Ag纳米颗粒修饰的TiO_2反蛋白石制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着工业的发展导致的环境污染和能源短缺问题日愈严重,借助半导体的光催化作用,进行有害有毒污染物的光催化降解及光催化合成引起了广泛关注。其中TiO_2由于资源丰富,价格低廉,无毒环境友好,较高的化学稳定性以及易掺杂改性等优点,被认为是理想的光催化材料得到深入研究。但是,TiO_2的光催化能力主要体现在波长小于380 nm的紫外光照射下,加上光生电荷容易复合导致量子产率低大大限制了它的实际应用。所以对TiO_2进行改性,提高光催化效率尤其关键。
     对TiO_2改性主要有两个方面:一是化学改性,包括金属和非金属掺杂、贵金属沉积以及与具有匹配能带结构的半导体进行复合;二是物理改性,如制备具有独特形貌的TiO_2纳米管/棒、纳米线、纳米带、核壳结构的TiO_2复合物、微孔介孔结构的TiO_2以及与光子晶体耦合得到有序多孔结构的TiO_2反蛋白石。基于以上方法,本文将物理和化学改性结合起来制备了Ag纳米颗粒修饰的TiO_2反蛋白石光催化剂。主要工作为:
     1.用实验室自制的SiO_2微球,通过垂直沉降法在玻璃衬底上制备出蛋白石胶体晶体模板;
     2.溶胶凝胶浸渍提拉法将TiCl_4溶胶填入SiO_2模板,热处理使填充物凝胶化,并高温煅烧使TiO_2结晶,热氢氧化钠溶液去除模板后,得到有序多孔结构的TiO_2反蛋白石;
     3.利用简单的湿化学方法,在TiO_2反蛋白石上沉积平均尺寸10 nm左右的Ag纳米颗粒;
     4.通过X射线衍射、拉曼光谱、场发射扫描电镜、高分辨透射电镜、光电子能谱、紫外可见吸收谱和光致发光谱的表征对样品的物相组成、表面形貌和微结构、元素组成和价态、光学性质等进行了研究;
     5.降解亚甲基蓝水溶液的实验证明,合成的催化剂具有较高的光催化活性和稳定性,尤其是可见光催化活性有较大幅度的提高。AgNO_3前驱体溶液浓度为10 mM时,TiO_2反蛋白石可见光催化效率最高,反应速率常数是相同Ag负载量TiO_2无序膜的4.20倍。催化活性的提高,归因于Ag纳米颗粒表面等离子体吸收和反蛋白石有序多孔结构多重散射效应的协同作用。
Recently, the problems of environment pollution and energy shortage become more and more serious with the development of industry. Photocatalytic degradation of harmful toxic pollutants and photocatalytic synthesis using semiconductor photocatalysts have induced extensive attention. Among all these candidates, TiO_2 has been considered the ideal photocatalytic materials and obtained deeply studies. Since TiO_2 are resource-rich, cheap, non-toxic, chemical stability and easy to dopant. However, the photocatalytic activity of TiO_2 was reflected under the ultraviolet light with wavelength shorter than 380 nm. Furthermore, the practical application of TiO_2 was greatly restricted by its lower quantum yield, which comes from the recombination of photogenerated charges. Thus, it is mostly important to modify TiO_2.
     There are mainly two methods for TiO_2 modification. The one is chemical modification, including metal and nonmetal doping, noble metal deposition and compositing with other semiconductors. The other is physical modification, such as preparation TiO_2 nanotubes/rods, TiO_2 nanowires, TiO_2 nanobelts, TiO_2 composition which has core-shell structure, micro/mesoporous TiO_2 and coupled with photonic crystals gotten ordered porous TiO_2 inverse opals. Based the above ways, we combined physical and chemical modification and fabricated Ag nanoparticles decorated TiO_2 inverse opals. The main works are as following:
     1. Colloidal crystal templates were prepared on the glass substrates using SiO_2 microspheres via vertical sedimentation.
     2. SiO_2 templates were filled with TiCl_4 sol through sol-gel dip-coating. Gelation of fillers was by heat treatment, then TiO_2 crystallization by high temperature calcining. The removal of templates was using hot NaOH solution and achieved ordered porous TiO_2 inverse opals finally.
     3. Ag nanoparticles with average size about 10 nm were deposited on TiO_2 inverse opals by a facile wet chemical route.
     4. Crystal phase, surface morphology and microstructure, the elemental composition and chemical state,optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS),UV-vis absorption spectra, and photoluminescence spectroscopy (PL).
