用户名: 密码: 验证码:
锂离子电池电极界面特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池中电极表面SEI膜对电池的电化学性能有重要影响,是锂离子电池研究的热点之一。本文系统、深入地研究了石墨负极,LiCoO_2正极,尖晶石Li2Mn_2O_及其Ni、Fe、Ti掺杂产物正极表面SEI膜在首次充放电中的形成过程和性质、嵌锂电极动力学和热力学以及嵌锂过程物理机制。重点探讨了温度、充放电过程、电极电位和电解液种类等对SEI膜成膜机制、材料电子电导率、电荷传递过程和感抗产生机制的影响规律。主要研究结果如下:
     (1)石墨负极表面SEI膜的成膜机制。研究发现,对于扣式电池体系,石墨负极首次阴极极化过程中电化学阻抗谱(Nyquist图)的高频区域半圆除了与SEI膜的形成有关外,还与集流体与集流体之间的接触阻抗有关。在三电极模拟电池中,这一接触阻抗可以被完全消除,因此从石墨负极在首次阴极极化过程中EIS谱特征及其变化可有效地研究SEI膜的成膜机制。研究结果指出,在1MLiPF_6-EC:DEC:DMC电解液中,水溶性粘合剂石墨负极和油性粘合剂石墨负极SEI膜的成膜电位区间不同,前者主要在0.8~0.55 V之间,而后者则在1.0~0.6V之间形成。电解液中甲醇杂质的含量极大地影响石墨负极的性能,当甲醇杂质含量小于0.1%时对石墨负极的充放电循环可逆性基本不发生影响,但大于0.5%则十分显著。提出甲醇杂质对石墨负极性能影响的机制为:甲醇在2.0 V左右还原生成甲氧基锂在石墨负极表面上形成一层初始SEI膜,不能有效地钝化电极表面,导致EC的过度还原分解进而影响SEI的成膜过程。发现高温(60℃)下在1MLiPF_6-EC:DEC:DMC电解液中添加5%VC,可抑制石墨负极首次阴极极化过程中电解液的过度分解,从而改善石墨负极/电解液界面的稳定性。在电化学循环伏安扫描4~10周范围内,SEI膜电阻随循环扫描周数的增加近似线性增长,但石墨负极/电解液界面总阻抗反而减小,归因于电荷传递电阻的降低。石墨负极在经历电化学循环扫描后,其活性材料表层发生粉化和无定形化,但石墨材料仍然保持完整的层状本体结构。
     (2)LiCoO_2正极/电解液界面性质。研究指出,LiCoO_2正极的组成及其制备工艺对其EIS谱的特征有重要影响。当LiCoO_2正极的组成为80%的活性材料、10%的PVDF-HFP粘合剂、7%的石墨和3%碳黑(质量百分比)时,从EIS谱中可观察到与Li_xCoO_2电子电导率相关的半圆。提出LiCoO_2正极在充放电过程中的LiCoO_2/Li_(1-x)CoO_2局域浓差电池模型,较好地解释了Li/LiCoO_2电池体系的感抗来源。发现锂离子在LiCoO_2电极中的嵌脱过程可较好地用兰格谬尔嵌入等温式和弗鲁姆金嵌入等温式描述,定量测定了LiCoO_2正极中锂离子嵌脱过程中的物理化学参数。得到电荷传递反应的对称因子α=0.5;在1MLiPF_6-EC:DEC:DMC及1M LiPF_6-PC:DMC+5%VC电解液中,锂离子迁移通过SEI膜的离子跳跃能垒平均值分别为37.74和26.55 kJ/mol,电子电导率的热激活化能平均值分别为39.08和53.81 kJ/mol,以及嵌入反应活化能平均值分别为68.97和73.73 kJ/mol。
     (3)尖晶石LiMn_2O_4及其掺杂产物的合成与表征。采用溶胶-凝胶法合成尖晶石LiMn_2O_4及其Ni、Fe、Ti掺杂产物,运用EIS研究了所合成材料正极界面特性的温度效应。发现EIS谱的高频区域半圆是由两个半圆重叠而成,分别与SEI膜和活性材料的电子电导率有关。在首次充放电过程中,改变温度不引起SEI阻抗明显的变化;然而高温(55℃)则使充放电过程中活性材料电子电阻和电荷传递电阻增大,归因于放电过程中尖晶石结构内Mn-Mn原子间距快速增大,远远超过充电过程中Mn-Mn原子间距的收缩。同样,提出尖晶石LiMn_2O_4正极中存在LiMn_2O_4/Li_(1_x)Mn_2O_4和Li_(0.5)Mn_2O_4/Li_(0.5-x)Mn_2O_4两种局域浓差电池的模型,解释了Li/LiMn_2O_4电池体系充放电过程中的感抗来源。研究发现,镍和铁的掺杂虽然不引起SEI膜阻抗明显变化,但都使正极活性材料电子电阻和电荷传递电阻在高温下的放电过程中随电极电位降低而增长的速度变慢。钛的掺杂不仅导致SEI膜阻抗增大,降低活性材料的电子电导率,同时保持正极活性材料电子电阻和电荷传递电阻在高温下的放电过程中随电极电位降低而快速增长。钛掺杂还能够有效地抑制感抗的产生。在充分考虑导电剂对嵌锂过程影响(即电子传输过程的影响)的基础上,提出了嵌锂过程的物理模型。
     本论文的研究结果对深入认识电极表面SEI膜的成膜机制和充放电中锂的嵌入脱出过程、以及发展相关的基础理论具有重要价值,同时对于指导新型正极材料的开发,发展高比能绿色二次电池具有重要意义。
The passive layer, which is generally called the solid electrolyte interface layer (SEI layer), covered on both anode and cathode of a Li-ion battery plays a key role in the electrochemical property of the lithium ion battery, and has attracted extensive attentions in past years. The formation mechanisms of SEI film in the first charge-discharge process, the thermodynamics and kinetics as well as the physical mechanism of lithium intercalation were systematically investigated in this thesis. The emphasis was put upon the effects of temperature, charge-discharge process, electrode potential and electrolyte on the mechanism of SEI formation. The electronic properties of active materials, the charge transfer process and the mechanism of inductance formation were also thoroughly discussed. The main results are summarized below.
     (1) The mechanism of SEI formation on graphite anode. It has found that, in a coin cell, the arc appearing in high-frequency range (HFA) observed in the Nyquist diagram recorded in the first lithiation of graphite anode depends not only on the SEI film, but also on the interface contact problem between the electrode and current collector. It has demonstrated that such contact problem can be eliminated completely in a three-electrode cell system. Thus the mechanism of SEI formation can be investigated through the EIS features and their evolution recorded in the first lithiation of graphite materials. The results showed that, the SEI can be formed between 0.8-0.55 V in the 1M LiPF_6-EC:DEC:DMC electrolyte on a graphite anode using water-soluble binder (F-103), while in the potential region of 1.0-0.6 V using PVDF-HFP as binder. It has demonstrated that trace (< 0.1% ) methanol contaminant may not affect the electrochemical performance of graphite electrode, whereas a significant deterioration is observed when methanol contaminant exceeds 0.5%. Based on experimental data and analysis, a mechanism of the deterioration of electrochemical performance of graphite electrode caused by methanol contaminant was proposed as below: lithium methoxide was generated through methanol reduction near 2.0 V and deposited on graphite electrode surface to form an initial SEI layer, which can not passivte efficiently electrode surface and caused excess decomposition of ethylene. At high temperature (60℃), the excess decomposition of electrolyte in the first lithiation of graphite anode can be avoided by adding 5%VC (volume ratio) to the 1M LiPF_6-EC:DEC:DMC electrolyte. As a consequence the interface stability between the graphite anode and electrolyte is improved. It has determined that the resistance of the SEI film is increased almost linearly during prolonged electrochemical cycling within 4-10 cycles. However the total interface resistance between the graphite anode and the electrolyte solution is decreased due to the decrease in charge transfer resistance. After having subjected to electrochemical cycling, the surface of the active material was exfoliated, pulverized and become amorphous, but the bulk of the active material keeps unchanged.
     (2) Properties of LiCoO_2 electrode/electrolyte interface in Li-ion batteries. It has illustrated that, the common EIS features of a LiCoO_2 cathode depend strongly on its composition and preparation procedure. When the LiCoO_2 cathode composition was 80 weight percent (wt %) LiCoO_2 powder, 10 wt % ployvinylidene fluoride binder, 3 wt % carbon black and 7 wt% graphite, an arc in Nyquist plots relating to electronic properties of the material can be observed. The results showed that the inductive loop observed in the impedance spectra of the LiCoO_2 cathode in Li/LiCoO_2 cells is originated from the formation of a Li_(1-x)CoO_2/LiCoO_2 concentration cell. Moreover, it has demonstrated that the lithium-ion insertion-deinsertion in LiCoO_2 hosts can be well described by both Langmuir and Frumkin insertion isotherms; the symmetry factor of charge transfer was measured at 0.5. In 1M LiPF_6-EC:DEC:DMC or 1M LiPF_6-PC:DMC+5%VC electrolyte, the energy barrier for the ion jump was evaluated at 37.74 and 26.55 kJ/mol, the thermo active energy of electronic conductivity jump was determined at 39.08 and 53.81 kJ/mol, and the active energy of lithium intercalation was obtained at 68.97 and 73.73 kJ/mol, respectively.
     (3) Synthesis and characterization of spinel LiMn_2O_4 and its doped compounds. The spinel LiMn_2O_4 and its doped compounds with Ni、Fe and Ti were synthesized by sol-gel methods, and the effects of temperature and doping elements on the spinel LiMn_2O_4/electrolyte interface were investigated by EIS. It has found that the high frequency arc in Nyquist plots consists of two overlapping semicircles that relate respectively to SEI film and electronic conductivity of active material. The influence of varying temperature on resistance of SEI film is small, while the electronic resistance and charge transfer resistance are increased rapidly at high temperature (55℃) in the first charge-discharge process, attributing to the contraction of hopping length (Mn-Mn interatomic distance) is smaller than the expansion of hopping length in the charge-discharge process. As for the LiCoO_2 cathode, the inductive loop observed in the impedance spectra of the LiCoO_2 cathode in Li/LiCoO_2 cells has been interpreted by a model of formation of a LiMn_2O_4/Li_(1-x)Mn_2O_4 and a Li_(0.5)Mn_2O_4/Li_(0.5-x)Mn_2O_4 concentration cells. It has also demonstrated that the doping with Ni and Fe affects slightly the resistance of SEI film, but it can slow down the increasing rate of the electronic and charge transfer resistances with decreasing electrode potential in charge-discharge processes. The doping of Ti results not only in increase of the resistance of SEI film, but also in decrease of electronic conductivity of active materials. The doping of Ti can maintain the fast increase of the electronic and charge transfer resistances with the decrease of electrode potential in the charge-discharge process. Furthermore, the doping of Ti has eliminated the inductance formation of spinel LiMn_2O_4 electrode. Based on important effects of conduct additives on lithium intercalation-deintercalation process, a model of physical mechanism involved in lithium intercalation is proposed.
     The results of this thesis throw insight into the SEI film formation mechanisms and lithium intercalation-deintercalation process, and are of significance in developing relevant fundamental theory. The study is also of great importance in exploitation of new cathode materials and in development of green rechargeable batteries with high-specific energy density.
引文
[1] 雷水泉主编,新能源材料,天津大学出版社(2000).
    
