锂离子电池成膜添加剂的选择和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有能量密度大,自放电率低,对环境污染小等优良特性,目前已经应用到移动终端电子产品,混合动力电动车等产业,是近年来新能源领域的研究热点。随着科技的不断进步,对锂离子电池性能的要求也越来越高。提高能量密度,拓宽电池使用温度范围,提高电池安全性能等问题是广大锂离子电池研究者面临的严峻挑战。这些关键技术的亟待解决,使得添加剂在锂离子电池中的应用已势在必行。而添加剂的选择和优化是改善室温离子液体电解质与锂离子电池电极材料相容性,进而解决这些技术问题的重要途径。
     相比于有机添加剂无法消除的易燃性,铵盐等无机盐具有安全性高,价格低廉,原料易得等优点,如果以适当用量溶解于适宜的电解液体系,将有可能在基本不提高成本,不改变生产工艺的基础上有效改善电池的一些宏观性能。自1993年J.O. Besenhard[1]将N_2O作为锂离子电池无机成膜添加剂以来,这方面的研究一直很少。
     本文研究了天然石墨负极在添加多种铵盐,锂盐,钠盐,钾盐的传统电解液中的电化学嵌脱锂性能,通过选择和优化,筛选出能改善石墨负极性能的含添加剂的电解液体系。并进一步研究经过添加剂优化的电解液体系与正极材料的相容性。实验测试手段主要为电化学性能测试,SEM,FTIR等,实验主要内容和结论如下:
     (1)筛选添加剂。先后在1mol/LLiClO_4/EC+DMC(1:1 by v)和1mol/LLiPF_6/EC+EMC(1:1 by v)电解液中分别添加0.02mol/L的LiF,KF, NaF, NaCl,Na_2CO_3,Na_2SO_3,NH_4F,NH_4Cl,(NH_4)_2SO_4,CH_3COONH_4等10种无机盐,通过电化学性能测试筛选出性能相对优异的三种盐Na_2SO_3,(NH_4)_2SO_4,CH_3COONH_4。
     (2)优化电解液体系。在1mol/LLiPF_6/EC+EMC(1:1 by v)电解液中分别添加0.02mol/L Na_2SO_3,(NH_4)_2SO_4,CH_3COONH_4。与在1mol/LLiClO_4/EC+DMC(1:1 by v)电解液中的结果相比,在此电解液中添加的效果更好。
     (3)优化浓度。在1mol/LLiPF_6/EC+EMC(1:1 by v)电解液中分别添加0.01mol/L和0.04mol/L的Na_2SO_3,(NH_4)_2SO_4,CH_3COONH_4。与浓度为0.02mol/L时的结果作比较,发现浓度为0.02mol/L时的效果好于另两个浓度时的效果。
     (4)筛选与正极材料LiFePO_4的相容性良好的电解液体系。当以分别添加了0.02mol/LNa_2SO_3,(NH_4)_2SO_4,CH_3COONH_4的1mol/LLiPF_6/EC+EMC(1:1 by v)为电解液体系,以LiFePO_4为正极,锂片做负极时,此电解液体系显示良好的性能。就三种添加剂而言,橄榄石型LiFePO_4在含CH_3COONH_4的电解液中电化学综合性能最好,其次是(NH_4)_2SO_4,Na_2SO_3。
     经过一系列的工作,最终确定三种添加剂各有特点,并没有哪一种显示出绝对的优越性。不过这也给我们提供了更大的选择余地和发展空间,使得添加剂的使用更有灵活性。
Li-ion batteries have the high energy density, low self-discharge rate, less pollution to environment and other excellent properties, and now have been applied to industriesthe such as mobile terminal electronics, hybrid electric vehicles; Research in the field of new energy have become hot spots in recent years. As technology advancing, demands for the performances of lithium-ion batteries have also become more and more harsh. The vast number of lithium-ion battery researchers face severe challenges such as improve energy density, broadening using temperature range, improve safety performance and so on. Call for immediate solution of these key technologies make to the application of additives for lithium-ion battery has become inescapable. And selection and optimization of additives is important way to improve compatibility of the room temperature ionic liquid electrolyte and lithium-ion battery electrode materials, then solve these technical problems.