     5. The experiments of methylene blue degradation confirmed that the result catalysts have enhanced photocatalytic activities and stability, especially the visible-light photocatalysis. Furthermore, the remarkable improvement in methylene blue degradation was appearing on TiO_2 inverse opal with optimizing AgNO_3 concentration 10 mM in the precursor solution, which exhibited 4.20 times visible-light reaction rate constant comparing with conventional Ag loaded TiO_2 film without ordered porous structure. This obvious enhanced visible-light photocatalytic activity can be attributed to the synergetic effect of Ag nanoparticles surface plasmon absorption and the multiple scattering effect of inverse opal ordered porous structures.
引文
[1]倪斌. 2004.煤炭在我国能源结构优化中基础性作用的思考[J].中国能源, 26(7):16-20.
    [2] Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor Electrode[J]. Nature, 238(5358):37-38.
    [3]何燕,高月,封文江. 2010.纳米科技的发展与应用[J].沈阳师范大学学报(自然科学版) . 28(2):211-213.
    [4]高濂,郑珊,张青红. 2002.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社.
    [5] Jin-nouchi Y, Akita T, Tada H. 2010. Ultrafast Photodeposition of Size-Controlled PbS Quantum Dots on TiO_2[J]. Chemphyschem, 11(11):2349-2352.
    [6]蒋玉龙,王智宇,唐培松,等. 2005.量子尺寸纳米TiO_2的水热制备及光催化性能[J].浙江大学学报(工学版), 39(3):440-444.
    [7]朱世东,周根树,蔡锐,等. 2010.纳米材料国内外研究进展[J].热处理技术与装备, 31(3):1-6.
    [8]武志刚,高建峰. 2010.溶胶凝胶法制备纳米材料的研究进展[J].精细化工, 27(1):21-25.
    [9]刘伟,崔作林,张志. 2004.纳米铜粒子表面氧化层在苯气氛中的形貌和结构变化[J].材料科学与工程学报, 22(3):390-392.
    [10] Sun Y, Fuge GM, Ashfold MNR. 2004. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods[J]. Chemcal Physics Letters. 396(1-3):21-26.
    [11]封文江,方戈亮,王传银,等. 2008.纳米晶(Fe,Cr)-N的制备与磁性[J].沈阳师范大学学报(自然科学版), 26(1):61-64.
    [12]杜艳,陈洪龄,陈日志. 2007.纳米镍粉的制备工艺及产业化研究进展[J].石油化工, 36(6):637-642.
    [13]张振忠,安少华,赵芳霞,等. 2008.直流氢电弧等离子体蒸发法制备纳米锡粉[J].材料热处理学报, 29(5):9-12.
    [14]徐宇兴,谭强强,唐子龙,等. 2010.采用溶胶-凝胶法在多孔氧化铝模板上制备立方相WO3纳米线[J].稀有金属材料与工程, 39(5):753-755.
    [15]张居正,高善民,黄柏标,等. 2010.特殊形貌CdSe纳米晶的制备[J].化学进展, 22(10):1901-1910.
    [16]钱军民,李旭祥,黄海燕. 2001.纳米材料的性质及其制备方法[J].化工新型材料,29(7):1-5.
    [17] Gratzel M. 2001. Photoelectrochemical cells[J]. Nature, 414(6861):338-344.
    [18] Zhang HJ, Chen GH, Bahnemann DW. 2009. Photoelectrocatalytic materials for environmental applications[J]. Journal of Materials Chemistry, 19(29):5089-5121.
    [19] Rauf MA, Ashraf SS. 2009. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution[J]. Chemical Engineering Journal, 151(1-3):10-18.
    [20] Anpo M, Shima T, Kodama S, et al. 1987. Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO_2: size quantization effects and reaction intermediates[J]. Journal of Physical Chemistry, 91(16):4305-4310.
    [21] Machado AEH, de Miranda JA, de Freitas RF, et al. 2003. Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis[J]. Journal of Photochemistry and Photobiology a-Chemistry, 155(1-3):231-241.
    [22] Serpone N, Emeline AV. 2002. Suggested terms and definitions in photocatalysis and radiocatalysis[J]. International Journal of Photoenergy, 4(3):91-131.
