过渡金属离子修饰聚苯胺电极的表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是当前电化学、电分析化学方面十分活跃的研究领域。目前已应用于生命科学、环境科学、分析科学、材料科学等方面。导电聚合物聚苯胺修饰电极具有多孔、均相、良好的导电性、合成简单、环境稳定性等优势,但是聚苯胺修饰电极的导电性性能和催化性能较差。为了优化聚苯胺修饰电极的性能,本论文利用电化学循环伏安法在盐酸体系中合成了不同过渡金属离子(M~(2+)=Ni~(2+),Mn~(2+),Co~(2+),Zn~(2+),Cu~(2+))掺杂聚苯胺修饰电极,对其电化学行为及结构,形貌对比分析;探讨了氯化铜掺杂引起聚苯胺的特殊增益效应的本质原因;利用特殊增益效应原理,研究了聚苯胺传感器对铜离子浓度的检测。主要内容如下:
     (1)利用循环伏安法合成五种不同过渡金属离子(M~(2+)=Cu~(2+), Mn~(2+), Co~(2+), Ni~(2+), Zn~(2+))掺杂的聚苯胺修饰电极。对其进行红外光谱,扫描电镜及电化学阻抗的研究。结果表明,铜离子掺杂的聚苯胺与其它几种过渡金属离子相比,存在较大差异:其峰型由三对可逆氧化还原峰变成了两对明显的氧化还原峰,且第一对氧化还原峰峰电流明显远远大于其他金属离子的掺杂,出现电流的增益现象。
     (2)通过设计三组实验改变体系中的阴离子种类探究铜离子掺杂聚苯胺增益现象的本质,结果表明只有在酸性溶液中铜离子和氯离子共存才能导致聚苯胺的增益效应。根据配位理论,论证了五种过渡金属离子与聚苯胺主链配位结构的不同引起了苯胺聚合速度不同及聚苯胺电活性的差异。
     (3)利用循环伏安法制备了聚苯胺修饰电极,对聚苯胺修饰电极进行XRD,SEM,TG等表征。研究了铜离子在该修饰电极上的电化学行为。实验表明:聚苯胺修饰电极对铜离子有良好的电化学响应,线性范围1×10~(-6)~1×10~(-3)mol/L,最低检测限为2.1369×10~(-6)mol/L。可以作为检测水中铜离子浓度的一种新方法。
The chemically-modified electrodes(CME) have been a most burgueoning and of the most flourish research realms in the electrochemistry and electroanalytic chemistry. It was for the moment widely appied in many case such as life sicence, envioronment sicence, energy source sicence, analytic sicence, electronics and meterial sicence. The polyaniline modified electrode has multihole, homogeneous, good electrical conductivity, environmental stability and other advantages. However, the conductivity performance and catalytic performance of polyaniline modified electrodes is poor. In order to optimize the performance of polyaniline modified electrode, in ous papers we study the effect of transition metal ions (M~(2+)=Cu~(2+), Mn~(2+), Co~(2+), Ni~(2+), Zn~(2+)) on the electrochemical synthesis of polyaniline was carried out under cyclovoltammetric conditions with the corresponding metal chloride in hydrochloric acid electrolyte. The products were characterized by FT-IR spectroscopy, SEM and EIS. we also reseach the reason of the current plus of the polyaniline doped by copper ion, and electrochemically synthesised polyaniline/Pt (PANI) can be used to measure copper ion concertraions. The main contents are as follows:
     (1)Polyaniline containing transition metal ions(M~(2+)=Cu~(2+), Mn~(2+), Co~(2+), Ni~(2+), Zn~(2+)) were synthesized by cyclic voltammetric with the corresponding metal chloride in solution. The products were characterized by FT-IR spectroscopy, SEM and EIS. Experimental results shows that the film of Pani-Cu~(2+) is obviously different to Pani-M~(2+)(M~(2+)= Ni~(2+), Mn~(2+), Co~(2+), Zn~(2+)) in both the shape of oxidation-reduction peaks and the first anodic peak current. Moreover, a particular phenomenon, i.e., a current plus was observed on the I-E curve of Pani-Cu2+ for the first oxidation peak.
     (2)To discover the reason of the current plus of Pani-Cu~(2+), the experiment was carried for three groups in different electrolytical solutions by cyclic voltammogram. The experimental results shows that the co-activation of copper ion and chloride ion in acid solution accelerates the polymerization rate of aniline, which lead to that the first anodic peak current of Pani-Cu~(2+) increases sharply. According to the coordination theory, the different polymerization rate is caused by the different structure of transition metal ions at the same electrolytical concentration. Transition metal ions are able to coordinate to imine nitrogen atoms of the polymer backbone. The structures of compositions MCl_4~(2-) made up of corner-sharing MCl_6 octahedra or planes of isolated MCl4 tetrahedra in HCl solutions.
