聚苯胺衍生物纳米复合材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善做出重要的贡献,成为材料科学的研究热点。同时,导电高分子具有特殊的结构和优异的物理化学性能使它在能源、信息、光电子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛的应用前景。由于纳米材料拥有小尺寸效应,大比表面积等特性,所以导电高分子的纳米复合材料被认为是最有希望得到广泛应用。
     本论文是采用自组装法和界面聚合法制备了一系列多种形貌的纳米复合材料,并且对复合材料的性质进行了表征,主要包括四方面的工作,分别为采用成熟的界面聚合的方法制备聚苯胺纳米棒材料;通过自组装技术制备苯胺-邻氨基苯甲酸共聚物与超顺磁性四氧化三铁纳米粒子的复合材料;通过自组装技术得到聚邻甲基苯胺与多壁碳纳米管的纳米复合纤维;深入地研究了新型聚酰胺与传统聚苯胺的电化学性质。
Conducting polymers have been studied extensively because of their potential applications in sensors, electrochromic devices, and electrochemical supercapacitors as well as active electrode materials. Polyaniline and its derivatives have been considered as promising materials in various applications due to their versatile properties, for example, good environmental stability, ease of processability, high conductivity, swift change in color with applied potential and a simple, and reversible acid/base doping/dedoping properties. Nanomaterials are now one of the hot points in chemistry field in recently years. With the widen and deepen of the research, the scientists are re-examing the traditional polymers with the hope to find novel properties and functions.
     In recent years, there has been increased interest in nanostructures of the conducting polymers, such as nanospheres, nanotubes, nanowires, and nanoparticles, mainly because they will have the advantages of both low-dimensional system and organic conductors. In addition, the multifunctionalized PANI nanostructures have also been synthesized by blending with inorganic electrical, optical, and magnetic nanoparticles to form composite nanostructures. In this paper, novel nanostructures of polyaniline were synthesized via self-assembly method. At the same, our research expanded to the nanocomposite of polyaniline and nanoparticles or carbon nanotubes with unique electric activities.
     Nanorods of DBSA-PANI were synthesized through an interfacial polymerization method. Controllable diameters of DBSA-PANI nanorods from 40 nm to 1μm could be obtained by tuning the molar ratio of aniline to APS. It was also found that the morphology, size of the nanostructures also depended on the concentration of DBSA aqueous solution as well as the reaction temperature. Lower concentration of DBSA and lower temperature will be helpful to the formation of rod-like nanostructures with a relative small diameter. UV-Vis and FTIR measurements confirmed that the main chain structure of these PANI products were identical to the emeraldine salt form of PANI. And a possible mechanism of the formation of the rod-like DBSA-PANI was proposed. In summary, DBSA-PANI nanorod materials could be synthesized well by a controllable interfacial polymerization with the proper conditions.
     A novel and simple method was used to prepare well-dispersed Fe3O4-poly (aniline-co-o- anthranilic acid) nanoparticles. The structure and morphology of the composite was characterized by FTIR, XRD and TEM, which indicated that the Fe3O4-poly (aniline-co- o-anthranilic acid) nanoparticles were about 20 nm and well-dispersed. Furthermore, it was proved that the obtained composite possesses the superparamagnetic behavior and excellent thermal stability.
     We have described the synthesis of POT/c-MWNT composites with improved electrical conductivity. The electrical conductivities at room temperature of 10 wt.% c-MWNTs containing POT/c-MWNTcomposite are about 20 times higher than that of POT without c-MWNTs. The morphology of POT/MWNT composites contains both the thinner fibrous phase and the larger block phase. It is presumed that c-MWNTs were used as a core in the formation of tubular shells of the fibrous POT/c-MWNT composites. FT-IR, XRD, UV–vis spectra are used to characterize the structure of POT/c-MWNT composites.
     The electrochemical properties of polyaniline and synthesized polyamide were investigated and discussed. In summary, from the analysis of the experimental data obtained from CV, EIS and theoretical calculations, conclusions could be drawn as following: (i) the appearance of three pairs of redox peaks in CV measurement of polyamide indicate a relatively more complicated redox process compared with conventional polyaniline. Moreover, through electrochemical calculation and analysis, an electric charge-transfer controlled process during redox of polyamide film on the surface of glassy-carbon electrode can be confirmed. (ii) Impedance spectra of synthesized polyamide and conventional polyaniline depict typical model of polymer film-coated metals in the asymmetric metal/film/electrolyte configuration. The difference in diameters of the semi-circle impedance arc indicates that polyamide film exhibits higher electronic conductivity and lower resistance than those of the conventional polyaniline. (iii) Through analysis of theoretical calculations, influences of molecular structures on the impedance of the polymers were discussed including system energy, skeleton conjugation and the Fermi energy of the bipolaron model. All the theoretical analysis further provides convincing evidences to the impedance results.
