液相原子力显微镜悬臂梁动态特性与成像分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子力显微镜柔性的工作环境以及对各种样品良好的适应性,使得它在生物科学、材料科学、物理化学等众多领域有着重要应用。科技的飞速发展,对于原子力显微镜提出了更高要求。而相对于真空和大气环境下较为充分的研究,液相原子力显微镜的研究显得不足,特别是作为阐明成像传感机理、合理解释数据基础的原子力显微镜悬臂梁的动态特性亟需深入的研究。本文围绕液相原子力显微镜悬臂梁的动态特性,综合利用实验、理论与有限元仿真,进行了以下几个方面的工作:
     1.压电激励原子力显微镜悬臂梁在液体中自由振动时,频率响应曲线中干扰峰的产生原因与其消除。实验结果表明,激励悬臂梁的压电陶瓷自身的共振与压电陶瓷-悬臂梁的接触界面对干扰峰的产生起主导作用;而通过在压电陶瓷与悬臂梁接触界面间添加弹性吸振层能够简单有效地消除由接触界面产生的干扰峰。
     2.液体中原子力显微镜悬臂梁靠近平整基底过程中的动态特性。结果显示,去离子水中悬臂梁在靠近平整基底过程中存在两种典型的振动行为,分别对应于小自由振动振幅下的约束水膜主导作用和大自由振幅下的排斥针尖样品作用力主导作用。
     3.液体中原子力显微镜悬臂梁靠近一定结构基底过程中的动态特性。3D模式显示,水中光栅结构约束的水膜对悬臂梁的振动有明显影响。即便在相同设定条件下,探针在光栅台阶单元和槽单元的振动状态也可能不同。
     4.结合实验,本文建立了悬臂梁振动的质量-弹簧-阻尼模型,分析了约束水膜和流体阻尼的作用与性质,并进行了相应的系统和有限元仿真,均与实验符合良好。
     本文从自由振动、靠近平整样品到靠近一定结构样品,研究了原子力显微镜悬臂梁在液体中的振动特性,进而选择合适样品进行成像,分析了悬臂梁动态特性、主要成像参数对液相原子力显微镜成像的影响。这些结果对于阐明液相原子力显微镜成像传感机理、合理解释原子力显微镜数据有一定意义。
Atomic force microscopes (AFMs) have wide applications in the biology, physics, chemistry, materials and other fields for its applicability to different samples and working environments. Science developments put forwards higher demands for the AFMs. However, compared to the application in air, less is known when AFM is operated in liquids, especially cantilever dynamics, which is the background for the understanding of the imaging mechanism and reasonable explanations of the acquired data. In this paper, combined with methods of experiments, theory modeling and finite element simulation, works as following conducted:
     1. Origin and elimination of spurious peaks in the frequency response curves for free vibrating piezo-driven AFM cantilevers in liquid. It was found that the spurious peaks are dominated by two main factors, i.e., the intrinsic resonance of the shaker-piezo and the contact interface between the cantilever base and the shaker-piezo. Clean resonance curves could be obtained effectively with elastic film added in the interface.
     2. Cantilever dynamics when the probe is vibrating near a flat substrate in liquid. Results show that there are typically two general dynamic types of behavior in deionized water when the probe approaches to the flat substrate, which cooresponding to the dominating function of the confined water film when small free amplitude is applied and the repulsive tip-substrate force when free amplitude is large enough.
     3. Cantilever dynamics when the probe is vibrating near the structured substrate in liquid. 3D mode experiments show that the oscillation characteristics can be systematically deviated on the step element and the bottom element of the grating even with the same controlling parameters. Different amounts of hydrodynamic contributions are presented on different microstructures.
     4. Based on the experiments, mass-spring-damper model of the cantilever vibration is established. Functions and qualities of the confined water film and the fluid damping are analized. Corresponding system and finite element simulations are conducted, which show well consistent with the experiments.
     With the combination of experiments, theory modeling and finite element simulation, from free vibration state to oscillating near flat substrate and then near structured substrate, AFM cantilever dynamics and its influence on imaging in liquid were studied. Researches of the cantilever dynamics are of significance for the accurate understanding of the AFM imaging and sensing mechanism and reasonable explanation of the acquired AFM data.