     Compared with the flammability of organic additives which can not been eliminated , ammonium and other salts with a high security, low price, easy to get raw materials, etc. If dissolving appropriate amount in the appropriate system, it would be possible to improve some macroscopic performances of the battery costneutrality and not change the production process. Since 1993, JO Besenhard [1] took N_2O as a inorganic film-forming additive of lithium-ion batteries, Research in this area has been very little.
     In our paper, the natural graphite anode in traditional electrolytes which were added several kinds of ammonium salts, lithium salts, sodium salts, potassium salts was researched on its electrochemical lithium insertion-deinsertion properties, through the selection and optimization, filtering out the additive system improving the performance of graphite anode , and further study compatibility of optimized electrolyte additives system and cathode materials. Experimental test methods are mainly electrochemical performance testing, SEM, FTIR, etc, the main contents and conclusions of the experiments are as follows:
     (1) Filtering out the additive. 0.02mol / L of LiF, KF, NaF, NaCl, Na_2CO_3, Na_2SO_3, NH_4F, NH_4Cl, (NH_4)_2SO_4, CH_3COONH_4were added in 1mol/LLiClO_4/EC + DMC(1:1 by v) and 1mol/LLiPF_6/EC+EMC (1:1 by v)electrolyte, filter out the relatively superior performance of three kinds of salt, Na_2SO_3, (NH_4)_2SO_4, CH_3COONH_4 through the electrochemical performance testing.
     (2)Optimization of the electrolyte system. 0.02mol/LNa_2SO_3,(NH_4)_2SO_4, CH_3COONH_4 were added in 1mol/LLiPF_6/EC + EMC(1:1 by v) electrolyte. Compare with 1mol/LLiClO_4/EC + DMC(1:1 by v) electrolyte, these were better.
     (3)Optimization of the concentration. 0.01mol / L and 0.04mol / L of Na_2SO_3, (NH_4)_2SO_4, CH_3COONH_4 were added in 1mol/LLiPF_6/EC + EMC(1:1 by v) electrolyte. Compare the results with the concentration of 0.02mol / L, the results when the concentration 0.02mol / L were better than the others .
     (4) Filtering out electrolyte system having a good compatibility with LiFePO_4 cathode material. When the electrolyte system were 1mol/LLiPF_6/EC + EMC(1:1 by v) added 0.02mol / L Na_2SO_3, (NH_4)_2SO_4, CH_3COONH_4, LiFePO_4 as the cathode, lithium film as the anode, this electrolyte system shows good performance . In terms of the three additives, the performance of olivine-type LiFePO_4 in the electrolyte containing CH_3COONH_4 is the best overall , followed by (NH_4)_2SO_4, Na_2SO_3.
     After a series of work,one thing was made certain: the three kinds of additives have some different characteristics, there were no absolute superiority. However, this also provides us with greater choice and development space, allowing more flexibility in the use of additives.
引文
[1] J.O. Besenhard, M.W. Wagner, M. Winter, et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes[J]. J Power Sources,1993, 44:413-420.
    [2]郑洪河,秦建华,郭宝军等.锂离子电池电解液添加剂的发展与展望[J].化学通报,2004,67:w76.
    [3] Masayuki Itagaki, Sachiko Yotsuda, Nao Kobari, et al. Electrochemical impedance of electrolyte/electrode interfaces of lithium-ion rechargeable batteries: Effects of additives to the electrolyte on negative electrode[J]. Electrochem Acta, 2006, 51(8-9):1629-1635.
    [4] H Nakamura, H Komatsu, M Yoshio, et al. Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells[J]. J Power Sources, 1996, 62: 219-222.
    [5] H Fujimoto, M Fujimoto, H Ikeda, et al. Electrochemical characteristics of lithiated graphite (LiC6) in PC based electrolytes[J]. J Power Sources, 2001, 93: 224-229.