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x [J]. J Chem. Soc., Chem. Commun., 1977, 16: 578-580.
    [2] MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Somasiri N L D, Wu W, Yaniger S I. Polyaniline: Interconversion of metallic and insulating forms [J]. Mol. Cryst. Lip. Cryst., 1985, 121: 173-180.
    [3] MacDiarmid A G, Epstein A J. Polyanilines: a novel class of conducting polymers [J]. Faraday Discuss. Chem. Soc., 1989, 88: 317-332.
    [4] Epstein A J. Polyaniline with surfactant counterions: Conducting polymer materials which are processible in the conducting form [J]. Synth. Met., 1993, 57: 3471-3482.
    [5] Green A G, Woodhead A E. Action of amines on triphenylcarbinol and tritolylcarbinol [J]. J. Chem. Soc. Trans., 1910, 97: 2388-2388.
    [6] Chiang C K, Druy M A, Gau S C, Heeger A J, Louis E J, MacDiarmid A G, Park Y W, Shirakawa H. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x [J]. J. Am. Chem. Soc., 1978, 100: 1013-1015.
    [7] Kumanyand H, Sariciftci N S. In situ spectro-electrochemical studies of polyaniline [J]. Synth. Met., 1987, 18: 353-358.
    [8] Genies E M, Lapkowski M. Polyaniline films. Electrochemical redox mechanisms [J]. Synth. Met., 1988, 24: 61-68.
    [9] Geng Y H, Li J, Sun Z C, Jing X B, Wang F S. Polymerization of aniline in an aqueous system containing organic solvents [J]. Synth. Met., 1998, 96: 1-6.
    [10] Armes S P, Miller J F. Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate [J]. Synth. Met., 1988, 22: 385-393.
    [11] Armers S, Aldissi M. Potassium iodate oxidation route to polyaniline: an optimization study [J]. Polymer, 1991, 32: 2043-2048.
    [12] Cao Y, Andreatta A, Heeger A J, Smith P. Influence of chemical polymerization conditions on the properties of polyaniline [J]. Polymer, 1989, 30: 2305-2311.
    [13] Genies E M, Tsintavis C, Syed A A. Electrochemical study of polyaniline in aqueous and organic medium, redox and kinetic properties [J]. Mol. Cryst. Liq. Cryst., 1985, 121: 181-186.
    [14] Genies E M, Lapkowski M. Polyaniline films. Electrochemical redox mechanisms [J]. Synth. Met., 1988, 24: 61-68.
    [15] Chiang J C, MacDiarmd A G.‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime [J]. Synth. Met., 1986, 13: 193-205.
    [16] MacDiarmid A G, Epstein A J. The concept of secondary doping as applied to polyaniline [J]. Synth. Met., 1994, 65: 103-116.
    [17] Holland E R, Pomfret S J, Adams P N, Abell L, Monkman A P. Doping dependent transport properties of polyaniline-CSA films [J]. Synth. Met., 1997, 84: 777-778.
    [18] Huang J, Wan M X. In situ doping polymerization of polyaniline microtubules in the presence of -naphthalenesulfonic acid [J]. J. Polym. Sci., Part A: Polym. Chem., 1999, 37: 151-157.
    [19] Stejskisla J, Riede A, HlavatáD, Proke? J, Helmstedt M, Holler P. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline [J]. Synth. Met., 1998, 96: 55-61.
    [20] Mattoso L H C, MacDiarmid A G, Epstein A J. Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline) [J]. Synth. Met., 1994, 68: 1-11.
    [21] Gregory R V, Kimbrell W C, Kuhn H H. Conductive textiles [J]. Synth. Met., 1989, 28: 823-835.
    [22] Premachandran R, Banerjee S, Wu X K, John V T, McPherson G L, Alckara J A, Ayyagari M, Kaplan D L. Enzymatic synthesis of fluorescent naphthol-based polymers [J]. Macromolecules, 1996, 29: 6452-6460.