引文
陈宇航,牛顿,黄文浩. 2011.压电陶瓷激励微悬臂梁的动态特性[J].纳米技术与精密工程,9(2):140-144.
    房轩,李艳宁,傅星,等. 2007.品质因数调控技术提高AFM横向分辨力的研究[J].天津大学学报,40(2):206-209.
    房轩,李艳宁,丁丽丽,等. 2008.液体中基于动态微悬臂梁的质量检测技术[J].压电与声光,30(3):379-381.
    伏霞,刘超,章海军. 2008.气/液两用型原子力显微镜及其应用研究[J].光学仪器,30(5):61-64.
    李艳宁,唐洁,饶志军,等. 2005.微悬臂梁谐振技术检测溶液粘度的研究[J].压电与声光,27(5):572-574.
    倪振华. 1989.振动力学[M].西安:西安交通大学出版社.
    王飞,赵学增. 2008.原子力显微镜微悬臂梁杨氏模量动态测试方法[J].功能材料与器件学报,14(2):345-348.
    王云起,廖问陶,蔡继业. 2007.原子力显微镜在DNA和蛋白质相互作用方面的研究进展[J]. 生物医学工程学杂志,24(5):1172-1176.
    吴志华,张晓东,王春梅,等. 2009.开放体系下云母表面纳米气泡的制备与观察[J].电子显微学报,28(3):240-245.
    张虎,章海军,张冬仙,等. 2004.液相型原子力显微镜的研制及其应用[J].光子学报,33(10):1273-1276.
    张天彪,党国全,关一夫. 2008.原子力显微镜在液相条件下的成像分析[J].电子显微学报,27(5):395-399.
    Ando T, Uchihashi T, Fukuma T. 2008. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes[J]. Progress in Surface Science, 83(7-9): 337-437.
    Asakawa H, Fukuma T. 2009. Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism[J]. Review of Scientific Instruments, 80(10): 103703.
    Baclayon M, Wuite GJL, Roos WH. 2010. Imaging and manipulation of single viruses by atomic force microscopy[J]. Soft Matter, 6(21): 5273–5285.
    Basak S, Raman A, Garimella SV. 2006. Hydrodynamic loading of microcantilevers vibrating in viscous fluids[J]. Journal of Applied Physics, 99(11): 114906.
    Basak S, Raman A. 2007. Dynamics of tapping mode atomic force microscopy in liquids: Theory and experiments[J]. Applied Physics Letters, 91(6): 064107.
    Basak S, Beyder A, Spagnoli C, et al. 2007. Hydrodynamics of torsional probes for atomic force microscopy in liquids[J]. Journal of Applied Physics, 102(2): 024914.
    Basak S, Raman A. 2007. Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids[J]. Physics of Fluids, 19(1): 017105.
    Bellon L. 2008. Thermal noise of microcantilevers in viscous fluids[J]. Journal of Applied Physics, 104(10): 104906.
    Braunsmann C, Sch?ffer TE. 2010. High-speed atomic force microscopy for large scan sizes using small cantilevers[J]. Nanotechnology, 21(22): 225705.
    Brumley DR, Willcox M, Sader JE. 2010. Oscillation of cylinders of rectangular cross section immersed in fluid[J]. Physics of Fluids, 22(5): 052001.
    Buchoux J, AiméJP, Boisgard R, et al. 2009. Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact[J]. Nanotechnology, 20(47): 475701.
    Carrasco C, Ares P, de Pablo PJ, et al. 2008. Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid[J]. Review of Scientific Instruments, 79(12): 126106.
    Chen YH, Huang WH. 2007. Resonant Response of Rectangular AFM Cantilever in Liquid[J]. Chinese Physics Letters, 24(2): 363-365.
    Chon JWM, Mulvaney P, Sader JE. 2000. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids[J]. Journal of Applied Physics, 87(8): 3978-3988.