    [2] C -C Hsienu, L -C Lee. The research and development of ecomaterials in Taiwan. Materials andDesign,2001,22:129-132.
    
    [3] R M Dell, Batteries, fifty years of materials development, Solid State Ionics, 2000, 134:139-158.
    
    [4] M Broussely. Lithium batteries R&D activities in Europe. Journal of Power Sources 81-82 1999 137-139.
    
    [5] B Irwin. Weinstock. Recent advances in the US Department of Energy's energy storage technology researchand development programs for hybrid electric and electric vehicles. Journal of Power Sources 110 (2002)471-474.
    
    [6] M. Broussely. Recent developments on lithium ion batteries at SAFT. Journal of Power Sources 81-82 1999140-143.
    
    [7] J M Tarascon, and M Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414: 359-367.
    
    [8] Y Nishl. The Development of Lithium Ion Secondary Batteries. The Chemical Record, 2001, 1.406-413.
    
    [9] A Dearing. Technologies supportive of sustainable transportation. Annu. Rev. Energy Environ.2000,25:89-113.
    
    [10] K Tamura, Tatsuo Horiba. Large-scale development of lithium batteries for electric vehicles and electricpower storage applications. Journal ofPower Sources 1999,81 82:15 6-161.
    
    [11] T. Iwahori, Y. Ozaki, A. Funahashi, et al.. Development of lithium secondary batteries for electric vehiclesand home-use load leveling systems. Journal of Power Sources 1999,81-82: 872-876.
    
    [12] S Yoda, K Ishihara. The advent of battery-based societies and the global environment in the 21st century.Journal of Power Sources 1999,81-82:162-169.
    
    [13] B V Ratnakumar, M C Smart, A Kindler, et al.. Lithium batteries for aerospace applications:2003 MarsExploration Rover. Journal of Power Sources,2003,l 19-121: 906-910.
    
    [14] B V Ratnakumar, M C Smart, C K Huang, et al.. Lithium ion batteries for Mars exploration missions.Electrochimica Acta ,2000,45:1513-1517.
    
    [15] B Huang, C C Cook, S Mui, et al.. High energy density, thin film, rechargeable lithium batteries for marinefield operations. J Power Sources,2001,97-98:674-676.
    
    [16] Christophe P. The rechargeable battery market 2003-2008[C]. The Sixth China International Battery Fair,2004.
    
    [17] M Wakihara. Recent developments in lithium ion batteries. Materials Science and EngineeringR.2001,33:109-134.
    
    [18] M. Stanley Whittingham. Lithium Batteries and Cathode Materials. Chem. Rev.,2004,104:4271-4301.
    
    [19] R Koksbang, J Barker, H Shi, M Y Saidi. Cathode materials for lithium rocking chair batteries. Solid StateIonics, 1996,84:1-21.
    
    [20] G Amatucci and J -M Tarascon. Optimization of insertion compounds such as LiMn_2O_4 for Li-ion batteries.Journal of The Electrochemical Society, 2002,149(12):K31-K46.
    
    [21]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-93.
    
    [22] B Scrosati. Recent advances in lithium ion battery materials. Electrochimica Acta,2000,45: 2461-2466.
    
    [23] M Broussely, P Biensan, B Simon. Lithium insertion into host materials: the key to success for Li ionbatteries. Electrochimica Acta, 1999,45:3-22.
    
    [24] B Scrosati. The Italian contribution to battery science and technology. J. Power Sources, 2003,116:4-7.
    
    [25] Y Nishi. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources, 2001,100:101-106.
    
    [26] M M Thackeray. Manganese oxides for lithium batteries. Prog. Solid St. Chem.l997,25:1-71.
    
    [27] S B Schougaard, J Breger, M Jiang, et al.. LiNi_(0.5+) Mn_(0.5-) O_2桝 high-Rate, high-capacity cathode forlithium rechargeable batteries. Adv. Mater. 2006,18:905-909.
    
    [28] Y -K Sun, S -T Myung, M -H Kim, et al.. Synthesis and characterization ofLi[(Ni_(0.8)Co_(0.1)Mn_(0.1))_(0.8)(Ni_(0.5)Mn_(0.5)_(0.2]O_2 with the microscale core-shell structure as the positive electrodematerial for lithium batteries. J. Am. Chem. Soc.,2005,127(38): 13411-13418.
    
    [29] Y -K Sun, S -T Myung, H -S Shin, et al.. Novel core-shell-structured Li[(Ni_(0.8)Co_(0.2))_(0.8)(Ni_(0.5)Mn_(0.5))_(0.2)]O_2 viacoprecipitation as positive electrode material for lithium secondary batteries. J. Phys. Chem.B,2006,1 10:6810-6815.
    
    [30] C Delacourt, L Laffont, R Bouchet, C Wurm, et al.. Toward Understanding of electrical limitations(electronic, ionic) in LiMPO_4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc, 2005,152(5):A913-A921.
    
    [31] M Takahashi, H Ohtsuka, K Akuto et al.. Confirmation of long-term cyclability and high thermal stability ofLiFePO_4 in prismatic lithium-ion cells. J. Electrochem. Soc, 2005,152(5):A899-A904.
    
    [32] R Dominko, J M Goupil, M Bele, et al.. Impact of LiFePO_4/C Composites Porosity on Their ElectrochemicalPerformance. J. Electrochem. Soc, 2005,152 (5):A858-A863.
    
    [33] J L Tirado Inorganic materials for the negative elecrodes of lithium-ion batteries: state-of-the-art and futureprospects. Materials Science and Engineering R,2003,40:103-136.
    
    [34] M Endo, C Kim, K Nishimura, et al.. Recent development of carbon materials for Li ion batteries.Carbon,2000,38:183-197.
    
    [35]任建国,王科,何向明等.锂离子电池合金负极材料的研究进展.化学进展,2005,17(4):597-603.
    
    [36] M M Thackeray, J T Vaughey, C S Johnson, et al.. Structural considerations of intermetallic electrodes for lithium batteries. J. Power Sources,2003,113:124-130.
    [37] Robert A. Huggins. Lithium alloy negative electrodes. J. Power Sources, 1999, 81-82:13-19.
    
    [38] Y Yu, C -H Chen, J -L Shui, and S Xie. Nickel-foam-supported reticular CoO-Li_2O composite anode materials for lithium ion batteries. Angew. Chem. 2005, 117:7247-7251.
    [39] Robert A. Huggins. Alternative materials for negative electrodes in lithium systems. Solid State Ionics 152-153(2002)61-68.
    