     (3)A new chemically modified Pt electrode under cyclovoltammetric conditions has been prepared by using polyaniline as a modifier, the electrochemical behavious of copper(Ⅱ) ion on the modified electrode have been studied. The polyaniline electrode was studied by X-ray diffraction, Scanning Electron Microscope and TG analysis. A new approach is developed for sensitive and accurate determintion of copper ion by the polyaniline electrode, the peak of copper ion on polyaniline/Pt is proportional to concentration of copper ion between 1×10~(-6)~1×10~(-3)mol/L,the detection limit is 2.1369×10~(-6)mol/L.
引文
[1] Smith JA,Josowicz M,Janata J.Gold-polyaniline Composite-Part I.Moving Electrochemical Interface[J].Physical Chemistry Chemical Physics,2005,7(20):3614-3618.
    [2] Ricky J T,Huang J X,Jianyong O,et al.Polyaniline Nanofiber/gold Nanoparticle Nonvolatile Memory[J].Nano Lett,2005,5(6):1077-1080.
    [3] Huang W S,Humphrey B D,MacDiarmid A G..Polyaniline,a novel conducting polymer[J].Faraday Trans,1986,82 (1):2385-2396.
    [4] Saprigin A V,Brenneman K R,et al.Li+ doping-in-duced localization in polyaniline [J].Synth,Met,1999,100:55-59.
    [5] Oleg P,Dimitriev.Doping of polyaniline by transition metal salts:effect of metal cation on the film morphol-ogy[J].Synth.Met,2004,142:299-303.
    [6] Jayashree Anand,Palle Swapna Rao,et al.ZnCl2-in-duced changes in the electr- -onic properties of polyani-line-HCl salt and its base [J].Synth.Met,1998,95:57 -62.
    [7]李鹏,官建国,张清杰等.聚苯胺/镍纳米复合材料原位复合与性能表征[J].武汉理工大学学报,2005,27(3):5-8.
    [8]吴婉群,王月丰,范例等.铂微粒修饰的聚苯胺薄膜电极对甲醛氧化的电催化作用[J].应用化学,1995,12(1):68-72.
    [9] Anand J,Rao P S,Palaniappan S,etal.ZnC12-induced changes in the electronic properties of polyaniline-HC1 salt and its base.Synthetic Metals,1998,95:57-62.
    [10] Hasik M,Kurkowska I,Bernasik A.Polyaniline incorporating cobalt ions from CoCl2 solutions.Reactive & Functional Polymers,2006,66:1703–1710.
    [11]李新贵,孙晋,黄美荣.聚苯胺/金属纳米粒子复合物的制备及性能[J].化学进展,2007,19(5):787-795.
    [12]李雪莉.化学修饰电极的研究进展[J].价值工程,2010,3:5.
    [13]陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用[J].化工新型材料,1997,25(11):16-20.
    [14]马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报:自然科学版,2002, 25(2):124-127.
    [15] MacDiarmid A G,Chiang J C,Richter A F,et al.Polyaniline:a new concept inconducting polymers[J].Synth Metals,1987,18:285-290.
    [16]聂玉静,程正载,杨旭宇.聚苯胺的合成及改性研究现状[J].化工新型材料,2010,38 (3):19-21.
    [17]旷英姿.导电高分子聚苯胺的合成及应用[J].精细化工中间体,2004,34(4):16-18.
    [18]郑海林.新型导电高分子材料聚苯胺的合成及应用[J].广西化工,1998, 27(3):37-38.
    [19]王雪亮.导电聚苯胺复合纤维的研制[J].合成纤维工业,1996,19(1):28-30.
    [20]潘春跃,曾燕.乳液聚合条件对聚苯胺性能的影响[J].高分子材料科学与工程,2001,17(3):163-165.
    [21]朱新生,王新波,孙东豪.微乳液法制备导电聚苯胺的研究[J].合成技术及应用,2002,17(3):5-7.
    [22] Y. Mosqueda, E. Pe′rez-Cappe, et a.l Preparation and characterization of LiNi0. 8Co0. 2O2/PANI microcomposite electrode materials under assisted ultrasonicirradiation [ J].Journal of Solid State Chemistry,2006,179:308-314.