    Clark MT, Paul MR. 2008. The stochastic dynamics of rectangular and V-shaped atomic force microscope cantilevers in a viscous fluid and near a solid boundary[J]. Journal of Applied Physics, 103(9): 094910.
    de Beer S, van den Ende D, Mugele F. 2008. Atomic force microscopy cantilever dynamics in liquid in the presence of tip sample interaction[J]. Applied Physics Letters, 93(25): 253106.
    de Beer S, van den Ende D, Mugele F. 2011. Confinement-dependent damping in a layered liquid[J]. Journal of Physics: Condensed Matter, 23(11): 112206.
    de Pablo PJ, Colchero J, Luna M, et al. 2000. Tip-sample interaction in tapping-mode scanning force microscopy[J]. Physical Review B, 61(20): 14179-14183.
    de Souza EF, Douglas RA, Teschke O. 1997. Atomic Force Microscopic Imaging in Liquids: Effects of the Film Compressed between the Substrate and the Tip[J]. Langmuir, 13(23): 6012-6017.
    Dietz C, Herruzo ET, Lozano JR, et al. 2011. Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid[J]. Nanotechnology, 22(12): 125708.
    Elmer FJ, Dreier M. 1997. Eigenfrequencies of a rectangular atomic force microscope cantileverin a medium[J]. Journal of Applied Physics, 81(12): 7709-7714.
    Ewan Barr. Modelling Atomic Force Microscopy: Modelling AFM: Continuous Beam Model[EB/OL]. [2011-04-11]. http://www.enm.bris.ac.uk/teaching/projects/2005_06/eb3990/BeamModel.html
    Fantner GE, Schumann W, Barbero RJ, et al. 2009. Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid[J]. Nanotechnology, 20(43): 434003.
    Frederix PLTM, D Bosshart P, Engel A. 2009. Atomic Force Microscopy of Biological Membranes[J]. Biophysical Journal, 96(2): 329-338.
    Fukuma T, Ueda Y, Yoshioka S, et al. 2010. Atomic-Scale Distribution ofWater Molecules at the Mica-Water Interface Visualized by Three-Dimensional Scanning Force Microscopy[J]. Physical Review Letters, 104(1): 016101.
    Gan Y. 2009. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy[J]. Surface Science Reports, 64(3): 99-121.
    García R, Pérez R. 2002. Dynamic atomic force microscopy methods[J]. Surface Science Reports, 47(6-8): 197-301.
    Ghatkesar MK, Braun T, Barwich V, 2008. Resonating modes of vibrating microcantilevers in liquid[J]. Applied Physics Letters, 92(4): 043106.
    Giessibl FJ. 1997. Forces and frequency shifts in atomic-resolution dynamic-force microscopy[J]. Physical Review B, 56(24): 16010-16015.
    Gómez-Navarro C, Gil A,álvarez M, et al. 2002. Scanning force microscopy three-dimensional modes applied to the study of the dielectric response of adsorbed DNA molecules[J]. Nanotechnology, 13(3): 314-317.
    Green CP, Sader JE. 2005. Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope[J]. Journal of Applied Physics, 98(11): 114913.
    Green CP, Sader JE. 2005. Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface[J]. Physics of Fluids, 17(7): 073102.
    Han WH, Lindsay SM, Jing TW. 1996. A magnetically driven oscillating probe microscope for operation in liquids[J]. Applied Physics Letters, 69(26): 4111-4113.
    Hansma PK, Cleveland JP, Radmacher M, et al. 1994. Tapping mode atomic force microscopy in liquids[J]. Applied Physics Letters, 64(13): 1738-1740.
    Harada M, Tsukada M. 2010. Tip-sample interaction force mediated by water molecules for AFM in water: Three-dimensional reference interaction site model theory[J]. Physical Review B, 82(3): 035414.
    Henry CL, Craig VSJ. 2009. Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy[J]. Physical Chemistry Chemical Physics, 11(41): 9514-9521.
    Herruzo ET, Garcia R. 2007. Frequency response of an atomic force microscope in liquids and air Magnetic versus acoustic excitation[J]. Applied Physics Letters, 91(14): 143113.
    Hillenbrand R, Stark M, Guckenberger R. 2000. Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction[J]. Applied Physics Letters, 76(23): 3478-3480.