    [40] K Kinoshita, K Zaghib. Negative electrodes for Li-ion batteries. J. Power Sources,2002, 110: 416-423.
    [41] M. Noel, V. Suryanarayanan. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. Journal of Power Sources 111 (2002) 193-209.
    [42] B A Johnson, R E White. Characterization commercially available lithium-ion batteries. J Power Sources, 1998,70:48-54.
    [43] J Xu, H Tanaka, M Kurihara, et al.. Influence of active surface on electrochemical properties of mesocarbon microbeads powders. J Power Sources, 2004,133:260-262.
    [44] G Chung, H Kim, S Yu, et al. Origin of graphite exfoliation, an investigation of the important role of solvent cointercalation[J]. J. Electrochem. Soc, 2000,147(12): 4391 -4398.
    [45] L J Fu, H Liu, C Li, et al.. Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences,2006, 8:113-128.
    [46] M Yoshio, H Wang, K Fukuda, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as Lithium-ion battery anode material[J]. J. Electrochem. Soc.,2000,147(4): 1245-1250.
    [47] T Tsumura, A Katanosaka, I Souma, et al.. Surface modification of natural graphite particles for lithium ion batteries. Solid State Ionics,2000,135:209-212.
    [48] H Huang, E M Kelder, J Schoonman. Graphite-metal oxide composites as anode for Li-ion batteries. J power Sources,2001,97-98:114-117.
    [49] G X Wang, J Yao, H K Liu, et al.. Electrochemical characteristics of tin-coated MCMB graphite as anode in Lithium-ion cells. Electrochimica Acta 50 (2004) 517-522.
    [50] T Nakajima, J Li, K Naga, et al.. Surface structure and electrochemical properties of surface-fluorinated petroleum cokes for lithium ion battery. J Power Sources,2004,133: 243-251.
    [51] Y P Wu, C Jiang, C Wan and R Holze. Anode materials for lithium ion batteries from mild oxidation of natural graphite. J Appl Electrochem, 2002, 32: 1011-1017.
    [52] B M Way, J R Dahn. The effect of Boron substitution in carbon on the intercalation of lithium in Li_x(B_xC_(l-x))_6 [J], J Electrochem Soc, 1994, 141(4): 907-912.
    [53] C S Wang, G T Wu, X B Zhang, et al. Lithium insertion in carbon-silicon composite materials produced by mechanical milling [J], J. Electrochem. Soc, 1998, 145(8): 2751-2758.
    
    [54] A M Wilson, J R Dahn. Lithium insertion in carbons containing nano-dispersed silicon[J], J. Electrochem. Soc, 1995,142(2):326-332.
    
    [55] K Xu. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev.,2004,104:4303-4417
    
    [56] D Aurbach, Y Talyosef, B Markovsky, et al.. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta,2004,50:247-254.
    
    [57] B Mandal, T Sooksimuang, B Griffin, et al.. New lithium salts for rechargeable battery electrolytes. Solid State lonics,2004,175:267-272.
    
    [58] L J Krause,W Lamanna, J Summerfield, et al. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfony imides;new lithium salts for li-ion cells[J]. J Power
    ??Sources,1997,69:320-325.
    
    [59] M B Armand, E K Cherkaoui and M Fouzia. Bis perhalogenoacyl- or sulfonyl-imides of alkali metals, theirsolid solutions with plastic materials and their use to the constitution of conductor elements forelectrochemical generators[P]. U.S.Pat.No. 4,505,997.Mar.19,1985.
    
    [60] L A Dominey,V R Koch and T J Blakley. Thermally stable lithium salts for ploymerelectrolytes[J].Electrochim. Acta, 1992,37:1551 -1554.
    
    [61] X Wang, E Yasukawa and S Kasuya. Electrochemical properties of tetrahydroppyran-based ternaryelectrolytes for 4V lithium metal rechargeable batteries[J]. Electrochimica Acta,2001,46:813-819.
    
    [62] L J Krause, W Lamanna, J Summerfied, et al.. Corrosion of aluminum at high voltages in non-aqueouselectrolytes containing perfluoroalkylsulfonyl imides;new lithium salts for lithium-ion cells[J]. J.PowerSouces, 1997,68:320-325.
    
    [63] C L. Campion, W Li, and B L. Lucht. Thermal decomposition of LiPF6-based electrolytes for lithium-ionbatteries. J Electrochem Soc,2005,152(I2):A2327-A2334.
    
    [64] E -S Hong, S Okada, T Sonoda, et al.. Thermal stability of electrolytes with mixtures of LiPF_6 and LiBF_4 used in lithium-ion cells. J Electrochem Soc, 2004,151(11):A1836-A1840.
    
    [65] C. G. Barlow. Reaction of Water with Hexafluorophosphates and with Li Bis(perfiuoroethylsulfonyl)imide Salt. Electrochemical and Solid-State Letters, 1999, 2 (8):362-364.
    
    [66] S Peter and I Nikolai. Lithium fluorophosphate and their use as conductingsalts[P],U.S.Pat.No.6,210,830,April 3,2001.
    
    [67] H Markusson, P Johansson, and P Jacobsson. Electrochemical stability and lithium ion-anion interactions oforthoborate anions (BOB, MOB, BMB), and presentation of a novel anion: tris-oxalato-phosphate.Electrochemical and Solid-State Letters, 2005,8(4):A215-A218.
    
    [68] J W. Johnson and M. S Whittingham. Lithium closoboranes as electrolytes in solid cathode lithium cells[J]. J Electrocchem Soc, 1980,127:1653-1654.
    
    [69]韩景立,刘庆国.锂离子电池电解质溶液的研究[J].电化学,2000,6(1):116-118.
    
    [70] J Barthel, R.Buestrich, E Carl, et al.. A new class of Electrochemically and thermally stable lithium salts for lithium secondary battery electrolytes. J Electrocchem Soc, 1996,143(11):3572-3575.
    
    [71] J Barthel, R Buestrich, E Carl, et al. A new class of Electrochemically and thermally stable lithium salts for lithium secondary battery electrolytes[J]. J Electrocchem Soc, 1997,144(11):3866-3870.
    
    [72] Y Sasaki, S Sekiya, M Handa and K Usami. Chelate complexes with boron as lithium salts for lithium batteries electrolytes[J]. J Power Sources, 1999,79:91-96.
    
    [73] Y Sasaki, M Handa, S Sekiya and K Usami. Application to lithium battery electrolyte of lithium Chelate compound with boron[J]. J Power Sources,20001,97-98:561-565.
    
    [74] Y Sasaki, M Handa and K Kurashima, et al. Application of lithium organoborate with salicylic ligand tolithium battery electrolyte[J]. J Electrochem Soc, 2001, I48(9):A999-A1003.
    
    [75] T. R. Jow, K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, and K. Amine. LiBOB-based electrolytes for Li-ionbatteries for transportation applications. J Electrochem Soc, 2004, 151 (10):A1702-A1706.
    
    [76] K Xu, S Zhang, T R Jow, et al.. LiBOB as salt for lithium-ion batteries a possible solution for high temperature operation. Electrochemical and Solid-State Letters, 2002,5(1 ):A26-A29.
    
    [77] F Kita, H Sakata, A Kawakami, et al. Electronic structures and electrochemical properties of LiPF_(6-n)(CF_3)_n[J]. J Power Sources,2001,97-98:581-583.
    [78] M Schmidt, U Heider, A Kuehner, et al.. Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries[J]. J Power Sources,2001,97-98:557-560.
    [79] J S Gnanaraj, M D Levi, Y Gofer, et al.. LiPF_3(CF_2CF_3)_3:a salt for rechargeable lithium ion batteries. J Electrochem Soc, 2003,150(4):A445-A454.
    
    [80] R Oesten, U Heider, M Schmidt. Advanced electrolytes. Solid State Ionics,2002,148:391- 397.
    
    [81] J S Gnanaraj, E Zinigrad, L Asraf, et al.. On the use of LiPF_3(CF_2CF_3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies. Electrochemistry Communications, 2003,5:946-951.
    
    [82] Y Keiichi, S Takako, H Akio. Fluorine-substituted cyclic carbonate electrolytic solution and battery containing the same[P]. U.S.Pat.No. 6010806,Jan.4,2000.
    [83] Y Keiichi, H Akio, F Akio, et al. Carbonate compounds, non-aqueous electrolytic solutions and batteries comprising non-aqueous electrolytic solutions[P]. U.S.Pat.No. 5847188,Dec.8,1998.
    [84] J Arai, H Katayama and H Akahoshi. Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries[J]. J Electrochem Soc,2002,149(2):A217-A226.
    
    [85] X Wang, E Yasukawa, and S Kasuya. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II .The use of an Amorphous carbon anode[J]. J Electrochem Soc,2001,148(10):A1066-A1071.
    
    [86] X Wang, E Yasukawa, and S Kasuya.Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I.fundamental properties[J]. Journal of The Electrochemical Society,2001,148(10):A1058-A1065.
    
    [87] J 0 Besenhard, M W Wagner and M Winter. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes[J]. J Power Sources, 1993,43-44:413-420.
    
    [88] H Buqa, A Würsig, J Vetter, et al.. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J Power Sources,2006,153:385-390.
    
    [89] G Schroeder, B Gierczyk, D Waszak, et al.. Vinyl tris-2-methoxyethoxy silane - A new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Comm,2006,8:523- 527.
    
    [90] B Markovsky, A Nimberger, Y Talyosef, et al.. On the influence of additives in electrolyte solutions onthe electrochemical behavior of carbon/LiCoO_2 cells at elevated temperatures. J Power Sources,2004,136:296-302.
    
    [91] M. D. Levi, E. Markevich, C. Wang, M. Koltypin, and D. Aurbach. The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes. J Electrochem Soc,2004,151(6):A848-A856.
    
    [92] S Komaba, T Itabashi, T Ohtsuka,et al.. Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn_2O4 Li-ion cells. Journal Electrochem Soc, 2005, 152(5):A937-A946.
    