    [6] Y Matsuo, K Fumita, T Fukutsuka, et al. Butyrolactone derivatives as electrolyte additives for lithium- ion batteries with graphite anodes[J]. J Power Sources, 2003, 119-121: 373-377.
    [7] Hitoshi Ota, Tomohiro Sato, Hitoshi Suzuki, et al. TPD–GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. J Power Sources ,2001,97-98:107-113.
    [8] Gerhard H. Wrodnigg, Jürgen O. Besenhard, Martin Winter, et al. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. J Power Sources, 2001,97-98: 592-594.
    [9]李丽,吴锋,陈人杰等.新型成膜电解液添加剂亚硫酸丁烯酯的电化学行为[J].高等学校化学学报, 2007,28(2):293-296.
    [10] Jyh-Tsung Lee, Yueh-Wei Lin, Yih-Song Jan ,et al. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes[J]. J Power Sources,2004,132(1-2): 244-248.
    [11] H. J. Santner, K. -C. M?ller, J. Ivan o, et al .Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups[J]. J Power Sources, 2003, 119-121:368-372.
    [12] K.-C. M?ller, H. J. Santner, W. Kern, et al .In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives[J].J Power Sources ,2003,119-121: 561-566.
    [13] S. S. Zhang, K. Xu, T. R,et al .Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. J Power Sources, 2003, 113(1):166-172.
    [14] Martin Winter, Wolfgang K. Appel, Bernd Evers, et al .Studies on the Anode /Electrolyte Interfacein Lithium Ion Batteries[J].Monatshefte für Chemie/ChemicalMonthly 2001,132:473-486.
    [15] Naji, J. Ghanbaja, P. Willmann, et al. New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries [J]. Electrochimica Acta ,2000,45(12):1893-1899.
    [16] M. Herstedt, M. Stjerndahl, T. Gustafsson, et al .Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery[J]. Electrochemistry Communications2003,5:467-472.
    [17]郑洪河,轩小鹏,张虎成等.锂离子电池电解质[M].北京:化学工业出版社,2007:116-132.
    [18]庄全超,武山.锂离子电池有机电解液成膜添加剂研究进展[J].化学通报,2003(11): 743-747.
    [19]李霞,骆宏钧,赵世勇等.锂离子电池用电解液添加剂最新进展[J].电池工业,2008, 13(3):199-202.
    [20] B.Wang ,Q.T.Qu, Q.Xia , et al. Effects of 3,5-bis(triuoromethyl) benzeneboronic acid as an additive on electrochemical performance of propylene carbonate-based electrolytes for lithiumion batteries[J]. Electrochimica Acta 2008,54:816-820.
    [21] M.Q.Xu,W.S.Li,X.X.Zuo, et al. Performance improvement of lithiumion battery using PC as a solvent component and BS as an SEI forming additive [J]. J Power Sources, 2007 ,174:705-710.
    [22] Ren jie Chen, Feng Wu, Li Li, et al. Butylene sulfite as a film-forming additive to propylene carbonate- based electrolytes for lithiumion batteries[J]. J Power Sources , 2007,172:395-403.
    [23] Shu Z X, Mcmillan R S, Murray J J,et al. Effects fo 12 crown 4 on the electrochemical intercalation of lithium into gtaphite[J]. J.A ppl,Electrochem,1996,41:2753-2759.
    [24] Yukio Sasaki,Mamoru Hosoya,Minoru Handa.et al.Lithium cycling effciency of ternary solvent electrolytes with ethylene carbonate-dimethyl carbonate mixture[J]. J Power Sources,1997,68:492-496.
    [25] R .Oesten, Heider U, Schmidt M, et al .Advanced electrolytes[J]. Solid State Ionics. 2002,148(3-4) : 391-397.
    [26]谭晓兰,尹鸽平,徐宇虹等.电解质盐LiBOB在锂离子电池中的应用[J].电池,2009,39(3): 164-166.