    [23] Huang J X, Virji S, Weiller B H, Kaner R B. Polyaniline nanofibers: facile synthesis and chemical sensors [J]. J. Am. Chem. Soc., 2003, 125: 314-315.
    [24] Huang J, Kaner R B. A general chemical route to polyaniline nanofibers [J]. J. Am. Chem. Soc., 2004, 126: 851-855.
    [25] Wang P, Dordick J S. Enzymatic synthesis of unique thymidine-containing polyphenols [J]. Macromolecules, 1998, 31: 941-943.
    [26] Aiva K S, Kumar J, Marx K A, Tripathy S K. Enzymatic synthesis and characterization of a novel water-soluble polyaniline: poly(2,5-diaminobenzenesulfonate) [J]. Macromolecules, 1997, 30: 4024-4029.
    [27] Bruno F, Akkara J A, Samuelson L, Kaplan D L, Marx K A, Kumar J, Tripathy S. Enzymic mediated synthesis of conjugated polymers at the langmuir trough air-water interface [J]. Langmuir, 1995, 11: 889-892.
    [28] Diaz A F, Logan J A. Electroactive polyaniline films [J]. J. Electroanal. Chem., 1980, 111: 111-114.
    [29] Ohsaka T, Ohnuki Y. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline [J]. J. Electroanal. Chem., 1984, 161: 399-405.
    [30] Kobayashi T, et al. Polyaniline film-coated electrodes as electrochromic display devices [J]. J. Electroanal. Chem., 1984, 161: 419-423.
    [31] Thyssen A, Hochfeld A, Kessel R, Meyer A, Schulzte J. W. Anodic polymerisation of aniline and methylsubstituted derivatives: ortho and para coupling [J]. Synth. Met., 1989, 29: E357-362.
    [32] Volkov A, Tourillon G, Lacaze P C, Dubois J E. Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode [J]. J. Electroanal. Chem., 1980, 115: 279-291.
    [33] Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes [J]. J. Chem. Soc., Faraday Trans., 1986, 82: 2385-2400.
    [34] (a) Liu F L, Wudl F, Novak M, Heeger A J. Phenyl-capped octaaniline (COA): an excellent model for polyaniline [J]. J. Am. Chem. Soc., 1986, 108: 8311-8313; (b) Wudl F, Angus R O, Liu F L, et. al. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline [J]. J. Am. Chem. Soc., 1987, 109: 3677-3684.
    [35] Guo Q X, Yi C Q, Zhu L, Yang Q, Xie Y. Chemical synthesis of cross-linked polyaniline by a novel solvothermal metathesis reaction of p-dichlorobenzene with sodium amide [J]. Polymer 2005, 46: 3185-3189.
    [36] Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization [J]. Prog. Polym. Sci. 1998, 23: 1443-1484.
    [37] Wei Y, Tang X, Sun Y, Focke W W. A study of the mechanism of aniline polymerization [J]. J. Polym. Sci. Part A, Polym.Chem. 1989, 27: 2385-2396.
    [38] Wei Y, Jang G W, Hsueh K F, Chen C C, Haariharan R, Patel S A, Whitecar C K. Polymerization of aniline and alkyl ring-substituted anilines in the presence of aromatic additives [J]. J. Phys. Chem. 1990, 94: 7716-7721.
    [39] Wei Y, Hsueh K F, Jang G W, Monitoring the chemical polymerization of aniline by open-circuit-potential measurements [J]. Polymer 1994, 35: 3572-3575.
    [40] Wei Y, Sun Y, Tang X. Autoacceleration and kinetics of electrochemical polymerization of aniline [J]. J. Phys. Chem. 1989, 93: 4878-4881.
    [41] Wei Y, Ramakrishnan H, Patel S. A. Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines [J]. Macromolecules; 1990, 23: 758-764.
    [42] Wei Y, Sun Y, Jang G W, Tang X. Effects of p-aminodiphenylamine on electrochemical polymerization of aniline [J]. J Polym. Sci, Part C 1990, 28: 81-87.
    [43] Wei Y, Chan C C, Guang J T, Jang W, Hsueh K F. Electrochemical polymerization of thiophenes in the presence of bithiophene or terthiophene: kinetics and mechanism of the polymerization [J]. Chem. Mater. 1991, 3: 888-897.
    [44] Wei Y, Tan J. Effect of oligomeric additives and applied potential on the molecular weight and structure of electrochemically synthesized poly(3-alkylthiophenes) [J]. Macromolecules 1993, 26: 457-463.