    [93] M N Golovin, D P Wilkinson ,J T Dudley, et al.. Application of metallocenes in rechargeable lithium batteries for overcharge protection[J]. J. Electrochem. Soc, 1992, 139(1):5-10.
    [94] K M Abraham, D M Pasyuariello and E B Willstand. n-Butyferrocence for overcharge protection of secondary lithium batteries[J].J Electrochem Soc, 1996,137:1856-1861.
    [95] C S Cha, X P Ai and H X Yang .Ploypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries[J]. J Power Sources,l 995,54:255-258.
    [96] L Xiao, X Ai, Y Cao, H Yang. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochimica Acta,2004,49:4189-4196.
    [97] M Adachi, K Tanaka, and K Sekai. Aromatic compounds as redox shuttule additives for 4 V class secondary lithium batteries[J]. J Electrochem Soc, 1999, 146(4): 1256-1261.
    [98] H S Lee, X Q Yang, C L Xiang,et al. The sythesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solution[J].J. Electrochem. Soc., 1998,Vol. 145,No.8:2813-2818.
    [99] K Tasaki, S Nakamura. Computer simulation of LiPF_6 salt association in Li-ion battery electrolyte in the presence of an anion trapping agent. J Electrochem Soc,2001,148:A984-A988.
    [100] Shu Z. X.,Mcmillan R.S.,Murray J.J.,et al.Effects of 12 crown 4 on the electrochemical intercalation of lithium into graphite[J].J. Appl. Electrochem.,1996,41:2753-2759.
    [101] G E Blomgren. Electrolytes for advanced batteries. J Power Sources, 1999, 81 -82: 112-118.
    [102]E Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems— the solid electrolyte interphase model. J Electrochem Soc, 1979,126(12):2047-2051.
    [103] Y Ein-Eli, D Aurbach. The correlation between the cycling efficiency, surface chemistry and morphology of Li electrodes in electrolyte solutions based on methyl formate. J Power Sources, 1995,54:281-288.
    [104] D Aurbach. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources,2000,89:206-218.
    [105]Y S Cohen, Y Cohen, D Aurbach. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using atomic force microscopy. J.Phys.Chem.B,2000,104:12282-12291.
    [106] E Peled. Mossbauer spectroscopy of electrode deposited tin-nickle alloys and thermally prepaired Ni_3Sn_2,NiSn, Ni_3Sn_4. J Electrochem Soc, 1979,126:204-208.
    [107]E Peled, D Goldnitsky, G Ardel, et al. Advanced model for solid electrolyte interphase of lithium electrode in liquid and polymer electrolytes. J Electrochem Soc,1997,144:L208-L210.
    [108] J G Theveninj, R H Muller. Impedance of lithium electrode in a propylene carbonate electrolyte. J Electrochem Soc, 1987,134:273-280.
    [109]D Aurbach, I Weissman, A Schechter. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions.a comparison with previous studies with previous studies by forier transform infrared spectroscopy. Langmiur,1996, 12(16):3991-4007.
    [110] A Schechter and D Aurbach.X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir, 1999, 15(9): 3334-3342.
    [111]K -i Morigaki, A Ohta. Analisis of the surface of lithium in organic electrolyte by atomic force microscopy,fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources, 1998,76:159-166.
    [112] S Shiraishi, K Kanamura, Z -i Takehara. Study of the surface composition of highly smooth lithium deposited in various carbonate electrolyte containing HF. Langmuir, 1997,13:3542-3549.
    [113] D Aurbach, B Markovsky, M D Levi, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. Journal of Power Sources,1999,81-82:95-111.
    [114] G V Zhuang, K Xu, H Yang, et al.. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte. J. Phys. Chem. B 2005, 109: 17567-17573.
    [115] A Kominato, E Yasakawo, N Sato, et al. Analysis of surface films on lithium in various organic electrolytes. J Power Sources,1997,68:471-475.
    [116]D Aurbach,Y Ein-Eli,B Markovosky et al. The study of Electrolyte solution based on ethylene and diethyl carbonates for rechargeable Li batteries[J].J.Electrochem.Soc, 1995, Vol. 142,No.9: 2873-2882.
    [117] D. Aurbach, Y. Gofer The Behavior of Lithium Electrodes in Mixtures of Alkyl Carbonates and Ethers . Journal of Electrochemical Society,1991,138:3529-3535.
    [118] D Aurbach,Y Ein-Ely,A Zaban.The surface chemistry of lithium electrode in alkyl carbonate solutions. Journal of The Electrochemistry Society,1994,141:Ll-L3.
    [119] D Aurbach, Y Cohen.The application of atomic force microscopy for the study of Li deposition process. Journal of The Electrochemistry Society,1996,143:3525-3532.
    [120]D Aurbach, A zaban,Yosef Gofer,et al. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphology and spectral studies of a few important systems[J].Journal of Power Souces, 1995,54:76-84.
    [121] K Kanamura, S Shiraishi, H Tamura, et al. X-ray photoelectron spectroscopic analysis and sanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. Journal of The Electrochemistry Society, 1994,141:2379-2385.
    [122]K.-i.Morigaki. Analysis of the interface between lithium and organic electrolyte solution.Journal of Power Sources,2002,104:13-23.
    [123] J Barthel, M Wühr, W Sauerer. et al. The influence of water on the cycleability of lithium in 2-methyltetrahyfurnan-based electrolytes. Journal of The Electrochemistry Society, 1993,140:6-11.
    [124]D Aurbach, O Chusid. In situ FTIR spectroscopy studies of surface films formed on Li and nonactive electrodes at low potentials in Li salt solutions containing CO_2. Journal of The Electrochemistry Society,1993,140:155-157.
    [125]T Osaka,T Momma,T Tajima. et al. Enhancement of lithium anode cyclability in propylene carbonate electrolyte by CO_2 addition and its protective effect against H_2O impurity. Journal of The Electrochemistry Society, 1995,142:1057-1060.
    [126] D Rahner.The role of anions, solvent molecules and solvated electrons in layer formation processes on anode materials for rechargeable lithium batteries. J Power Sources, 1999,81-82:358-361.
    [127] D Aurbach, Y Cohen.Morphological studies of Li deposition processes in LiAsF_6/PC solutions by in situ atomic force microscopy. JElectrochem Soc, 1997,144:3355-3360.
    [128] D Aurbach, A Zaban, Y Gofer. Et al. Studies of Li anodes in electrolyte system 2Me-THF/THF/Me-Furan/LiAsF_6. J Electrochem Soc, 1995,142:687-695.
    [129] K. Kanamura,H Tamura, S Shiraishi, et al. Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous elctrolytes. J Electroanal Chem,1995,394:49-62 [130] D Rahner, S Machill, K Siury. Passivity of lithium in organic solvents. J Power Sources, 1997,68:69-74.
    [131] M G Scoot, A H Whitehead, J R Owen. Chemical formation of a solid electrolyte interface on the carbon electrode of a Li-ion cell. Journal Electrochem Soc,1998, 145:1506-1510.
    [132] K Takei, K. Kumai, Y Kobayashi, et al. An X-ray photoelectron spectroscopy study on the surface film on carbon black anode in lithium secondary cells. Journal of Power Sources, 1995, 54: 171-174.
    [133] D Aurbach, J S Gnanaraj, M D Levi, et al. On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes. Journal of Power Sources,2001,97-98:92 -96.
    [134] M D Levi, and D Aurbach. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J.Phys.Chem.B, 1997, 101:4630-4640.
    [135] B V Ratnakumar, M C Smart, S Surampudi. Effects of SEI on the kineticks of lithium intercalation. Journal of Power Sources,2001,97-98:137-139.
    [136] Doron Aurbach, Maxim Koltypin, and Hanan Teller. In Situ AFM Imaging of Surface Phenomena on Composite Graphite Electrodes during Lithium Insertion. Langmuir 2002,18,9000-9009.
    [137] D Zane, A Antonimi, M Pasquaci. A Morphological study of SEI film on graphite electrode. Journal of Power Sources,2001,97-98:146-150.
    [138] J O Besenhard, M Winter, J Yang, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995,54:228-231.
    [139] M Inaba, Z Siroma, Y Kawatate, et al. Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. Journal of Power Sources, 1997,68:221-226.
    [140] M R Wagner, J H Albering, K -C Moeller, et al. XRD evidence for the electrochemical formation of Li~+(PC)_yC_n~- in PC-based electrolytes. Electrochem Comm,2005,7:947-952.
    [141] M E. Spahr, T Palladino, HWilhelm, A Wiirsig, D Goers, H Buqa, M Holzapfel, and P Nova'k. Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes. Journal Electrochem Soc, 2004,151(9): A1383-A1395.
    [142]D Aurbach, M D Levi, E Levi, et al. Failure and stabilization mechanisms of graphite electrodes. J.Phys.Chem.B, 1997,101:2195-2206.
    [143] D Aurbach, B Markovsky, I Weissman, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries.EIectrochimica Acta, 1999,45:67-86.
    [144]D Aurbach, A Zaban, Y Ein-EIy, et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. Journal of Power Sources, 1997,68:91-98.
    [145] S -K. Jeong, M Inaba, T Abe, et al. Surface film formation on graphite negative electrode in lithium-ion batteries,AFM study in an ethylene carbonate-based solution. J Electrochem Soc, 2001,148:A989-A993.
    [146] S -K Jeong, M Inaba, Y Iriyama,et al.Surface film formation on a graphite negative electrode in lithium-ion batteries:AM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochimica Acta, 2002,47:1975-1992.
    [147] G -C Chung, H -J Kim, S -I Yu, et al. Original of graphite exfoliation, an investigation of the important role of solvent cointeraction. Journal Electrochem Soc,2000,147:4391-4398.
    [148] E Endo, M Ata, K Tanaka. et al.Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries. J Electrochem Soc, 1998,145:3757-3764.
    [149] E Endo,K Tanaka, and K Sekai. Initial reaction in the reduction decomposition of electrolyte solutions for lithium batteries. J Electrochem Soc,2000,147(11):4029-4033.
    [150] S Mori, H Asahima, H Suzuki, et al. Chemical properties of various organic electrolytes for lithium rechargeable batteries, 1. characterization of passivating layer formed on graphite in alkyl carbonate solutions. J Power Sources,1997,68:59-64.
    [151] X Zhang, R Kostecki, T J Richardson, et al. Electrochemical and infrared studies of the reduction of organic carbonates. J Electrochem Soc, 2001,148(12)1341-1345.
    [152] Y Kida, A Kinoshita, K Yanagida, et al. A study on cycle performance of lithium secondary batteries using lithium nickel-cobalt composite oxide and graphite/coke hybrid carbon. Electrochimica Acta,2002,47:1691-1696.
    [153] H Yoshida, T Fukunaga, T Hazama, et al. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. Journal of Power Sources, 1997,68:311-345.
    [154] A Naji, J Ghanbaja, B Humbert, et al.Electroreduction of graphite in LiClO_4-ethylene carbonate electrolyte.Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy. Journal of Power Sources,1996,63:33-39.
    [155] P Arora, R E White, M Doyle. Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of The Electrochemical Society, 1998,145(10):3647-3667.
    [156] Y Wang, P B Balbuena. Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates. International Journal of Quantum Chemistry,2005,102:724-733.
    [157] Y. Wang, S Nakamura, M Ue, et al.Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries:reduction mechanisms of ethylene carbonate. J.Am.Chem.Soc,2001,123:11708-11718.
    [158]Y-G Ryu,S-I Pyun. Passivation kinetics of surface films formed on a graphite electrode in organic lithium salts solutions as a function of lithium salt anion type. Journal of Electroanalytical Chemistry, 1997,433:97-105.
    [159] K -i Morigaki. In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions[J]. Journal of Power Sources,2002,103:253-264.
    [160]K EdstrOm, A M Andersson, A Bishop, et al. Carbon electrode morphology and stability of the passivation layer. J Power Sources,2001,97-98:87-91.
    [161] M Herstedt, D P Abraham, J B Kerr, K Edstrom. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade. Electrochimica Acta,2004,49:5097-5110.
    [162] E Peled, D Golodnitsky. SEI on lithium, graphite, disorder carbons and tin-based alloys, P Balbuena, Y Wang (Eds. ), Lithium-ion batteries Solid-electrolyte interphase, Imperial college press and world scientific
    ??pulishers,2004.
    