    [23] Yue B, Zhou Y, Xu JY, et al. 2002. Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates[J]. Environmental Science & Technology, 36(6):1325-1329.
    [24] Wu M, Yang BF, Lv Y, et al. 2010. Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO_2 hollow nanorod arrays with enhanced photocatalytic activity[J]. Applied Surface Science, 256(23):7125-7130.
    [25] Mo JH, Zhang YP, Xu QJ, et al. 2009. Photocatalytic purification of volatile organic compounds in indoor air: A literature review[J]. Atmospheric Environment, 43(14):2229-2246.
    [26]李敏贤,申利春. 2007.纳米TiO_2光催化剂的制备与应用研究进展[J].化工中间体, 2007(9):28-32.
    [27] Rubio J, Oteo JL, Villegas M, et al. 1997. Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide[J]. Journal of Materials Science, 32(3):643-652.
    [28]张卫华,李晓彤,徐松,等. 2009.二氧化钛光催化效率影响因素的研究[J].吉林化工学院学报, 26(2):43-49.
    [29]刘江,马正先,张宁. 2010. TiO_2光催化活性影响因素的研究[J].中国非金属矿工业导刊, 2010(6):34-36.
    [30]王积森,冯忠彬,孙金全,等. 2008.纳米TiO_2的光催化机理及其影响因素分析[J].微纳电子技术, 45(1):28-32.
    [31]孙奉玉,吴鸣,李文钊,等. 1998.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 19(3):229-233.
    [32]祝红丽,陈克复,漆德威,等. 2009.纳米多晶TiO_2的光催化性能[J].华南理工大学学报(自然科学版), 37(3):6-9.
    [33]朱建. 2006.纳米晶二氧化钛的晶相、织构及光催化性能研究[D]:[博士].上海:复旦大学.
    [34]孙奉玉,吴鸣,李文钊,等. 1998.二氧化钛表面光学特性与光催化活性的关系[J].催化学报, 19(2):121-124.
    [35] Gohin M, Maurin I, Gacoin T, et al. 2010. Photocatalytic activity of mesoporous films based on N-doped TiO_2 nanoparticles[J]. Journal of Materials Chemistry, 20(37):8070-8077.
    [36] Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 107(7):2891-2959.
    [37] Sant PA, Kamat PV. 2002. Interparticle electron transfer between size-quantized CdS and TiO_2 semiconductor nanoclusters[J]. Physical Chemistry Chemical Physics, 4(2):198-203.
    [38] Asahi R, Morikawa T, Ohwaki T, et al. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 293(5528):269-271.
    [39] Li JX, Xu JH, Dai WL, et al. 2009. Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO_2 with Twistlike Helix Structure[J]. Journal of Physical Chemistry C, 113(19):8343-8349.
    [40] Yu JG, Xiong JF, Cheng B, et al. 2005. Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B-Environmental, 60(3-4):211-221.
    [41]付贤智,丁正新,苏文悦,等. 1999.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].催化学报, 20(3):321-324.
    [42]苏文悦,付贤智,魏可镁. 2001.溴代甲烷在SO42-/TiO_2上的光催化降解[J].环境科学, 22(2):91-94.
    [43]俞珊,瞿爱莎,付新梅,等. 2008.室内空气净化材料研究进展[J].科技导报, 26(5):89-92.
    [44]贺飞,唐怀军,赵文宽,等. 2001.二氧化钛光催化自洁功能陶瓷的研制[J].武汉大学学报(理学版), 47(4):419-424.
    [45]李洪斌,刘滔,李云苍. 2002.太阳能光催化污水处理的研究现状[J].云南师范大学学报, 22(6):24-28.
    [46]郑露,陈昭斌,许欣. 2010.纳米二氧化钛杀灭微生物的机理与效果的研究进展[J].中国消毒学杂志, 27(4):458-459.
    [47] Chen XB, Lou YB, Samia ACS, et al. 2005. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder[J]. Advanced Functional Materials, 15(1):41-49.
    [48] Elahifard MR, Rahimnejad S, Haghighi S, et al. 2007. Apatite-coated Ag/AgBr/TiO_2visible-light photocatalyst for destruction of bacteria[J]. Journal of the American Chemical Society, 129(31):9552-9553.
    [49] Umebayashi T, Yamaki T, Tanaka S, et al. 2003. Visible light-induced degradation of methylene blue on S-doped TiO_2[J]. Chemistry Letters, 32(4):330-331.