    [45] Wei Y, Tan J, Yang D C. A new method for polymerization of pyrrole and its derivatives [J]. Macromol. Chem. Rapid Commun. 1991,12: 617-623.
    [46] Wei Y, Jang G W, Hsueh K F, Chan C C, Hariharan R, Patel S A, Whitecar C K. Polymerization of aniline and alkyl ring-substituted anilines in the presence of aromatic additives [J]. J. Phys. Chem. 1990, 94: 7716-7721.
    [47] Macdiarmid A G, Chiang J C, Richter A F, Epstein A J. Polyaniline: a new concept in conducting polymers [J]. Synth. Met., 1987, 18: 285-290.
    [48] Wang Y Z, Joo J, Hsu C H, Pouget J P, Epstein A J. Charge transport of hydrochloric acid doped polyaniline and poly(o-toluidine) fibers: role of processing [J]. Macromolecules 1994, 27: 5871-5876.
    [49] MacDiarmid A G, Epstein A J. The concept of secondary doping as applied to polyaniline [J]. Synth. Met., 1994, 65: 103-116.
    [50] Holland E R, Pomfret S J, Adams P N, Abell L, Monkman A P. Doping dependent transport properties of polyaniline-CSA films [J]. Synth. Met., 1997, 84: 777-778.
    [51] Inoue M, Castilloortega M M, Inoue M B. Polyaniline toluenesulfonates: X-ray diffraction and electrical conductivity [J]. J. Macromol Sci., Pure Appl. Chem., 1997, A34: 1493-1497.
    [52] (a) Pud A A, Rogalsky S P, Shapoval G S, Korzhenko A A. The polyaniline/poly(ethylene terephthalate) composite: 1. Peculiarities of the matrix aniline redox polymerization [J]. Synth. Met., 1999, 99: 175-179; (b) Kulszewiczbajer I, Sobczal J, Hasik M, Pretula J. Spectroscopic studies of polyaniline protonation with poly(alkylene phosphates) [J]. Polymer, 1996, 37: 25-30; (c) Pron A, Laska J, Osterholm J E, Smith P. Processable conducting polymers obtained via protonation of polyaniline with phosphoric acid esters [J]. Polymer, 1993, 34: 4235-4240.
    [53] Joo J, Chung Y C, Song H G, Baeck J S, Lee W P, Epstein A J, MacDiarmid A G, Jeong S K, Oh E J. Charge transport studies of doped polyanilines with various dopantsand their mixtures [J]. Synth. Met., 1997, 84: 739-740.
    [54] Fu Y P, Weiss R A. Protonation of polyaniline with lightly sulfonated polystyrene [J]. Synth. Met., 1997, 84: 103-104.
    [55] (a) Geng Y H, Li J, Jing X B, Wang F S. Polyaniline doped with macromolecular acids [J]. Synth. Met., 1997, 84: 81-82; (b) Geng Y H, Wang X H, Wang L X , Jing X B, Wang F S. Macromolecular complex of polyaniline with sulfonated polystyrene [J]. Synth. Met., 1995, 69: 163-164.
    [56] (a) Saprigin A, Kohlman R S, Long, S M K, et al. Optical and EPR studies of LiCl pseudodoping of emeraldine base [J]. Synth. Met., 1997, 84: 767-768; (b) Saprigin A V, Brenneman K R, Lec W P, et al. Poly(phenylene sulfide phenyleneamine phenyleneamine) (PPSAA)—a soluble model for polyaniline [J]. Synth.Met., 1999, 100: 79-88.
    [57] Feng Y P, Robey D S, Wang Y Q, Giedd R E, Moss M G. Conductivity and stability in ion-implanted polyaniline [J]. Mater Lett., 1993, 17: 167-170.
    [58] Menardo C, Nechtschein M, Rousseau A, et. al. Investigation on the structure of polyaniline: 13C n.m.r. and titration studies [J]. Synth. Met., 1988, 25: 311-322.
    [59] Wang L X, Jing X B, Wang F S. Polytoluidines with different degrees of oxidation and their doping with HCl [J]. Synth. Met., 1989, 29: 363-370.
    [60] Jin X B, Tang J S, Wang Y, Lei L C, Wang B C, Wang F S. [J]. Science in China, Ser B 1990, 1: 15-20.