    [163]E Peled, D Golodnitsky, A Ulus, et al.. Effect of carbon substrate on SEI composition and morphology, Electrochimica Acta,2004,50:391
    
    [164] E Peled, D Bar Tow, A Merson, A Gladkich, L Burstein and D Golodnitsky. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources , 97-98 :52-57.
    
    [165]B Laik, A Chausse, R Messina, M G Barthes-Labrousse, J Y Nedelec, C Le Paven-Thivet and F Grillon. Analysis of the surface layer on a petroleum coke electrode in tetraglyme solutions of lithium salts. Electrochimica Acta,2001,46:691-700.
    
    [166]Masashi Ishikawa, Yuko Tasaka, Nobuko Yoshimoto and Masayuki Morita. Optimization of physicochemicai characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature. J Power Sources,2001,97-98: 262-264.
    
    [167] A M Andersson, K Edstrom, N Rao and A Wendsjo. Temperature dependence of the passivation layer on graphite. J Power Sources, 1999,81-82:286-290.
    
    [168] Andersson A M, Edstrom K. Chemical composition and morphology of the elevated temperature SEI on graphite. J . Electrochem. Soc.,2001,148(10):Al 100-1109.
    
    [169]M Dolle, S Grugeon, B Beaudoin, L Dupont and J- M Tarascon. In situ TEM study of the interface carbon/electrolyte. J Power Sources,2001,97-98:104-106.
    
    [170] Hitoshi Ota, Tomohiro Sato, Hitoshi Suzuki and Takao Usami. TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries. J Power Sources,2001,97-98:107-113.
    
    [171]C Wang, I Kakwom, A J Appleby, et al. In situ investigation of electrochemical lithium intercalation into graphite powder. J Electroanal Chem,2000,489:55-67.
    
    [172] C Wang, A J Appeleby, F E Litlle. Charge-discharge stability of graphite anodes for lithium-ion batteries. J Electroanal Chem,2001,497:33-46.
    
    [173]M Koltypin, Y S Cohen, B Markovsky, et al. The study of lithium insertion-deinsertion processes into composite graphite electrolytes by in situ atomic force microscopy(AFM).Electrochem Comm,2002,4:17-23.
    
    [174]Moshkovich M, Cojocaru M, Gottlieb H E, Aurbach D. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. Journal of Electroanalytical chemistry, 2001,497:84-96.
    
    [175] Zhang S S, Xu K, Jow T R. Formation of solid electrolyte interface in lithium nickel mixed oxide electrodes during the first cycling. Electrochemical and Solid-state letters,2002,5:A92-A94.
    
    [176] S S Zhang, K Xu, T R Jow. Understanding formation of solid electrolyte interface film on LiMn2O4 electrode. J Electrochem Soc,2002,149(12):A1512-A1526.
    
    [177] Eriksson T, Andersson A M, Bishop A G, Gejke C, Gustafsson T and Thomas J O. Surface analysis of LiMn_2O_4 elctrodes in carbonate-based electrolytes. Journal of The Electrochemical Society,2002, 149(1 ):A69-A78.
    
    [178] Eriksson T, Andersson A M, Gejke C. Influence of temperature on the interface chemistry of Li_xMnO-4??electrodes. Langmuir,2002,18:3609-3619.
    
    [179]庄全超,刘文元,武山等.锂及锂离子蓄电池有机电解液研究进展.化学通报(网络版),2002,65(10):w74.
    
    [180] Huang H, Vincent C A and Bruce P G Capacity loss of lithium manganese oxide spinel in LiPF_6/ethylene carbonate-dimethyl carbonate electrolyes. Journal of the Electrochemical Society, 1999,146(2):481 -485.
    
    [181]Matsuo Y, Kostecki R, Mclarnon F. Surface layer formation on thin-film LiMn_2O_4 electrodes at elevated temperatures[J].Journal of the Electrochemical Society, 2001,148(7):A687-A692.
    
    [182] Aurbach D, Gamolsk K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, and M Schmidt.The study of surface phenomena related to electrochemical lithium intercalation into Li_xMO_y host materials(M=Ni,Mn). J ElectrochemSoc,2000,147:1322-1331.
    
    [183]Ostrovskii D, Ronci F, Scrosati B, Jacobsson, P. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes spontaneous reactions at the electrode-electrolyte interface investigated by FTIR. Journal of Power Sources,2001,103:10-17.
    
    [184] Ostrovskii D, Ronci F, Scrosati B, Jacobsson P A. FTIR and Raman study of spontaneous reaction occurring at the LiNi_yCo_(1-)O_2 electrode/non-aqueous electrolyte interface[J]. J Power Sources, 2001,94:183-188.
    
    [185] Z Wang, X Huang, L Chen. Characterization of spontaneous reactions of LiCoO_2 with electrolyte solvent for lithium-ion batteries. J Electrochem Soc,2004, 151(10):A1641-1652.
    
    [186] Z Wang, L Chen. Solvent storage-induced structural degradation of LiCoO_2 for lithium ion batteries. J Power Sources,2005,146:254-258.
    
    [187]M J Garreau. Cyclability of the lithium electrode. J Power Sources, 1987,20(1-2):9-17
    
    [188] J G Thevenin. Passivating films on lithium electrodes. An approach by means of electrode impedancespectroscopy. J Power Sources, 1985,14(1-3):45-52.
    
    [189] D Aurbach and Y S Cohen. Identification of surface films on electrodes in non-aqueous electrolyte solutions:spectroscopic, electronic and morphological studies, Y Wang (Eds.), Solid-electrolyte interphase, Imperialcollege press and world scientific pulishers,2004.
    
    [190] S Wernick, and R Pinner. The surface treatment and finishing of Aluminum and its alloys, Vol. 1,4th edition(Robert Draper, Teddington, Englang, 1972).
    
    [191] A K Vijh. Electrochmistry of metals and semiconductors: the application of solid state science toelectrochemical phenomena (Marcel Dekker, New York, 1973.), eds. by J W Diggle and A K Vijh. Theanodic behavior of metals and semiconductors series: oxides and oxide films(Marcel Dekker, New York,1976.),Vol.4.
    
    [192] D Aurbach. The role of surface films on electrodes in Li-ion batteries. Eds. by W A van Schalkwijk and BScrosati, Advances in lithium-ion batteries. Kluwer acdemic/Plenum publishers
    
    [1] 储炜,厦门大学理学博士学位论文[D].厦门:1999.
    
    [2] 杨孙楷等.仪器分析实验[M].厦门:厦门大学出版社,厦门:1996.
    
    [3] 朱伟.钾离子电池正极材料LiMn_2O_4与LiFePO_4的制备与性能研究[D].重庆大学博士学位论文.重 庆:2004.
    
    [4] 史美伦编著.交流阻抗谱原理及应用[M].国防工业出版社,北京:2001.
    
    [5] 曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,北京:2002.
    
    [6] 梁栋材著.X射线晶体学基础[M].北京:科学出版社,1991.
    