    [27] H S Lee ,X Q Yang,C L Xiang, et al .The Synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions[J]. J Electrochem Soc, 1998,145(8):2813-1818.
    [28] S. Komaba, B. Kaplan, T. Ohtsuka, et al.Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries[J].J Power Sources,2003,119-121: 378 382.
    [29] M.Herstedt, H.Rensmo, H.Siegbahn, et al . Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery[J]. Electrochimica Acta,2004,49: 2351-2359.
    [30]刘小虹,余兰.锂离子电池电解液与安全性能[J].电池,2004.34(6): 449-450.
    [31] J.O. Besenhard, M.W. Wagner, M. Winter, et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes [J]. J Power Sources, 1993, 44(1-3): 413-420.
    [32] Tetsuya Osaka, Toshiyuki Momma, Yasuhiro Matsumoto, et al .surface Characterization of Electrodeposited Lithium Anode with Enhanced Cycleability Obtained by CO2 Addition[J].J. Electrochem. Soc, 1997, 144(5):1709-1713.
    [33] D. Aurbach, Y. Ein-Eli, O. Chusid, et al . The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable `Rocking-Chair' Type Batteries[J].J.Electrochem. Soc, 1994 , 141(3):603-611.
    [34] Ein- Eli Y, Thomas S R, Koch V R.et al . The role of SO_2 as an additive to organic Li- ion battery electrolytes [J]. J Electrochem Soc,1997, 144(4): 1159- 1165.
    [35] D. Aurbach, B. Markovsky, I.Weissman, et al. On the correlation bettwen surface chemistry and performance of graphitenegative electrodes for Li-ion batteries [J]. Electrochemica Acta ,1999,45:603- 610.
    [36] B. V. Ratnakumar, M. C. Smart, S. Surampudi et al. Effects of SEI on the kinetics of lithium intercalation[J]. J Power Sources, 2001, 97-98: 137-139.
    [37] Jee-Sun Shin, Chi-Hwan Han, Un-Ho Jung, et al . Effect of Li_2CO_3 additive on gas generation in lithium-ion batteries[J]. J Power Sources,2002,109:47-52.
    [38]Yong-Kook Choi, Kwang-il Chung, Woo-Seong Kim,et al .Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ionbatteries[J]. J Power Sources,2002,104:132-139.
    [39]胡传跃,李海军,郭军.γ-丁内酯基电解液中Li_2CO_3添加剂的电化学行为[J].电源技术,2006, 130(10):837-841.
    [40] Stux .Arnold , M.Barker Teremy. Additives for inhibiting decomposition of lithium salts electrolytes corrtaining sald additives[P].U S :Pat,No.5707760, Jan. 13,1998.
    [41] H. Zheng,Y. Fu, H. Zhang, et al. Potassium Salts Electrolyte Additives for Enhancing Electrochemical Performances of Natural Graphite Anodes [J].Electrochem. Solid-State Lett. 2006, 9: A115-A119.
    [42] S. Komaba, T. Itabashi, B. Kaplan, et al. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive[J]. Electrochemistry Communications. 2003, 5: 962-966.
    [43]倪江峰,周恒辉,陈继涛等.锂离子电池中固体电解质界面膜(SEI)研究进展[J].化学进展, 2004,16(3):335-342.
    [44] D. Ostrovskii, F. Ronci, B. Scrosati, et al. A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1?y)O2 electrode/non-aqueous electrolyte interface[J].J Power Sources,2001, 94(2):183-188.
    [45] Balasubramantan M, Lee H. S, Sun X. et al. Formation of SEI on cycled lithium-ion battery cathodes: Soft X-ray absorption study [J]. Electrochemical and solid-state letters ,2002,5:A22-A25.
    [46] Matsuo Y, Kostecki R , McLarnon F. et al. Surface Layer Formation on Thin-Film LiMn2O4Electrodes at Elevated Temperatures[J]. J Electrochem. Soc, 2001, 148(7): A687—A692.