    [61]孙再成,低分子量聚苯胺及苯胺低聚体的合成与表征[D]中国科学院长春应用化学研究所,1999。
    [62] Manohar S K, MacDiarmid A G, Cromack K R, et. al. N-substituted derivatives of polyaniline [J]. Synth. Met., 1989, 29: 349-356.
    [63] Stafstr?m S, Bredas J L, Epstein A J, Woo H S, Tanner B D, Huang W S, MacDiarmid A G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies [J]. Phys. Rev. Lett., 1987, 59: 1464-1467.
    [64] Ray A, Asturias G E, Kershner D L, Richter A F, MacDiarmid A G, Epstein A J. Polyaniline: Doping, structure and derivatives [J]. Synth. Met., 1989, 29: 141-150.
    [65] Neoh K G, Kang E T, Tan K L. Spectroscopic studies of protonation, oxidation and light irradiation of polyaniline solutions [J]. Polymer, 1992, 33: 2292-2298.
    [66] Epstein A J, Grinder J M, Zou F, et al. Insulator-to-metal transition in polyaniline [J]. Synth. Met., 1987, 18: 303-309.
    [67] Ginder J M, Epstein A J, MacDiarmid A. G. Electronic phenomena in polyaniline [J]. Synth. Met., 1989, 29: 395-400.
    [68] Nechtschein M, Genond F, Menardo C, et. al. On the nature of the conducting state of polyaniline [J]. Synth. Met., 1989, 29: 211-218.
    [69] Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers [J]. Appl. Phys. Lett., 1994, 65: 2278-2280.
    [70]陈梁,电活性苯胺齐聚物的分子设计及其性质的研究[D]吉林大学化学学院,2005。
    [71] Kobayashi T, Yoneyama H, Tamura H. Polyaniline film-coated electrodes as electrochromic display devices [J]. J. Electroanal Chem., l984, 161: 419-423.
    [72] Kitani A, Yano T, Sasaki K. ECD materials for the three primary colors developed by polyanilines [J]. J. Electroanal. Chem., l986, 209: 227-232.
    [73] Duek E A R, De Paoli M A. A solid-state electrochromic device based on polyaniline, prussian blue and an elastomeric electrolyte [J]. Adv. Mater., l993, 5: 650-652.
    [74] Hyodo K. Electrochromism of conducting polymers [J]. Electrochimica Acta, 1994, 39: 265-272.
    [75] Oyama N, Tatsuma T, Sato T, Sotomura T. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density [J]. Nature, 1995, 373: 598-600.
    [76] Yu L, Wang X H, Li J. Jing X B, Wang F S. Soluble 2,5-dimercapto-1, 3, 4-thiadiazole/ polyco-toluidine elcctroactive composite [J]. J. Electrochem. Soc., 1999, 146: 1712-1716.
    [77] Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers [J]. Appl. Phys. Lett., 1994, 65: 2278-2280.
    [78] Anderson M R, Mattes B R, Reiss H, Kaner R B. Conjugated polymer films for gas separations [J]. Science, 1991, 252: 1412-1415.
    [79] Illing G, Hellgardt K, Wakeman R J, Jungbauer A. Preparation and characterisation of polyaniline based membranes for gas separation [J]. J. Membrane Sci., 2001: 184, 69-78.
    [80] Yang Y, Westerweele E, Zhang C, Smith P, Heeger A J. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes [J]. J. Appl. Phys., 1995, 77: 694-698.
    [81] Parkhutik V P, Calleja R D, Matveeva E S, Martinez-Duart J M. Luminescent structures of porous silicon capped by conductive polymers [J]. Synth Met., 1994, 67: 111-114.
    [82] Chen S A, Chuang K R, Chao C I, Lee H T. White-light emission from electroluminescence diode with polyaniline as the emitting layer [J]. Synth.Met., 1996, 82: 207-210.
    [83] Tan C K, Blackwood D J. Interactions between polyaniline and methanol vapour [J]. Sensor. Actuat. B, 2000, 71: 184-191.
    [84] Sukeerthi S, Contractor A Q. Molecular sensors and sensor arrays based on polyaniline microtubules [J]. Anal. Chem., 1999, 71: 2231-2236.
    [85] Kaneto K, Kaneko M, Min Y, MacDiarmid A G.“Artificial muscle”: Electromechanical actuators using polyaniline films [J]. Synth. Met., l995, 71: 2211-2212.