    [7] P Novak, J C Panitz, F joho, et al. Advanced in situ methods for the characterization of practical electrodes in lithium ion batteries [J]. J Power Sources, 2000,90: 52-58.
    
    [8]白春礼 扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    
    [9] 刘世宏等编,《X-射线光电子能谱分析》[M].,科学出版社,北京:1988.
    
    [10] Kostecki R., Tran T., Song X., Kinoshita K., Mclarnon F. Raman Spectroscopy and Electron Microscopy of Heat-Treated Petroleum Cokes for Lithium-Intercalation Electrodes [J]. J. Electrochem. Soc.,1997, 144: 3111-3116.
    
    [11]吴宇平,万春荣,姜长印等编著.锂离了二次电池[M].化学工业出版计,北京:2002,p80-82.
    
    [1] B A Johnson, R E White. Characterization commercially available lithium-ion batteries. J Power Sources, 1998,70:48-54.
    
    [2] J M Tarascon, and M Armand. Issues and challenges facing rechargeable lithium batteries[J], Nature, 2001,414: 359-367.
    
    [3] E Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc, 1979,126( 12):2047-2051.
    
    [4] E Peled, D Golodnitsky. SEI on lithium, graphite, disorder carbons and tin-based alloys, P Balbuena, YWang (Eds. ), Lithium-ion batteries Solid-electrolyte interphase, Imperial college press and world scientificpulishers,2004.
    
    [5] K Xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev.,2004,104:4303-4417.
    
    [6] B V Ratnakumar, M C Smart, S Surampudi. Effects of SEI on the kineticks of lithium intercalation. Journalof Power Sources,2001,97-98:137-139.
    
    [7] Doron Aurbach, Maxim Koltypin, and Hanan Teller. In Situ AFM Imaging of Surface Phenomena onComposite Graphite Electrodes during Lithium Insertion. Langmuir 2002, 18, 9000-9009.
    
    [8] D Aurbach, J S Gnanaraj, M D Levi, et al. On the correlation among surface chemistry, 3D structure,morphology, electrochemical and impedance behavior of various lithiated carbon electrodes. Journal ofPower Sources,2001,97-98:92 -96.
    
    [9] M G Scoot, A H Whitehead, J R Owen. Chemical formation of a solid electrolyte interface on the carbonelectrode of a Li-ion cell. Journal Electrochem Soc,1998, 145:1506-1510.
    
    [10] D Zane, A Antonimi, M Pasquaci. A Morphological study of SEI film on graphite electrode. Journal of PowerSources,2001,97-98:146-150.
    
    [11] J O Besenhard, M Winter, J Yang, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes.Journal of Power Sources, 1995,54:228-231.
    [12] M Inaba, Z Siroma, Y Kawatate, et al. Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. Journal of Power Sources, 1997,68:221-226.
    [13] M R Wagner, J H Albering, K -C Moeller, et al. XRD evidence for the electrochemical formation of Li~+(PC)_yC_n~- in PC-based electrolytes. Electrochem Comm,2005,7:947-952.
    [14] D Aurbach, M D Levi, E Levi, et al. Failure and stabilization mechanisms of graphite electrodes. J.Phys.Chem.B, 1997,101:2195-2206.
    [15] S -K Jeong, M Inaba, Y Iriyama,et al.Surface film formation on a graphite negative electrode in lithium-ion batteries: AM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochimica Acta, 2002,47:1975-1992.
    [16] E Peled, D Golodnitskya A U V Yufita. Effect of carbon substrate on SEI composition and morphology. Electrochimica Acta,2004,50:391-395.
    [17] D D Macdonald, M A Rifaie, and G R Engelhardt. New rate laws for the growth and reduction of passive films. Journal of The Electrochemical Society,2001,148(9):B343-B347.
    [18] V Eshkenazi, E Peled, L Burstein, D Golodnitsky. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics,2004,170:83-91.
    [19] D Aurbach. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources,2000,89:206-218.
    [20] J S Gnanaraj, R W Thompson, S N Iaconatti, J F DiCarlo, K M Abraham. Formation and growth of surface films on graphitic anode materials for Li-ion batteries. Electrochemical and Solid-State Letters, 2005,8(2):A128-A132.
    [21] C R Yang, J Y Song, Y Y Wang, C C Wan. Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries. J Appl Electrochem,2000,30:29-34.
    [22] C Wang, A J Appleby, F E Little. Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochimica Acta ,2001,46:1793-1813.
    [23] J -S Kim, Y -T Park. Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery. Journal of Power Sources,2000,91:172-176.
    [24] A Funabiki, M Inaba, Z Ogumi. A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic.J Power Sources, 1997,68:227-231.
    [25] K Dokko, Y Fujita, M Mohamedi, M Umeda, I Uchida, J R Selman. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part II. Disordered carbon. Electrochimica Acta, 2001,47:933-938.
    [26] M Umeda, K Dokko, Y Fujita, M. Mohamedi, I. Uchida, J.R. Selman. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part I. Graphitized carbon. Electrochimica Acta ,2001,47:885-890.
    [27] S Zhang, P Shi. Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte. Electrochimica Acta,2004,49:1475-1482.
    [28] T Piao, S -M Park, C -H Doh, and S -I Moonb. Intercalation of lithium Ions into graphite electrodes studied by AC impedance measurements. Journal of The Electrochemical Society,1999, 146 (8): 2794-2798.
    [29] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem B, 1997,101 (23):4630-4640
    [30] Martinent A, Le Gorrec B, Montella C, et al. Three-electrode button cell for EIS investigation of graphite
    ??electrode. J Power Sources, 2001,97-98:83-86
    
    [31] Chang Y -C, Sohn H -J. Electrochemical impedance analysis for lithium ion intercalation into graphitizedcarbons. J Electrochem Soc, 2000,147(1):50-58
    
    [32] Holzapfel M, Martinent A, Allion F, et al. First lithiation and charge/discharge cycles of graphite materials,investigated by electrochemical impedance spectroscopy. J Electroanal Chem, 2003,546:41-50,,
    
    [33] C Wang, A J Appley, F E Little. Electrochemical impedance study of initial lithium ion intercalation intographite powder. Electrochimica Acta,2001,46:1793-1813.
    
    [34] Chusid O, Ein-Eli Y, Aurbach D, et al. Electrochemical and spectroscopic studies of carbon electrodes inlithium battery electrolyte systems. J Power Sources, 1993,43(1-3):47-64.
    
    [35] C Wang, A J Appleby, F E Little. Irreversible capacities of graphite anode for lithium-ion batteries. JElectroanal Chem,2002,519:9-17.
    
    [36] M -S Zheng, Q-F Dong, H -Q Cai, et al.. Formation and influence factors of solid electrolyte interphase filmon the negative electrode surface in lithium-ion batteries. J Electrochem Soc,2005,152(11): A2207-A2210.
    
    [37] Ein-Eli Y. Dimethyl carbonate (DMC) electrolytes-the effect of solvent purity on Li-ion intercalation intographite anodes. Electrochem Comm,2002,4(8):644-648.
    
    [38] J Vetter, P Novak, M R Wagner, C Veit, K -C Moller, J O Besenhard, M Winter, M Wohlfahrt-Mehrens, CVogler, A Hammouche. Aging mechanisms in Jithium-ion batteries.J Power Sources,2005,147:269-281.
    
    [39] D Aurbach, B Markovsky, A Rodkin, M Cojocaru, E Levi, H -J Kim. An analysis of rechargeable lithium-ionbatteries after prolonged cycIing.Electrochimica Acta,2002,47:1899-1911.
    
    [40] Kim Y O, Park S M. Intercalation mechanism of lithium ions into graphite layers studied by nuclearmagnetic resonance and impedance experiments. J Electrochem Soc,2001,148:A194-A199.
    
    [41]MO Yao-wu,XIA Yi-ben,HUANG Xiao-qin et al(莫要武,夏义本,黄晓琴等).Acta Physica Sinica(物 理学报),1997,46(3):618-624.
    
    [42]HAO Zhao-yin,CHEN Yu-fei,ZOU Guang-tian(郝兆印,陈宇飞,邹广田).Synthetic Diamond(人工合 成金刚石).Changchun:Jilin University Press(长春:吉林大学出版社),1996.70.
    
    [1] Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem Rev, 2004,104(10):4303-4418.
    
    [2] Moshkovich M, Cojocaru M, Gottlieb H E, Aurbach D. The study of the anodic stability of alkyl carbonatesolutions by in situ FTIR spectroscopy, EQCM, NMR and MS. Journal of Electroanalytical chemistry,2001,497:84-96.
    
    [3] Zhang S S, Xu K, Jow T R. Formation of solid electrolyte interface in lithium nickel mixed oxide electrodesduring the first cycling. Electrochemical and Solid-state letters,2002,5:A92-A94.
    
    [4] S S Zhang, K. Xu, T R Jow. Understanding formation of solid electrolyte interface film on LiMn_2O_4 electrode.J Electrochem Soc,2002,149( 12): A1512-A1526.
    
    [5] B A Johnson, R E White. Characterization commercially available lithium-ion batteries. J Power Sources,1998,70:48-54.
    
    [6] E Antolini. LiCoO_2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviourand transport properties. Solid State Ionics,2004,170:159-171.
    
    [7] Z Chen, J R Dahn. Methods to obtain excellent capacity retention in LiCoO_2 cycled to 4.5 V. ElectrochimicaActa,2004,49:1079-1090.
    