    [47] K.A. Striebel, E. Sakai, E.J. Cairns, et al. Impedance Studies of the Thin Film LiMn2O4/Electrolyte Interface[J]. J Electrochem Soc,2002,149: A61-A68.
    [48]蔡宗平,许梦清,李伟善等.锂离子电池电解液负极成膜添加剂研究进展[J].电池工业,2008, 13:68-71.
    [49] Koji Abe, Hideya Yoshitake, T. Kitakura, et al. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries [J]. Electrochimica Acta , 2004, 49(26):4613-4622.
    [50]许梦清,左晓希,李伟善等.丁磺酸内酯对锂离子电池性能及负极界面的影响[J].物理化学学报,2006,22(3):335-340.
    [51]谢晓华,陈立宝,高阳等.锂离子电池电解液功能组分的设计[J].电池,2006,36(6): 435-437.
    [52]李丽;吴锋;陈人杰等.新型成膜电解液添加剂亚硫酸丁烯酯的电化学行为[J].高等学校化学学报, 2007,28(2):293-296.
    [53] Gerhard H, Wrodnigg, Jurgen O.Besenhard, et al. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium-ion batteries with graphitic anodes [J]. J Power Sources,2001,97- 98:592-594.
    [54]杨军,谢晶莹,王久林.《化学电源测试原理与技术》[M].北京:化学工业出版社.
    [55] Ivan T. Lucas, Elad Pollak, Robert Kostecki,et al. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochemistry Communications,2009,11(11):2157-2160.
    [56] Jun-Tao Li, Vincent Maurice, Jolanta Swiatowska-Mrowiecka, et al. XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery[J]. Electrochimica Acta, 2009,54(14):3700-3707.
    [57] Shanhong Wan, Hongyan Hu, Gang Chen, et al. Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films[J]. Electrochemistry Communications, 2008, 10: 461- 465.
    [58]TANG Jing(汤儆), MAO Bing wei(毛秉伟),TIAN Zhong qun(田中群). Micro-and nano- fabrication by EC-SPM(电化学扫描探针显微镜在表面微/纳米加工的应用)[J].Micronanoelectronic Technology,2003,7/8:192-196.
    [59]吕正中,周震涛,邱新平等.锂离子电池电极表面的研究进展[J].电池,2005,35(5): 403-405.
    [60] Geun-Chang Chung. Reconsideration of SEI stability: reversible lithium intercalation into graphite electrodes in trans-2,3-butylene carbonate[J]. J Power Sources ,2002,104(1),7-12.
    [61] R Fong, U V Sacken, J R Dahn, et al. Studies of lithium intercalation into carbons using non- aqueous electrochemical cells[J] J Electrochem. Soc, 1990, 137: 1199-1210.
    [62] D Aurbach, M D Levi,et al. Common electroanalytical behavior of intercalation process into graphite and transition metal oxides[J] J Electrochem Soc,1998,145: 3024-3034.
    [63]徐仲榆,范长岭,马笃林.锂离子电池中电解液与石墨类负极活性材料的相容性[J].新型炭材料,2004,19(4):241-248.
    [64] Chusid O , Ein Ely E, Aurbach D , et al. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems [J]. J Power Sources,1993, 43:47-64.
    [65] D. Aurbach, B. Markovsky, I. Weissman, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999,45:67-86.
    [66] K Hayashi, Y Nemoto, S Tobishima, et al. Mired solvents electrolyte for high lithium metal secondary cells[J]. Electrochimica Acta, 1999,44(14): 2337-2344.
    [67] M Fujimoto, Y Shoji, Y Kida, et al. Influence of solvent species on the Charge-discharge characteristics of a natural graphite electrode[J]. J Power Sources, 1998, 72: 226-230.
    [68] S E Sloop, J B Kerr, K Kinoshita, et al. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. J Power Sources, 2003, 119-121: 330-337.
    [69] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough,et al. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J Electrochem. Soc. 1997, 144: 1188.
    [70] A S Andersson, J O Thomas, et al.The source of first-cycle capacity loss in LiFePO4 [J]. J Power Sources, 2001,97-98:498-502.