    [50] Chen JIL, von Freymann G, Choi SY, et al. 2006. Amplified photochemistry with slow photons[J]. Advanced Materials, 18(14):1915-1919.
    [51] Chen JIL, Ozin GA. 2009. Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects[J]. Journal of Materials Chemistry, 19(18):2675-2678.
    [52] Li Q, Shang JK. 2008. Inverse opal structure of nitrogen-doped titanium oxide with enhanced visible-light photocatalytic activity[J]. Journal of the American Ceramic Society, 91(2):660-663.
    [53] Chen JIL, Loso E, Ebrahim N, Ozin GA. 2008. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals[J]. Journal of the American Chemical Society, 130(16):5420-5421.
    [1] Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58(20):2059-2062.
    [2] John S. 1987. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58(23):2486-2489.
    [3] Galusha JW, Richey LR, Gardner JS, et al. 2008. Discovery of a diamond-based photonic crystal structure in beetle scales[J]. Physical Review E, 77(5):050904-1-050904-4.
    [4] Cheng CC, Scherer A. 1995. Fabrication of photonic band-gap crystals[J]. Journal of Vacuum Science & Technology B, 13(6):2696-2700.
    [5] Campbell M, Sharp DN, Harrison MT, et al. 2000. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 404(6773):53-56.
    [6] Holland BT, Blanford CF, Stein A. 1998. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J]. Science, 281(5376):538-540.
    [7] Noda S, Yamamoto N, Kobayashi H, et al. 1999. Optical properties of three-dimensional photonic crystals based on III-V semiconductors at infrared to near-infrared wavelengths[J]. Applied Physics Letters, 75(7):905-907.
    [8] Li YZ, Kunitake T, Fujikawa S. 2006. Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of Titania hollow spheres[J]. Journal of Physical Chemistry B, 110(26):13000-13004.
    [9] Ren MM, Ravikrishna R, Valsaraj KT. 2006. Photocatalytic degradation of gaseous organic species on photonic band-gap titania[J]. Environmental Science & Technology, 40(22):7029-7033.
    [10] Chen JIL, von Freymann G, Choi SY, Kitaev V, et al. 2006. Amplified photochemistry with slow photons[J]. Advanced Materials, 18(14):1915-1919.
    [11] Braun PV, Wiltzius P. 1999. Microporous materials-Electrochemically grown photonic crystals[J]. Nature, 402(6762):603-604.
    [12] Kuai SL, Hu XF, Truong VV. 2003. Synthesis of thin film titania photonic crystals through a dip-infiltrating sol-gel process[J]. Journal of Crystal Growth, 259(4):404-410.
    [13] Zakhidov AA, Baughman RH, Iqbal Z, et al. 1998. Carbon structures with three-dimensional periodicity at optical wavelengths[J]. Science, 282(5390):897-901.
    [14] Liu WJ, Zou B, Zhao J, et al. 2010. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity[J]. Thin Solid Films, 518(17):4923-4927.
    [15] Stober W, Fink A, Bohn E. 1968. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Jounal of Colloid and Inerface Science, 26:62-69.
    [16] Gu ZZ, Hayami S, Kubo S, et al. 2001. Fabrication of structured porous film by electrophoresis[J]. Journal of the American Chemical Society, 123(1):175-176.
    [17] Kuai SL, Truong VV, Hache A, et al. 2004. A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates[J]. Journal of Applied Physics, 96(11):5982-5986.
    [18] Schroden RC, Al-Daous M, Blanford CF, et al. 2002. Optical properties of inverse opal photonic crystals[J]. Chemistry of Materials, 14(8):3305-3315.
    [19] Zhu YF, Zhang L, Gao C, et al. 2000. The synthesis of nanosized TiO_2 powder using a sol-gel method with TiCl_4 as a precursor[J]. Journal of Materials Science, 35(16):4049-4054.
    [20] Judith EG, Lydia B, Willem LV. 2001. Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania[J]. Chemistry Metirial, 13:4486-4499.
    [21] Page K, Palgrave RG, Parkin IP, et al. 2007. Titania and silver-titania composite films on glass-potent antimicrobial coatings[J]. Journal of Materials Chemistry, 17(1):95-104.
    [22] Chen JIL, Ozin GA. 2009. Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects[J]. Journal of Materials Chemistry, 19(18):2675-2678.
    [1] Nowotny J. 2008. Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance[J]. Energy & Environmental Science, 1(5):565-572.