    [8] Aurbach D, Gamolsky K, Markovsky B, et al. The study of surface phenomena related to electrochemicallithium intercalation into Li_xMO_y host materials(M=Ni,Mn). J Electrochem Soc, 2000,147(4): 1322-1331.
    
    [9] Wiirsig A, Buqa H, Holzapfel M, et al. Film Formation at Positive Electrodes in Lithium-Ion Batteries.Electrochemical and Solid-State Letters, 2005, 8(1):A34-A37.
    
    [10] Eriksson T, Andersson A M, Bishop A G, et al. Surface analysis of LiMn_2O_4 elctrodes in carbonate-basedelectrolytes. J Electrochem Soc,2002,149(1):A69-A78.
    
    [11] Matsuo Y, Kostecki R, Mclarnon F. Surface layer formation on thin-film LiMn_2O_4 electrodes at elevatedtemperatures.J Electrochem Soc, 2001,148(7):A687-A692.
    
    [12] Ostrovskii D, Ronci F, Acrosati B et al. Reactivity of lithium battery electrode materials toward non-aqueouselectrolytes:spontaneous reactions at the electrode-electrolyte interface investigated by FTIR. Journal ofPower Sources,2001,103( 1): 10-17.
    
    [13] Ostrovskii D, Ronci F, Scrosatr B, et al. A FTIR and Raman study of spontaneous reaction occurring at theLiNi_yCo_(1-y)O_2 electrode/non-aqueous electrolyte interface.J Power Sources,2001,94(2): 183-188.
    [14] Wang Z, Huang X, Chen L. Characterization of spontaneous reactions of LiCoO_2 with electrolyte solvent for lithium-ion batteries. J Electrochem Soc,2004,151(10):A1641-A1652.
    [15] Z Wang, L Chen. Solvent storage-induced structural degradation of LiCoO_2 for lithium ion batteries. J Power Sources,2005,146:254-258.
    [16] Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li_(1-x)CoO_2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc, 1999,146(4): 1279-1289.
    [17] Levi M D, Gamolsky K, Aurbach D, et al. On electrochemical impedance of Li_xCo_(0.2)Ni_(0.8)O_2 and Li_xNiO_2 intercalation electrodes. Electrochimica Acta, 2000,45(11): 1781-1789.
    [18] Gnanaraj J S, Thompson R W, Iaconatti S N, et al. Formation and growth of surface films on graphitic anode materials for Li-ion batteries. Electrochemical and solid-state letters,2005,8(2):A128-132.
    [19] Montella C, Review and theoretical analysis of ac-av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electrochem Chem, 1999,462(2):73-87.
    [20] Holzapfel M, Martinent A, Allion F, et al. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem, 2003,546:41-50.
    [21] M D Levi, D Aurbach. Frumkin intercalation isotherm - a tool for the description of lithium insertion into host materials: a review. Electrochimica Acta, 1999:167-185.
    [22] M Shibubuya, T Nishina, T Matsue, I Uchida. In situ conductivity measurements of LiCoO_2 film during insertion/extraction by using interdigitated microarray electrodes. J Electrochem Soc, 1996,143:3157-3160.
    [23] H Tukamoto, A R West. Electronic conductivity of LiCoO_2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144: 3164-3168.
    [24] S M Lala, L A Montoro, V Lemos, M Abbate, J M Rosolen. The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO_2. Electrochimica Acta,2005,51:7-l3.
    [25] H Cao, B Xia, Y Zhang, N Xu. LiAlO_2-coated LiCoO_2 as cathode material for lithium ion batteries. Solid State ionics,2005,176:911-914.
    [26] G Ceder, A Van der Ven.Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta, 1999,45:131-150.
    [27] A Van der Ven, M K Aydinol, G Ceder, G Kresse, J Hafner. First-principles investigation of phase stability in Li_CoO_2. Physical Review B,1998,58(6):2975-2987.
    [28] J van Elp, J L Wieland, H Eskes, P Kuiper, G A Sawatzky, F M F de Groot, T S Turner. Electronic structure of CoO, Li-doped CoO and LiCoO_2. Physical Review B,1991,44(12):6090-6103.
    [29] M G S R Thomas, P G Bruce, and J B Goodenough. AC impedance analysis of polycrystalline insertion electrodes: application to Li_(1-x)CoO_2. J Electrochem Soc,1985,132(7): 1521-1528.
    [30] J S Gnanaraj, Y S Cohen, M D Levi, D Aurbach. The effect of pressure on the electroanalytical response of graphite anodes and LiCoO_2 cathodes for Li-ion batteries. J Electroanal Chem, 2001,516:89-102.
    [31] D Aurbach, B Markovsky, M D Levi, E Levi, A Schechter, M Moshkovich, Y Cohen. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources, 1999,81-82:95-111.
    [32] F Nobili, S Dsoke, F Corce, R Marassi. An ac impedance spectroscopy study of Mg-doped LiCoO_2 at different temperatures:electronic and ionic transport properties. Electrochimica Acta, 2005,50:2307-2313.
    [33] F Nobili, R Tossici, F Croce, B Scrosati, R Marassi. An electrochemical ac impedance study of Li_xNi_(0.75)Co_(0.25)O_2 intercalation electrode. J Power Sources,2001,94:238-241.
    [34] F Nobili, R Tossici, R Marassi, F Croce, B Scrosati. An ac impedance study of Li_xCoO_2 at different temperatures. J Phys Chem B,2002,106:3909-3915.
    [35] F Croce, F Nobili, A Deptula, W Lada, R Tossici, A D'Epifanio, B Scrosati, R Marassi. An electrochemical impedance study of the transport properties of LiNi_(0.75)Co_(0.25)O_2.Electrochem Communications, 1999, 1: 605-608.
    [36] F Nobili, F Croce, B Scrosati, R Marassi.Electronic and electrochemical properties of Li_xNi_(1-x)CoO_2 cathodes studied by impedance spectroscopy. Chem Mater,2001,13:1642-1646.
    [37] F Nobili, S Dsoke, M Minicucci, F Croce, R Marassi.Crrelation of ac-impedance and in-situ x-ray spectra of LiCoO_2. J Phys Chem B, 2006,110(23):11310-11313.
    [38] N Liu, H Li, Z Wang, X Huang, L Chen. Origin of solid electrolyte interphase on nanosized LiCoO_2. Electrochemical and Solid-State Letters, 2006,9(7): A328-A331.
    [39] C M Julien. Lithium intercalated compounds charge transfer and related properties. Materials Science and Engineering R,2003,40:47-102.
    
    [40] C A Marianetti. Electronic correlations in Li_xCoO_2. Ph. D. Thesis, M.I.T., 2004,pp51-83.
    [41] A Van der Ven. First principles investigation of the thermodynamic and kinetic properties of lithium transition metal oxides. Ph. D. Thesis, M.I.T., 2000.
    [42] E Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems— the solid electrolyte interphase model. J Electrochem Soc, 1979,126(12):2047-2051
    [43] A K Vijh. Electrochmistry of metals and semiconductors: the application of solid state science to electrochemical phenomena (Marcel Dekker, New York, 1973.), eds. by J W Diggle and A K Vijh. The anodic behavior of metals and semiconductors series: oxides and oxide films(Marcel Dekker, New York, 1976.), Vol. 4.
    [44] Li Yongfang, Wu Haoqing. Theoretical treatment of kinetics of intercalation electrode reaction Electrochimica Acta,1989,34(2): 157-159.
    [45] Barrel G, Diard J P, Montella C. Etude d'un modele de reaction electrochimique d'insertion—I. Resolution pour une commande dynamique a petit signal Electrochimica Acta, 1984,29(2):239-246.
    [46] S Kobayashi, Y Uchimoto. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueoud electrolyte. J Phys Chem B,2005,109:13322-13326.
    
    
    [1] M. Stanley Whittingham. Lithium batteries and cathode materials. Chem. Rev. 2004,104,4271 -4301.
    
    [2] R Koksbang, J Barker, H Shi, M Y Saidi. Cathode materials for lithium rocking chair batteries. Solid StateIonics, 1996,84:1-21.
    
    [3] G Amatucci and J -M Tarascon. Optimization of insertion compounds such as LiMn_2O_4 for Li-ion batteries.Journal of The Electrochemical Society, 2002,149(12):K31-K46.
    
    [4] M Broussely, P Biensan, B Simon. Lithium insertion into host materials: the key to success for Li ionbatteries. Electrochimica Acta, 1999,45:3-22.
    
    [5] K. Tamura, T Horiba. Large-scale development of lithium batteries for electric vehicles and electric powerstorage applications. Journal of Power Sources,1999,81-82:156-161.
    
    [6] T Iwahori, Y Ozaki, A Funahashi, et al.. Development of lithium secondary batteries for electric vehicles andhome-use load leveling systems. Journal of Power Sources,1999, 81-82: 872-876.
    
    [7] T Horiba, K. Hironaka, T Matsumura, et al. Manganese type lithium ion battery for pure and hybrid electricvehicles. J Power Sources,2001,97-98:719-721.
    
    [8] M M Thackeray. Manganese oxides for lithium batteries. Prog. Solid St. Chem. 1997,25:1-71.
    
    [9] C J Curtis, J Wang, D L Schulz. Preparation and characterization of LiMn_2O_4 spinel nanoparticle as cathodematerials in secondary Li battery. J Electrochem Soc,2004,151(4):A590-598.
    
    [10] J Molenda. Electronic limitations of lithium diffusibility. From layerd and spinel toward novel olivine tyepecathode materials. Solid State Ionics,2005,176:1687-1694.
    