    [71] Han Young-Kyu, Lee Sang Uck, Ok Jong-Hoa, , et al. Theoretical studies of the solvent decomposition by lithium atoms in lithium-ion battery electrolyte[J]. Chemical Physics Letters,2002,360(3/4):359- 366.
    [72] Y Xie, Z F Zhang, T Jiang, et al. CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer MatrixAngew [J]. Chem Int Ed, 2007,46(38): 7255-7258.
    [73] M S Whittingham. Lithium batteries and cathode materials [J]. Chem Rev, 2004, 104(10): 4271-4302.
    [74] X Q Yang, X Sun, Mcbreen J. New phases and phase transitions observed in Li1-xCoO_2 during charge: in situ synchrotron X-ray diffraction studies [J]. Electrochemistry Communications, 2000, 2(2): 100- 103.
    [75] Q M Zhong,U Sacken. Crystal structures and electrochemical properities of LiAlyNi1-yO2 solid solutions[J]. J Power Sources, 1995, 54(2): 221-223.
    [76] K S Han, S Tsurimoto, M Yoshimura. Fabrication temperature and applied current density effects on the direct fabrication of lithium nickle oxide thin-film electrodes in LiOH solution by the electrochemical- Hydrothermal methode[J]. Solid State Ionics, 1999, 121: 229-233.
    [77] H Aral, S Okada, Y Sakurai. Electrochemical and thermal behavior of LiNi_1-xMxO_2(M= Mn, Co,Ni) [J]. J Electrochem Soc, 1997, 144(9): 3117-3125.
    [78] S Nieto, S B Majumder, R S Katiyar. Improvement of the Cycleability of Nano-crystalline Lithium Manganate Cathodes by Cation Co-doping [J]. J. Power Sources, 2004, 136(1): 88-98.
    [79] C Y Ouyang, S Q Shi, Z X. Wang, et al. First-principles study of Li ion diffusion in LiFePO4[J]. phys. Rev. B, 2004, 69: 104-113.
    [80] Jun Jiang, C.Y. Ouyang, HongLi, et al. First-principles study on electronic structure of LiFePO4[J]. Solid State Communications, 2007, 143: 144-148.
    [81] Zhongli Wang, Shaorui Su, Chunyang Yu, et al. Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method[J]. J Power Sources. 2008, 184: 633-636.
    [82] S F Yang, Y N Song, K Ngala, et al. Performance of LiFePO_4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. J Power Sources, 2003, 119~121:239-246.
    [83] M Takahashi,S Tobishima,K Takei, et al. Reaction behavior of as a cathode material for rechargable lithium batteries[J]. Solid State Ionics,2002, 148(3-4):283-289.
    [84] D D Macneil, L Zhonghu, C Zhaohui, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various li-ion battery cathodes[J]. J Power Sources, 2002,108(1-2): 8-14.
    [85] Y Shoufeng, S Yanning, Y Z Peter, et al. Reactivity, stability and electrochemical behavior of lithium ion phosphates[J]. Electrochemistry Communications, 2002, 4(3): 239-244.
    [86] CHEN Li-quan(陈立泉),锂离子电池正极材料的研究进展[J].Battery Bimonthly(电池), 2002, 32(S1): 6-8.
    [87]吴晓梅,杨清河,金忠锆等,锂离子电池阴极材料尖晶石结晶物LiMn_2-xO_4的研究[J].电化学,1998, 4: 365-371.
    [88] W. Liu, G. C. Farrington, F. Chaput, et al, Synthsis & Electrochemical Studies of LiMn_2O_4 Cathode Prepared by the the Pechini Process[J]. J. Electrochem Soc., 1996, 143: 879-884.
    [89]高虹,翟秀静,翟玉春等,锂离子电池正极材料LiNiO_2的制备和研究[J].电源技术,1997, 23:23-25.
    [90] A S Andersson, J O Thomos. The source of first-cycle capacity loss in LiFePO_4[J]. J Power Sources, 2001, 97-98: 498~502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700