    [2] Zhang HJ, Chen GH, Bahnemann DW. 2009. Photoelectrocatalytic materials for environmental applications[J]. Journal of Materials Chemistry, 19(29):5089-5121.
    [3] Han F, Kambala VSR, Srinivasan M, et al. 2009. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review[J]. Applied Catalysis A: General, 359(1-2):25-40.
    [4] Tanahashi I, Yamazaki F, Hamada K. 2006. Localized surface plasmon resonance sensing properties of Ag/TiO_2 films[J]. Chemistry Letters, 35(4):454-455.
    [5] Yang LB, Jiang X, Ruan WD, et al. 2009. Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag-TiO_2 Nanocomposites[J]. Journal of Physical Chemistry C, 113(36):16226-16231.
    [6] Zou SL, Schatz GC. 2004. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays[J]. Journal of Chemical Physics, 121(24):12606-12612.
    [7] Wu M, Yang BF, Lv Y, et al. 2010. Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO_2 hollow nanorod arrays with enhanced photocatalytic activity[J]. Applied Surface Science, 256(23):7125-7130.
    [8] Chen JIL, Loso E, Ebrahim N, et al. 2008. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals[J]. Journal of the American Chemical Society, 130(16):5420-5421.
    [9] Yan HW, Yang YL, Fu ZP, et al. 2005. Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition[J]. Electrochemistry Communications, 7(11):1117-1121.
    [10] Chen JIL, Ozin GA. 2009. Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects[J]. Journal of Materials Chemistry, 19(18):2675-2678.
    [11] Xu JA, Yang BF, Wu M, et al. 2010. Novel N-F-Codoped TiO_2 Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis, Characterization, and Photocatalysis[J]. Journal of Physical Chemistry C, 114(36):15251-15259.
    [12] Chen JIL, von Freymann G, Choi SY, et al. 2006. Amplified photochemistry with slow photons[J]. Advanced Materials, 18(14):1915-1919.
    [13] Stober W, Fink A, Bohn E. 1968. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Jounal of Colloid and Inerface Science, 26:62-69.
    [14] Zhou L, Boyle DS, Govender K, et al. 2006. High efficiency solution infiltration routes to thin films with photonic properties[J]. Journal of Experimental Nanoscience, 1(2):221-233.
    [15] Yang YL, Yan HW, Fu ZP, et al. 2007. Photoluminescence from ZnO-SiO_2 opals with different sphere diameters and thicknesses[J]. Journal of Luminescence, 124(2):228-234.
    [16] Janitabar-Darzi S, Mahjoub AR, Nilchi A. 2009. Investigation of structural, optical and photocatalytic properties of mesoporous TiO_2 thin film synthesized by sol-gel templating technique[J]. Physica E, 42(2):176-181.
    [17] Linda JD, Motonobu M, Akira S, et al. 2006. Photoacoustic and Photoelectrochemical Characterization of Inverse Opal TiO_2 Sensitized with CdSe Quantum Dots[J]. Japanese Journal of Applied Physics, 45(6B):5563-5568.
    [18] Wang DA, Zhou F, Wang CW, et al. 2008. Synthesis and characterization of silver nanoparticle loaded mesoporous TiO_2 nanobelts[J]. Microporous and Mesoporous Materials, 116(1-3):658-664.
    [19] Shi JY, Chen J, Feng ZC, et al. 2007. Photoluminescence characteristics of TiO_2 and their relationship to the photoassisted reaction of water/methanol mixture[J]. Journal of Physical Chemistry C, 111(2):693-699.
    [20] Choi HC, Jung YM, Kim SB. 2005. Size effects in the Raman spectra of TiO_2 nanoparticles[J]. Vibrational Spectroscopy, 37(1):33-38.
    [21] Liu G, Chen ZG, Dong CL, et al. 2006. Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework[J]. Journal of Physical Chemistry B, 110(42):20823-20828.
    [22] Zhang QH, Gao L, Guo JK. 2000. Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis[J]. Applied Catalysis B-Environmental, 26(3):207-215.
    [23] Wang JY, Zhao HT, Liu XR, et al. 2009. Formation of Ag nanoparticles on water-soluble anatase TiO_2 clusters and the activation of photocatalysis[J]. Catalysis Communications, 10(7):1052-1056.