    [86] Mengoli G, Musiani M M, Pelli B. Anodic synthesis of sulfur-bridged polyaniline coatings onto Fe sheets [J]. J. Appl. Polym. Sci., 1983, 28: 1125-1136.
    [87] Wang X H, Li J, Sun Z C, et al. Polyaniline as marine antifouling and corrosion-prevention agent [J]. Synth.Met., 1999, 102: 1377-1380.
    [88] Hasik M, Pron A, et al. Polyaniline doped with heteropolyanions: Spectroscopic and catalytic properties [J]. Synth. Met., l993, 55: 972-976.
    [89] Hasik M, Pozniczek J, Pron A, et al. Catalytic conversion of ethyl alcohol on polyaniline protonated with 12-tungstosilicic acid [J]. J. Molecular Catalysis, l994, 89: 329-343.
    [90] Hasik M, Pron A, et al. Physicochemical and catalytic properties of ployaniline protonated with 12-molybdophosphoric acid [J]. J. Chem. Soc., Faraday Trans., l994, 90: 2099-2106.
    [91] (a) Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354, 56-58; (b) Martin C R. Nanomaterials: a membrane-based synthetic approach [J]. Science, 1994, 266: 1961-1966.
    [92] (a) Han W, Fan S, Li Q, Hu Y. Synthesis of gallium- nitride nanorods through a carbon nanotube - confined react ion [J]. Science, 1997, 277: 1287-1289; (b) Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279: 208-211.
    [93] Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polemeric nanosphere [J]. Science, 1994, 263: 1600-1603.
    [94] Parthasarathy R, Martin C R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization [J]. Nature, 1994, 369: 298-301.
    [95] Klein J D, Herrick R D I, Palmer D, Sailor M J, Brumlik C J, Martin C R. Electrochemical fabrication of cadmium chalcogenide microdiode arrays [J]. Chem. Mater., 1993, 5: 902-904.
    [96] Martin C R. Template synthesis of polymeric and metal microtubules [J]. Adv. Mater., 1991, 3, 457-459.
    [97] Parthasarathy R V, Martin C R. Template synthesis of graphitic nanotubules [J]. Adv. Mater., 1995, 7: 896-897.
    [98] Wu C G, Bein T. Conducting polyanline filaments in a mesoporoous channel host [J]. Science, 1994, 264: 1757-1760.
    [99] Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons [J]. Angew. Chem. Int. Ed., 2003, 42: 2154-2157.
    [100] Li G T, Bhosale S, Wang T, Zhang Y, Zhu H, Fuhrhop J H. Gram-scale synthesis of submicrometer-long polythiophene wires in mesoporous silica matrices [J]. Angew. Chem. Int. Ed., 2003, 42: 3818-3821.
    [101] Fu M, Zhu Y, Tan R, Shi G. Aligned polythiophene micro- and nanotubules [J]. Adv. Mater., 2001, 13: 1874-1877.
    [102] Martin C R. Nanomaterials: a membrane-based systhetic approach [J]. Science, 1994, 266: 1961-1966.
    [103] Martin C R. Membrane-based synthesis of nanomaterials [J]. Chem. Mater. 1996, 8: 1739-1746.
    [104] Wang C, Wang Z, Li M, Li H. Well-aligned polyaniline nano-fibril array membrane and its field emission property [J]. Chem. Phys. Lett., 2001, 341: 431-434.
    [105] Shi X, Briseno A L, Sanedrin R J, Zhou F M. Formation of uniform polyaniline thin shells and hollow capsules using polyelectrolyte-coated microspheres as templates [J]. Macromolecules, 2003, 36: 4093-4098.
    [106] Briseno A L, Han S, Rauda I E, Zhou F, Toh C S, Nemanick E J, Lewis N S. Electrochemical polymerization of aniline monomers infiltrated into well-ordered truncated eggshell structures of polyelectrolyte multilayers [J]. Langmuir, 2004, 20: 219-226.
    [107] Park M K, Onishi K, Locklin J, Caruso F, Advincula R C. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells [J]. Langmuir, 2003, 19: 8550-8554.
    [108] Zhang Z M, Deng J Y, Sui J, Yu L M, Wan M X, Wei Y. Hollow microstructured polyaniline prepared using cuprous oxide crystals as templates [J]. Macromol. Chem. Phys. 2006, 207: 763-769.