    Horcas I, Fernández R, Gómez-Rodríguez JM, et al. 2007. WSXM: A software for scanning probe microscopy and a tool for nanotechnology[J]. Review of Scientific Instruments, 78(1): 013705.
    Horng TL. 2009. Analyses of vibration responses on nanoscale processing in a liquid using tapping-mode atomic force microscopy[J]. Applied Surface Science, 256 (1): 311-317.
    H SQ, Raman A. 2008. Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy[J]. Nanotechnology, 19(37): 375704.
    Ikai A. 2010. A Review on: Atomic Force Microscopy Applied to Nano-mechanics of the Cell[J]. Advances in Biochemical Engineering/Biotechnology, 119: 47-61.
    Iwata F, Mizuguchi Y, Ozawa K, et al. 2010. Operation of Self-Sensitive Cantilever in Liquid for Multiprobe Manipulation[J]. Japanese Journal of Applied Physics, 49(8): 08LB14.
    Jai C, Cohen-Bouhacina T, Maali A. 2007. Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid[J]. Applied Physics Letters, 90(11): 113512.
    Jeffery S, Hoffmann PM, Pethica JB, et al. 2004. Direct measurement of molecular stiffness and damping in confined water layers[J]. Physical Review B, 70(5): 054114.
    Kada G, Kienberger F, Hinterdorfer P. 2008. Atomic force microscopy in bionanotechnology[J]. Nanotoday, 3(1-2): 12-19.
    Kawakami M, Taniguchi Y, Hiratsuka Y, et al. 2010. Reduction of the Damping on an AFM Cantilever in Fluid by the Use of Micropillars[J]. Langmuir, 26(2): 1002-1007.
    Kim S, Kihm KD, Thundat T. 2010. Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors[J]. Experiments in Fluids, 48(5): 721-736.
    Kiracofe D, Raman A. 2010. On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids[J]. Journal of Applied Physics, 107(3): 033506.
    Ko?um C,ülgen ?D, ?ubuk?u E, et al. 2006. Atomic force microscopy tips (cantilevers) as molecular nucleic acid sensors[J]. Ultramicroscopy, 106(4-5): 326-333.
    Kokavecz J, Mechler A. 2007. Investigation of fluid cell resonances in intermittent contact modeatomic force microscopy[J]. Applied Physics Letters, 91(2): 023113.
    Kumar B, Pifer PM, Giovengo A, et al. 2010. The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy[J]. Journal of Applied Physics, 107(4): 044508.
    Kurokawa S, Kikuchi T, Sakairi M, et al. 2008. Fabrication of micro-dot arrays and micro-walls of acrylic acid/melamine resin on aluminum by AFM probe processing and electrophoretic coating[J]. Electrochimica Acta, 53(28): 8118-8127
    LeDue JM, Lopez-Ayon M, Burke SA, et al. 2009. High Q optical fiber tips for NC-AFM in liquid[J]. Nanotechnology, 20(26): 264108.
    Lee SI, Howell SW, Raman A, et al. 2002. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment[J]. Physical Review B, 66(11): 115409.
    Legleiter J, Park M, Cusick B, et al. 2006. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale[J]. Proceedings of the National Academy of Sciences, 103(13): 4813-4818.
    Lin SM. 2010. Effective dampings and frequency shifts of several modes of an inclined cantilever vibrating in viscous fluid[J]. Precision Engineering, 34(2): 320-326.
    Liu SY, Wang YF. 2010. Application of AFM in Microbiology: A Review[J]. Scanning, 32(2): 61-73.
    Maali A, Cohen-Bouhacina T, Jai C, et al. 2006. Reduction of the cantilever hydrodynamic damping near a surface by ion-beam milling[J]. Journal of Applied Physics, 99(2): 024908.
    Maali A, Cohen-Bouhacina T, Kellay H. 2008. Measurement of the slip length of water flow on graphite surface[J]. Applied Physics Letters, 92(5) : 053101.
    Melcher J, Hu SQ, Raman A. 2007. Equivalent point-mass models of continuous atomic force microscope probes[J]. Applied Physics Letters, 91(5): 053101.