    [23] Diaza f,Logaa ja.Electroactive Polyaniline Film[J].Electroanal Chem,1980,111(1):111.
    [24] Tang Z Y,Liu S Q,Wang Z X,et al.Electrochemical Synthesis of Polyaniline Nanoparticles[J].Electrochem Commun,2000(2):32-35.
    [25] Liu W,Anagnostopoulos A,Bruno F F.Biologically Derived Water Soluble conducting Polyaniline [J].Synthetic Metals,1999,101:738-741.
    [26] Wang X,Downey M.Conductive fibers from enzymatically synthesized polyaniline [J].Synthetic Metals,1999,107:117-121.
    [27] Mahito A,Al-Nakib C,Toshio F.Preparation of conducting polyaniline colloids under ultrasonication.Ultrasonics Sono chemistry,2003,10:77-80.
    [28]沙兆林,苏广均,施磊.导电聚苯胺的合成[J].南通工学院学报,2000,16(1):25-27.
    [29]张艳,孙培培,蒋晓青.纳米结构聚苯胺的合成及性质[J].南京师范大学学报(工程技术版), 2009,9(2):41-47.
    [30] Wang B C,Tang J S,Wang F S.Electrochemical Polymerization of Aniline [J].Synth Met.,1987,18(13):323-328.
    [31]吴丹,朱超,强骥鹏,等.聚苯胺的掺杂及其应用[J].工程塑料应用,2006,36(9).
    [32]柯一礼.导电聚苯胺的研究及其应用前景[J].建材世界,2009,30(5):8-11.
    [33]宋月贤.用于电磁屏蔽与吸波技术的聚苯胺导电聚合物的研究进展[J].化工新型材料,2000,9:3-7.
    [34]刘维锦,沈家瑞.聚苯胺导电纤维的湿法纺制[J].纺织科学研究,1999(4):1-5.
    [35]张金勇,李季,王献红,等.导电聚苯胺无溶剂防腐涂料的制备方法[P].中国,发明专利:CN1243852A,2002.
    [36]乔庆东,王胜.新型共混十二烷基苯磺酸掺杂的聚苯胺导电胶的合成[J].精细化工,1999,16(2):35.
    [37]马建标.功能高分子材料[M].北京:化学工业出版社,2000.
    [38]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18(4):337-343.
    [39]董绍俊.化学修饰电极[J].化学通报,1981,12:9-17.
    [40]董绍俊.化学修饰电极在分析化学中的作[J].分析化学,1988,16(10):951-955.
    [41]李凤斌,董绍俊.抗坏血酸在普鲁士蓝薄膜修饰电极上的电催化氧化[J].化学学报,1990,48 (7):653-659.
    [42]唐芳琼,沈继峰,张金芳,等.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应[J].高等学校化学学报.1999,20(4):634-636.
    [43]金松子,刘六战,沈含熙.双层类脂膜修饰玻碳电极研究去甲肾上腺素电化学行为及其分析应用[J].分析化学,2004,32(10):1314-1316.
    [44]金松子,王韬,张春煦,等.血红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].化学学报,2002,60(7):1269-1273.
    [45]金松子,田文莉,沈含熙,等.肌红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].分析测试学报,2004,23(2):1-4.
    [46]李星玮,李晓宣,居明,等.以对甲基苯磺酸做掺杂剂电化学法合成聚苯胺的性能.应用化学,2001,18 (7):587-588.
    [47]崔小斌,王新生,顾大伟,等.金属离子对导电聚苯胺薄膜电阻-温度关系的影响.江西科学,2005,23(4):399-403.
    [48]马利,贺玲,甘孟瑜,等.复合酸掺杂聚苯胺电极膜的制备及其电化学性能的研究.功能材料,2009,40 (1):30-36.
    [49] Aguirre M J,Retamal B A,Ureta-Zanartu M S,et al.Effects of alkaline cations on polyaniline electrochemical synthesis [J].Electroanal Chem,1992,328 (1-2):349-354.
    [50] Mu S L,Kan J Q.The effect of salts on the electrochemical polymerization of aniline [J].Synth Met,1998,92(2):149-155.
    [51]牛林,魏丰华,陈晓等.电解质溶液对聚苯胺电化学合成的影响[J].山东大学学报(自然科学版),2002,37(1):65-69.
    [52] Del Rio C,Olivares N,Acosta J L.Electrogeneration kinetics of polyaniline in the presence of lithium perchlorate[J].Polym Bull,2001,47(1):65-70.
    [53] Motheo A J,Santos J R,Venancio E C,at al.Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films [J].Polymer,1998,39(26):6977-6982.