    [24] Guin D, Manorama SV, Latha JNL. 2007. Photoreduction of silver on bare and colloidal TiO_2 Nanoparticles/Nanotubes: Synthesis, characterization, and tested for antibacterial outcome[J]. Journal of Physical Chemistry C, 111(36):13393-13397.
    [25] Li HB, Duan XC, Liu GC, et al. 2008. Photochemical synthesis and characterization of Ag/TiO_2 nanotube composites[J]. Journal of Materials Science, 43(5):1669-1676.
    [26] He XL, Cai YY, Zhang HM, et al. 2011. Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO_2 nanotube arrays and interface electrochemical response[J]. Journal of Materials Chemistry, 21(2):475-480.
    [27] Senadeera GKR, Kitamura T, Wada Y, et al. 2004. Deposition of polyaniline via molecular self-assembly on TiO_2 and its uses as a sensitiser in solid-state solar cells[J]. Journal of Photochemistry and Photobiology a-Chemistry, 164(1-3):61-66.
    [28] Liu GM, Jaegermann W, He JJ, et al. 2002. XPS and UPS characterization of the TiO_2/ZnPcGly heterointerface: Aligmment of energy levels[J]. Journal of Physical Chemistry B, 106(23):5814-5819.
    [29] Erdem B, Hunsicker RA, Simmons GW, et al. 2001. XPS and FTIR surface characterization of TiO_2 particles used in polymer encapsulation[J]. Langmuir, 17(9):2664-2669.
    [30] Mai LX, Wang DW, Zhang S, et al. 2010. Synthesis and bactericidal ability of Ag/ TiO_2 composite films deposited on titanium plate[J]. Applied Surface Science, 257(3):974-978.
    [31] Xin BF, Jing LQ, Ren ZY, et al. 2005. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO_2[J]. Journal of Physical Chemistry B, 109(7):2805-2809.
    [32] Li JX, Xu JH, Dai WL, et al. 2009. Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO_2 with Twistlike Helix Structure[J]. Journal of Physical Chemistry C, 113(19):8343-8349.
    [33] Moudler JF, Stickle WF, Sobol PE, et al. 1992. Handbook of X-ray photoelectron spectroscopy[M]. Eden Prarie: Perkin-Elmer.
    [34] Yu JG, Xiong JF, Cheng B, et al. 2005. Fabrication and characterization of Ag- TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B-Environmental, 60(3-4):211-221.
    [35] He JH, Ichinose I, Kunitake T, et al. 2002. In situ synthesis of noble metal nanoparticles in ultrathin TiO_2-gel films by a combination of ion-exchange and reduction processes[J]. Langmuir, 18(25):10005-10010.
    [36] Haynes CL, Van Duyne RP. 2001. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. Journal of Physical Chemistry B, 105(24):5599-5611.
    [37] Ohko Y, Tatsuma T, Fujii T, et al. 2003. Multicolour photochromism of TiO_2 films loaded with silver nanoparticles[J]. Nature Materials, 2(1):29-31.
    [38] Mock JJ, Barbic M, Smith DR, et al. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J]. Journal of Chemical Physics, 116(15):6755-6759.
    [39] McFarland AD, Van Duyne RP. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 3(8):1057-1062.
    [40] Zhang WF, Zhang MS, Yin Z, et al. 2000. Photoluminescence in anatase titanium dioxide nanocrystals[J]. Applied Physics B-Lasers and Optics, 70(2):261-265.
    [41] Zhang YX, Li GH, Jin YX, et al. 2002. Hydrothermal synthesis and photoluminescence of TiO_2 nanowires[J]. Chemical Physics Letters, 365(3-4):300-304.
    [1] Masoud RA, Haroun AA, El-Sayed NH. 2006. Dyeing of chrome tanned collagen modified by in situ grafting with 2-EHA and MAC[J]. Journal of Applied Polymer Science, 101(1):174-179.
    [2] Raghu S, Basha CA. 2007. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater[J]. Journal of Hazardous Materials, 149:324-330.
    [3] Chaudhuri S, Ray K, Chaudhuriand UR, et al. 2004. Purification of natural food colourants using membrane technology -A review[J]. Journal of Food Science and Technology-Mysore, 41(1):1-8.
    [4] Wrobel D, Boguta A, Ion RM. 2001. Mixtures of synthetic organic dyes in a photoelectrochemical cell[J]. Journal of Photochemistry and Photobiology a-Chemistry, 138(1):7-22.