    Melcher J, Xu X, Raman A. 2008. Multiple impact regimes in liquid environment dynamic atomic force microscopy[J]. Applied Physics Letters, 93(9): 093111.
    Melcher J, Carrasco C, Xu X, et al. 2009. Origins of phase contrast in the atomic force microscope in liquids[J]. Proceedings of the National Academy of Sciences, 106(33): 13655-13660.
    Motamedi R, Wood-Adams PM. 2008. Influence of Fluid Cell Design on the Frequency Response of AFM Microcantilevers in Liquid Media[J]. Sensors, 8(9): 5927-5941.
    Motamedi R, Wood-Adams PM. 2010. Measurement of fluid properties using an acoustically excited atomic force microscope micro-cantilever[J]. Journal of Rheology. 54(5): 959-980.
    Nguyen TH, Lee SM, Na K, et al. 2010. An improved measurement of dsDNA elasticity usingAFM[J]. Nanotechnology, 21(7): 075101.
    Niu D, Chen YH, Huang WH. 2010. Dynamics of an atomic force microscope probe in liquid investigated via three-dimensional mode[J]. Measurement Science and Technology, 21(10): 105503.
    O’Shea SJ, Lantz MA, Tokumoto H. 1999. Damping near Solid-Liquid Interfaces Measured with Atomic Force Microscopy[J]. Langmuir, 15(4): 922-925.
    Penedo M, Fernández-Martínez I, Costa-Kr?mer JL, et al. 2009. Magnetostriction-driven cantilevers for dynamic atomic force microscopy[J]. Applied Physics Letters, 95(14): 143505.
    Preiner J, Tang J, Pastushenko V, et al. 2007. Higher Harmonic Atomic Force Microscopy: Imaging of Biological Membranes in Liquid[J]. Physical Review Letters, 99(4): 046102.
    Preiner J, Ebner A, Chtcheglova L, et al. 2009. Simultaneous topography and recognition imaging: physical aspects and optimal imaging conditions[J]. Nanotechnology, 20(21): 215103.
    Prokhorov VV, Saunin SA. 2007. Probe-surface interaction mapping in amplitude modulation atomic force microscopy by integrating amplitude-distance and amplitude-frequency curves[J]. Applied Physics Letters, 91(2): 023122.
    Proksch R. 2006. Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy[J]. Applied Physics Letters, 89(11): 113121.
    Rabe U, Turner J, Arnold W. 1998. Analysis of the high-frequency response of atomic force microscope cantilevers[J]. Applied Physics A Materials Science & Processing, 66(S1): 277-282.
    Raman A, Reifenberger P, Melcher J, et al. 2009. Cantilever Dynamics and Nonlinear Effects in Atomic Force Microscopy[M] // Morita S, Giessibl FJ, Wiesendanger R. Noncontact Atomic Force Microscopy Volume 2. Berlin/Heidelberg: Springer, 361-395.
    Sader JE. 1998. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics, 84(1): 64-76.
    San Pauloá, García R. 2001. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy[J]. Physical Review B, 64(19): 193411.
    Schirmeisen A, Anczykowski A, H?lscher H, et al. 2010. Dynamic Modes of Atomic Force Microscopy[M] // Bhushan B. Springer Handbook of Nanotechnology - Part C /
    Scanning-Probe Microscopy. 3rd ed. Berlin/Heidelberg: Springer, 731-761.
    Schoenwald K, Peng ZC, Noga D, et al. 2010. Integration of atomic force microscopy and a microfluidic liquid cell for aqueous imaging and force spectroscopy[J]. Review of Scientific Instruments, 81(5): 053704.
    Solares SD. 2007. Eliminating bistability and reducing sample damage through frequency and amplitude modulation in tapping-mode atomic force microscopy[J]. Measurement Science andTechnology, 18(3): 592-600.
    Song YX, Bhushan B. 2008. Atomic force microscopy dynamic modes: modeling and applications[J]. Journal of Physics: Condensed Matter, 20(22): 225012.
    Tsuji T, Kobari K, Ide S, et al. 2007. Suppression of spurious vibration of cantilever in atomic force microscopy by enhancement of bending rigidity of cantilever chip substrate[J]. Review of Scientific Instruments, 78(10): 103703.
