Based Precursors on Carbon Black and Graphite Supports to Obtain Catalysts for the Reduction of Oxygen in Fuel Cells[J]. J. Electrochem. Soc. 1997,144:218-26.
    [173] Gojkovic SL, Gupta S, Savinell RF. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction[J]. J. Electroanal. Chem. 1999,462:63-72.
    [174] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature 2006,443:63-66.
    [175] Zhou Q, Li CM, Li J, et al. Template-Synthesized Cobalt Porphyrin/Polypyrrole Nanocomposite and Its Electrocatalysis for Oxygen Reduction in Neutral Medium[J]. J. Phys. Chem. C 2007,111:11216-11222.
    [176] Kingsborough RP, Swager TM. Electrocatalytic Conducting Polymers: Oxygen Reduction by a Polythiophene-Cobalt Salen Hybrid[J]. Chem. Mater. 2000,12:872-874.
    [177] Gajendran P, Saraswathi R. Enhanced Electrochemical Growth and Redox Characteristics of Poly(o-phenylenediamine) on a Carbon Nanotube Modified Glassy Carbon Electrode and Its Application in the Electrocatalytic Reduction of Oxygen[J]. J. Phys. Chem. C 2007,111:11320-11328.
    [178] Guo SJ, Dong SJ, Wang EK. Gold/Platinum Hybrid Nanoparticles Supported on Multiwalled Carbon notube/Silica Coaxial Nanocables: Preparation and Application as electrocatalysts for Oxygen reduction[J]. J. Phys. Chem. C 2008,112:2389-2393.
    [179] Yim W-L, Kluner T. Understanding of Adsorption and Catalytic Properties of Bimetallic Pt-Co Alloy Surfaces from First Principles: Insight from Disordered Alloy Surfaces[J]. J. Phys. Chem. C 2010,114(15):7141-7152.
    [180] Wakisaka M, Mitsui S, Hirose Y, et al. Electronic Structures of Pt?Co and Pt?Ru Alloys for CO-Tolerant Anode Catalysts in Polymer Electrolyte Fuel Cells Studied by EC?XPS[J]. J. Phys. Chem. B 2006;110:23489.
    [181] Wiesner M, Upert G, Angelici G, et al. Enamine Catalysis with Low Catalyst Loadings-HighEfficiency via Kinetic Studies[J]. J. Am. Chem. Soc. 2009,132(1):6-7.
    [182] Lang XY, Guo H, Chen LY, et al. Novel Nanoporous Au-Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability[J]. J. Phys. Chem. C 2010,114(6):2600-2603.
    [183] Wu J, Zhang J, Peng Z, et al. Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts[J]. J. Am. Chem. Soc. 2010,132(14):4984-4985.
    [184] Formo E, Lee E, Dean C, et al. Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications[J]. Nano Lett. 2008,8:668-672.
    [185] Lim B, Lu X, Jiang M, et al. Facile Synthesis of Highly Faceted Multioctahedral Pt Nanocrystals through Controlled Overgrowth[J]. Nano Lett. 2008,8:4043-4047.
    [186] Kim H, Choi S, Nam S, et al. Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells[J]. Catal. Today 2009,146:9-14.
    [187] Santos LGRA, Oliveira CHF, Moraes IR, et al. Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method[J]. J. Electroanal. Chem. 2006,596:141-148.
    [188] Wang G, Gao Y, Wang Z, et al. Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell[J]. J. Power Sources 2010,195:185-189.
    [189] Deivaraj TC, Chen W, Lee J. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol[J]. J. Mater. Chem 2003,13:2555-2560.
    [190] Nishimura T, Tsutomu M, Masayuki Y, et al. Preparation of novel Pt-based nanoparticles by double potential step electrolysis and their electrocatalytic activity for oxygen reduction reaction[J]. Electrochim. Acta 2008,54:499-505.
    [191] Snyder J, Fujita T, Chen MW, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts[J]. Nat. Mater. 2010,9:904–907
    [192] Bonakdarpour A, Delacote C, Yang R, et al. Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction[J]. Electrochem. Commun. 2008,10:611–615.
    [193] Liu J, Roussel C, Lagger G, et al. Antioxidant sensors based on DNA-modified electrodes[J]. Anal. Chem. 2005,77(23):7687-7694.
    [194] Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique[J]. Chem. Commun. 2000,2:207-10.
    [195] Kohtani S, Yoshida K, Maekawa T, et al. Loading effects of silver oxides upon generation of reactive oxygen species in semiconductor photocatalysis[J]. Phys. Chem. Chem. Phys. 2008,10:2986-2992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700