    [5] Turesky RJ, Freeman JP, Holland RD, et al. 2003. Identification of aminobiphenyl derivatives in commercial hair dyes[J]. Chemical Research in Toxicology, 16(9):1162-1173.
    [6] Chae SY, Park MK, Lee SK, et al. 2003. Preparation of size-controlled TiO_2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chemistry of Materials, 15(17):3326-3331.
    [7] Kim MJ, Kim KD, Seo HO, et al. 2011. Improvement in the photocatalytic activity of TiO_2 by the partial oxidation of the C impurities[J]. Applied Surface Science, 257(7):2489-2493.
    [8] Xin BF, Jing LQ, Ren ZY, et al. 2005. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO_2[J]. Journal of Physical Chemistry B, 109(7): 2805-2809.
    [9] Li JX, Xu JH, Dai WL, et al. 2009. Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO_2 with Twistlike Helix Structure[J]. Journal of Physical Chemistry C, 113(19):8343-8349.
    [10] Kim SY, Lim TH, Chang TS, et al. 2007. Photocatalysis of methylene blue on titanium dioxide nanoparticles synthesized by modified sol-hydrothermal process of TiCl_4[J]. Catalysis Letters, 117(3-4):112-118.
    [11] Qourzal S, Assabbane A, Ait-Ichou Y. 2004. Synthesis of TiO_2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol[J]. Journal of Photochemistry and Photobiology a-Chemistry, 163(3):317-321.
    [12] Chuang HY, Chen DH. 2009. Fabrication and photocatalytic activities in visible and UV lightregions of Ag@TiO_2 and NiAg@TiO_2 nanoparticles[J]. Nanotechnology, 20(10):1-10.
    [13] Chen JIL, Loso E, Ebrahim N, et al. 2008. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals[J]. Journal of the American Chemical Society, 130(16):5420-5421.
    [14] Xu JA, Yang BF, Wu M, et al. 2010. Novel N-F-Codoped TiO_2 Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis, Characterization, and Photocatalysis[J]. Journal of Physical Chemistry C, 114(36):15251-15259.
    [15] Xu P, Xu T, Lu J, et al. 2010. Visible-light-driven photocatalytic S- and C- codoped meso/nanoporous TiO_2[J]. Energy & Environmental Science, 3(8):1128-1134.
    [16] Liu Y, Liu CY, Wei JH, et al. 2010. Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO_2 powders[J]. Applied Surface Science, 256(21):6390-6394.
    [1] Malato S, Fernandez-Ibanez P, Maldonado MI, et al. 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends[J]. Catalysis Today, 147(1):1-59.
    [2] Fujishima A, Zhang XT, Tryk DA. 2008. TiO_2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 63(12):515-582.
    [3] Chen XB. 2009. Titanium Dioxide Nanomaterials and Their Energy Applications[J]. Chinese Journal of Catalysis, 30(8):839-851.
    [4] Hernandez-Alonso MD, Fresno F, Suarez S, et al. 2009. Development of alternative photocatalysts to TiO_2: Challenges and opportunities[J]. Energy & Environmental Science, 2(12):1231-1257.
    [5] Ghicov A, Schmuki P. 2009. Self-ordering electrochemistry: a review on growth and functionality of TiO_2 nanotubes and other self-aligned MOx structures[J]. Chem. Commun., (20):2791-2808.
    [6] Han F, Kambala VSR, Srinivasan M, et al. 2009. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review[J]. Applied Catalysis A- General, 359(1-2):25-40.
    [7] Liu G, Wang LZ, Yang HG, et al. 2010. Titania-based photocatalysts-crystal growth, doping and heterostructuring[J]. Journal of Materials Chemistry, 20(5):831-843.
    [8] Zhang HJ, Chen GH, Bahnemann DW. 2009. Photoelectrocatalytic materials for environmental applications[J]. Journal of Materials Chemistry, 19(29):5089-5121.
    [9] Rajeshwar K, de Tacconi NR. 2009. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation[J]. Chemical Society Reviews, 38(7):1984-1998.
    [10] Kudo A, Miseki Y. 2009. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 38(1):253-278.
    [11] Martinez-Huitle CA, Brillas E. 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B-Environmental, 87(3-4):105-145.
    [12] Navarro RM, Sanchez-Sanchez MC, Alvarez-Galvan MC, et al. 2009. Hydrogen production from renewable sources: biomass and photocatalytic opportunities[J]. Energy & Environmental Science, 2(1):35-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700