    [11] W Choi and A Manthiram. Comparison of metal ion dissolutions from lithium ion battery cathodes. JElectrochem Soc, 2006,153(9):A1760-A 1764.
    
    [12] K Kanamura, K Dokko and T Kaizawa. Synthesis of spinel LiMn_2O_4 by a hydrothermal process insupercritical water with heat-treatment. J Electrochem Soc, 2005,152(2):A391-A395.
    
    [13] M Kunduraci and G G Amatucci. Synthesis and characterization of nanostructured 4.7 V Li_xMn_(1.5)Ni_(0.5)O_4spinels for high-power lithium-ion batteries. J Electrochem Soc, 2006,153(7):A1345-A1352.
    
    [14] Y-M Lin, H-C Wu, Y-C Yen, Z -Z Guo, M -H Yang, H -M Chen, H -S Sheu, N -L Wu. Enhanced high-ratecycling stability of LiMn2O4 cathode by ZrO_2 coating for Li-ion battery. J Electrochem Soc, 2005,152(8):A1526-A1532.
    
    [15] Y-Y Liang, S -J Bao, B -L He W -J Zhou, H -L Li. One-step, low-temperature route for the preparation ofspinel LiMn_2O_4 as a cathode material for rechargeable lithium batteries. J Electrochem Soc,2005, 152 (10):A2030 -A2034.
    
    [16] Gao Y, Dahn J R. The high temperature phase diagram of Li_(1-x)Mn_(2-x),O_4 and its implication. J ElectrochemSoc. 1996. 143:1783-1788.
    
    [17] Yoshiaki Nitta, Kazuhiro Okamura, Masatoshi Nagayama,Akira Ohta, Lithium manganese oxides forrechargeable lithium batteries, Journal of Powder Sources, 1997, 68 :166-172.
    
    [18] M M Thackeray. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. JElectrochem Soc,1995,742, 2558- 2563.
    
    [19] A Antonini, C Bellitto, M Pasquali, G Pastoia, Factors affecting the stabilzation of Mn spinel capacity uponstoring and cycling at high temperatures, J. Electrochem. Soc, 1998,145(8):2726.
    
    [20] H Huang, A Colin, P G Bruce. Capacity loss of lithium manganese oxide spinel in LiPF_6/ethylene carbonate-dimethyl carbonate eletrolyte, J.Electrochem. Soc, 1999,146(2):481.
    [21] J Choi, M M Thackeray. Structure changes of LiMn_2O_4 spinel electrodes during electrochemical cycling. J Electrochem Soc, 1999,146( 10):3577-3581.
    [22] D Aurbach, M D Levi, K Gamulski, et al.. Capacity fading of Li,Mn_2O_4 spinel electrodes studied by XRD and electroanalytical techniques. J Power Sources, 1999,81-82:472-479.
    [23] P Arora , E Ralph White. Capacity fade mechanisms and side reactions in lithium- ion batteries[J ] . J Electrochem Soc ,1998,145 :3 647 - 3 667.
    [24] Y Shin, A Manthiram. Factors influencing the capacity fade of spinel lithium manganese oxides. J Electrochem Soc.2004,151 (2): A204-A208.
    [25] A D Robertson, S H Lu, W F Averill, and W F Howard. M~(3+)-modified LiMn_2O_4 spinel intercalation cathodes I. Admetal effects on morphology and electrochemical performance. J Electrochem Soc, 1997, 144(10):3500-3505.
    
    [26] A D Robertson, S H Lu and W F Howard. M~(3+)-modified LiMn_2O_4 spinel intercalation cathodes II. Electrochemical stabilization by Cr~(3+). J Electrochem Soc,1997,144(10):3505-3512.
    [27] G Li, H Ikuta, T Uchida, M Wakihara. The spinel phases LiM_yMn_(2-y)O_4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries. J Electrochem Soc,1996,143(1):178-182.
    [28] G Kumar, H Schlorb, D Rahner. Synthesis and electrochemical characterization of 4 V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries. Material Chemistry and Physics,2001,70:117-123.
    [29] Y Shin, A Manthiram. Influence of the lattice parameter difference between the two cubic phase formed inthe 4 V region on the capacity fading of spinel manganese oxides. Chem Mater,2003,15:2954-2961.
    [30] Y -J Wei, L -Y Yan, C -Z Wang, X G Xu, F Wu, G Chen. Effects of Ni Doping on [MnO_6] Octahedron in LiMn_2O_4. J Phys Chem,2004,108(48):18547-18551.
    [31] C D Wagner, D A Zatko, R H Raymond. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal Chem, 1980,52(9): 1445-1451.
    [32] B P Loechel, H H Strehblow. Breakdown of Passivity of Nickel by Fluoride.J Electrochem Soc,1984,131:713-723.
    [33] K S Kim, N Winograd. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci, 1974,43:625-643.
    [34] A P Grosvenor, M C Biesinger, R St C Smart, N S Mclntyre. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci,2006,600:1771-1779.
    [35] C D Wangner, W M Riggs, L E Davis, J F Moulder, G E Mullenberg. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer corporation, Physical electronic division, Eden Prairie, MN,1979.
    [36] N S Mcltyre, D G Zetaruk. X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem, 1977,49(11): 1521-1529.
    [37] L Armelao, R Bertoncelli, L Crociani, G Depaoli, G Granozzi, E Tondello, M Berttinelli, J Mater Chem, 1995,5:79.
    [38] Y -L Lin, T -J Wang, Y Jin. Surface characteristics of hydrous silica-coated TiO_2 particles. Powder Tech,2002,123:194-198.
    [39] W Gopel, J A Anderson, D Frankel, M Jaehnig, K Philips, J A Schafer, G Rocker. Surface defects of TiO_2(110): A combined XPS, XAES AND ELS study. Surf Sci, 1984,139:333-346.
    [40] W Liu, G C Farrington. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the Pechini process. J Electrochem Soc.1996,143(3):879.
    [41] A Yamada, Y Kudo, K Y Liu. Reaction mechanism of the olivine-type Li_x(Mn__(0.6)Fe_(0.4))PO_4(0≤x≤1). J Electrochem.Soc. 2001. 148(7): A747-A754.
    [42] T Eriksson, A K Hjelm, G Lindbergh, T Gustafssona. Kinetic study of LiMn_2O_4 cathodes by In situ XRD with constant-current cycling and potential stepping. J Electrochem Soc, 2002,149(9):A 1164-A1170.
    [43] S Bach, J P Pereira-Ramos, N Baffler and R Messina. Thermodynamic data of electrochemical lithium intercalation in Li_xMn_2O_4. Electrochimica Acta, 1992,37(7): 1301-1303.
    [44] D Aurbach, K Gamolsky, B Markovsky, G Salitra, Y Golfer, U Heider, R Oesten, M Schmidt. The study of surface phenomena related to electrochemical lithium intercalation into Li_xMO_y host materials (M=Ni, Mn) J Electrochem Soc,2000,147(4): 1322-1331.
    [45] D Aurbach, M D Levi, K Gamulski, B Markovsky, G Salitra, E Levi, U Heider, L Heider, D Oesten. Capacity fading of Li_xMn_2O_4 spinel electrodes studied by XRD and electroanalytical techniques. J Power Sources, 1999,81-82:472-479.
    [46] D Aurbach, M D Levi, E Levi, H Teller, B Markovsky, G Salitra, U Heider, L Heider. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc, 1998,145(9):3024-3034.
    [47] M Nishizawa, T Ise, H Koshika, T Itoh, and I Uchida. Electrochemical in-situ conductivity measurements for thin film Li_(1-x)Mn_2O_4 spinel. Chem Mater,2000,12:1367-1371.
    [48] G Pistoia, D Zane, Y Zhang. Some Aspects of LiMn_2O_4 electrochemistry in the 4 Volt range. J Electrochem Soc, 1995,142(8):2551 -2557.
    [49] J Marzec, K Swierczek, J Przewoznik, J Molenda, D R Simon, E M Kelder, J Schoonman. Conduction mechanism in operating a LiMn_2O_4 cathode. Solid State Ionics,2002,146:225-237.
    [50] Y. Gao, K. Myrtle, M. Zhang, J.N. Reimers, J.K. Dahn, Valence band of LiNi_xMn__(2-x)O_4 and its effects on the voltage profiles of LiNi_xMn_(2-x)O_4/Li electrochemical cells. Phys Rev B, 1996,54:16670-16675.
    [51] J. Molenda, J. Marzec, K.S. Wierczek, D. Pal Cubiak, W. Ojczyk, M. Ziemnicki, The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel. Solid State Ionics,2004,175(1-4): 297-304.
    [52] Y P Wu, Elke Rahm, Roudolf Holze. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochimica Acta,2002,47:3491-3507.
    [53] J Molenda, J Marzec, K. Swierczek, D Patubiak, W Ojczyk, M Ziemnicki. The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel. Solid State Ionics,2004,175:297-304.
    [54] J Molenda, J Marzec, K. Swierczek, M Ziemnicki, M Molenda, M Drozdek, R Dziembaj. The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics,2004,171:215-227.
    
    [55] P G Bruce, M Y Saidi. The mechanism of electrointercalation. J Electrochem Chem,1992,322:93-105.
    [56] E Barsoukov, J R Macdonald eds. Impedance spectroscopy theory, experiment, and applications. John wiley & sons, Hoboken New Jersey:2005,p445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700