    Tsukada M, Watanabe N. 2009. Theoretical Analyses of Cantilever Oscillation for Dynamic Atomic Force Microscopy in Liquids[J]. Japanese Journal of Applied Physics, 48(3): 035001.
    Tsukada M, Watanabe N, Harada M, et al. 2010. Theoretical simulation of noncontact atomic force microscopy in liquids[J]. Journal of Vacuum Science & Technology B, 28(3): C4C1-C4C3.
    Tung RC, Jana A, Raman R. 2008. Hydrodynamic loading of microcantilevers oscillating near rigid walls[J]. Journal of Applied Physics, 104(11): 114905.
    Turner JA, Wiehn JS. 2001. Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations[J]. Nanotechnology, 12(3): 322-330.
    Umeda K, Oyabu N, Kobayashi K, et al. 2010. High-Resolution Frequency-Modulation Atomic Force Microscopy in Liquids Using Electrostatic Excitation Method[J]. Applied Physics Express, 3(6): 065205.
    Ushiki T, Shigeno M, Hoshi O. 2008. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy[J]. Nanotechnology, 19(38): 384022.
    Vakarelski IU, Dagastine RR, Chan DYC, et al. 2010. Lateral Hydrodynamic Interactions between an Emulsion Droplet and a Flat Surface Evaluated by Frictional Force Microscopy[J]. Langmuir, 26(11): 8002–8007.
    Van Eysden CA, Sader JE. 2007. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order[J]. Journal of Applied Physics, 101(4): 044908.
    Van Noort SJT, Van der Werf KO, De Grooth BG, et al. 1997. Height anomalies in tapping mode atomic force microscopy in air caused by adhesion[J]. Ultramicroscopy, 69(2): 117-127.
    Van Vliet K J, Hinterdorfer P. 2006. Probing drug-cell interactions[J]. Nanotoday, 1(3): 18-25.
    Vo?tchovsky K, J Kuna J, Contera SA, et al. 2010. Direct mapping of the solid–liquid adhesion energy with subnanometre resolution[J]. Nature Nanotechnology, 5(6): 401-405.
    Wang L. Analytical descriptions of the tapping-mode atomic force microscopy response[J]. Applied Physics Letters, 73(25): 3781-3783.
    Weisenhorn AL, Drake B, Prater CB, et al. 1990. Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy[J]. Biophysical Journal, 58(5): 1251-1258.
    Wu Y, Gupta C, Shannon MA. 2008. Effect of Solution Concentration, Surface Bias and Protonation on the Dynamic Response of Amplitude-Modulated Atomic Force Microscopy[J]. Langmuir, 24(19): 10817-10824.
    Wu Y, Misra S, Karacor MB, et al. 2010. Dynamic Response of AFM Cantilevers to Dissimilar Functionalized Silica Surfaces in Aqueous Electrolyte Solutions[J]. Langmuir, 26(22): 16963-16972.
    Wu ZH, Chen HB, Dong YM, et al. 2008. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles[J]. Journal of Colloid and Interface Science, 328(1): 10-14.
    Xu X, Raman A. 2007. Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids[J]. Journal of Applied Physics, 102(3): 034303.
    Xu X, Melcher J, Basak S, et al. 2009. Compositional Contrast of Biological Materials in Liquids Using the Momentary Excitation of Higher Eigenmodes in Dynamic Atomic Force Microscopy[J]. Physical Review Letters, 102(6) : 060801.
    Xu X, Melcher J, Raman, A. 2010. Accurate force spectroscopy in tapping mode atomic force microscopy in liquids[J]. Physical Review B, 81(3): 035407.
    Yamada H. 2007. AFM Measurement in Liquid[M] // ita S. Roadmap of Scanning Probe Microscopy. Berlin/Heidelberg: Springer, 101-108.
    Yang CW, Hwang IS. 2010. Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy[J]. Nanotechnology, 21(6): 065710.
    Zitzler L, Herminghaus S, Mugele F. 2002. Capillary forces in tapping mode atomic force microscopy[J]. Physical Review B, 66(15): 155436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700