    [54] Borole D D,Kapadi U R,Kumbbhar P P,et al.Effect of inorganic dopants(in presence of electrolyte) on the conductivity of polyani-line,poly(o-toluidine) and their copolymer thin films[J].Mater Lett,2002,57(4):844-852.
    [55] Cai L T,Yao S B,Zhou S M.Improved conductivity and electrica properties of polyaniline in the presence of rare-earth cations and magnetic field[J].Synthetic Metals,1997,88(3):205-208.
    [56]牛振江,倪亚红,李则林,等.Zn2+对电化学合成聚苯胺膜的影响[J].浙江师范大学学报,2005,28:47-50.
    [57]牛振江,杨防祖,黄令等.镍离子对电合成聚苯胺膜的电化学活性及表面形貌的影响[J].功能材料,2001,32(增刊):1742-1744.
    [58] Hasik M,Drelinkiewicz,Wenda E.Interactions between Polyanilines and Palladium Ions:Similarities and Differences[J].Synthetic Metals,2001,119(1-3):335—336.
    [59] Dimitriev O P,Kislyuk V V.Interaction of the Europium Chloride and Polyaniline:Formation of a Novel Conductive Complex [J].Synthetic Metals,2002,132(1):87—92.
    [60]陈春燕,杨春明,王胜得,等.Cu(Ⅱ)离子掺杂导电聚苯胺的合成及表征.光谱实验室.2004,21(3):587-591.
    [61]陈春燕.Fe3+对聚苯胺掺杂的in-suitUIV /Vis光谱研究.云南化工,2006,33(4):3-6.
    [62] Chou Y S,Stevenson J W.Midterm stability of novel mica-based compressive seals for solid oxide fuel cells[J].Journal of Power Sources,2003,115:274-278.
    [63]钟新仙,王芳平,李庆余等.不同氧化剂制备的聚苯胺电化学性能研究.电源技术,2009,133(9):781-784
    [64]何森等.CuCl2掺杂聚苯胺催化合成苯甲醛1, 2一丙二醇缩醛.化学研究与应用, 5(18):557-560.
    [65] Dhawan S K,Kumar D,Ram M K,et al.Application of conducting polyaniline as sensor material for ammonia,Sensor Actuators B,1997,40:99–103.
    [66] MacDiarmid A G..Polyaniline and polypyrrole: where are we headed? Synthetic Metals,1997,84:27–34.
    [67] Sharma S,Nirkhe C,Pethkar S,et al.Chloroform vapour sensor based on copp- -er/polyaniline nanocomposite,Sensor and Actuators B,2002,85:131-136.
    [68] Bartlett P N,Archer S K,Chung L.Conducting polymer gas sensors,part I:fabrication and characterization.Sensor Actuators 1989,19:125-140.
    [69] Bartlett P N,Chung L.Conducting polymer gas sensors, partⅡ:response of polypyrrole to methanol vapour,Sens.Actuators 1989,19:141-150.
    [70] Bartlett P N,Chung L.Conducting polymer gas sensors,part III:results for four different polymers and five different vapours,Sensor Actuators 1989,20:287 -292.
    [71] Hirata M,Sun L.Chatracteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas,Sensor Actuators A,1994,40:159-163.
    [72] Krutovertsev S,Sorokin S,Zorin A,et al.Polymer film based sensor for ammonia detection,Sensor Actuators B,1992,7:492-497.
    [73] V. V. Chabukswar, S. Pethkar, A. A. Athawale, Acrylic acid doped polyaniline as an a- -mmonia sensor, Sens.Actuators B 2001,77: 657-663.
    [74] Agbor N E,Petty M C,Monkman A P.Polyaniline thin films for gas sensing,Sensor Actuators B,1995,28:173-179.
    [75] Agbor N E,Cresswell J P,Petty M C.An optical gas sensor based on polyaniline Langmuir-Blodgett films.Sensor Actuators B,1997,41:137-141.
    [76] Dobay R,Gabor H,Csaba V,et al.Conducting polymer-based electrochemical sensors on thick film substrate.Electroanalysis,1990,11:804-808.
    [77] Lepsenyi I.Highly sensitive and selective polymer based gas sensors in Proceedings of the Twelvth European Microelectronics and Packaging Conference (IMAPS).Harrogate,UK,1999,301-305.
    [78] Athawale A A,Kulkarni M V.Polyaniline and its substituted derivatives as sensor for aliphatic alcohols.Sens. Actuators B,2000,6:173-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700