    [109] Barchet, Armes S P, Lascelles S F, Luk S Y, Stanley H M E. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes [J]. Langmuir, 1998, 14: 2032-2041.
    [110] Doug H, Prasad S, Nyame V, Jones W E. Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates [J]. Chem. Mater., 2004, 16: 371-373.
    [111] Beh W S, Kim I T, Qin D, Xia Y N, Whitesides G M. Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication [J]. Adv. Mater., 1999, 11: 1038-1041.
    [112] Guan F, Chen M, Yang W, Wang J Q, Zhang R, Yang S R, Xue Q J. Fabrication of patterned polyaniline microstructure through microcontact printing and electrochemistry [J]. Applied Surface Science, 2004, 230: 131-137.
    [113] Dong B, Zhong D, Chi L, Fuchs H. Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers [J]. Adv. Mater., 2005, 17: 2736-2741.
    [114] Cassagneau T, Caruso F. Semiconducting polymer inverse opals prepared by electropolymerization [J]. Adv. Mater. 2002, 14: 34-38.
    [115] Carswell A D W, O'Rear E A, Grady B P. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films [J]. J. Am. Chem. Soc., 2003, 125: 14793-14800.
    [116] Baba A, Knoll W. Electrochemical growth of dendritic conducting polymer networks [J]. Adv. Mater., 2003, 15: 1015-1019.
    [117] Ma Y F, Zhang J M, Zhang G J, He H X. Polyaniline nanowires on Si surfaces fabricated with DNA templates [J]. J. Am. Chem. Soc., 2004, 126: 7097-7101.
    [118] Li W, Wang H L. Oligomer-assisted synthesis of chiral polyaniline nanofibers [J]. J. Am. Chem. Soc., 2004, 126: 2278-2279.
    [119] Madathil R, Parkesh R, Ponrathnam S, Large M C J. Patterning of conductive polyaniline films from a polymerization-induced self-assembled gel [J]. Macromolecules, 2004, 37: 2002-2003.
    [120] Hatano T, Bae A H, Takeuchi M, Fujita N, Kaneko K, Ihara H, Takafuji M, Shinkai, S. Helical superstructure of conductive polymers as created by electrochemicalpolymerization by using synthetic lipid assemblies as a template [J]. Angew. Chem. Int. Ed., 2004, 43: 465-469.
    [121] Liu J M, Yang S C. Novel colloidal polyaniline fibrils made by template guided chemical polymerization [J]. J. Chem, Soc., Chem. Commun., 1991, 1529-1531.
    [122] Qiu H, Wan M, Mathews B, Dai L M. Conducting polyaniline nanotubes by template-free polymerization [J]. Macromolecules, 2001, 34: 675-677.
    [123] Yang Y, Liu J, Wan M X. Self-assembled conducting polypyrrole micro/nanotubes [J]. Nanotechnology, 2002, 13: 771-773.
    [124] Yang Y S, Wan M X. Microtubules of polypyrrole synthesized by an electrochemical template-free method [J]. J. Mater. Chem., 2001, 11: 2022-2027.
    [125] Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir, 2002, 18: 917-921.
    [126] Liu J, Wan M X. Synthesis, chracaterization and electrical properties of microtubes of polypyrrole by a template-free method [J]. J. Mater. Chem., 2001, 11: 404-407.
    [127] Wei ZX, Wan M X. Synthesis and characterization of self-doped polyaniline co-aminonaphthalene sulfonic acid) nanotubes [J]. J. Appl. Polym. Sci., 2003, 87: 1297-1301.
    [128] Huang K, Wan M X. Self-assembled nanostructural polyaniline doped with azobenzenesulfonic acid [J]. Synth. Met., 2003, 135-136: 173-174.
    [129] Zhang Z M, Wei Z X, Wan M X. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecules, 2002, 35: 5937-5942.
    [130] Wei Z X, Zhang L, Yu M, Yang Y, Wan M X. Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers [J]. Adv. Mater. 2003, 15: 1382-1385.
    [131] Long Y Z, Zhang L, Ma Y, Chen Z, Wang N, Zhang Z, Wan M X. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method [J]. Macromol. Rapid Commun., 2003, 24: 938-942.
    [132] Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295: 2418-2421.
    [133] Michaelson J C, McEvoy A J. Interfacial polymerization of aniline [J]. Chem. Commun., 1994, 79-80.
    [134] Zhang X Y, Goux W J, Manohar S K. Synthesis of polyaniline nanofibers by "nanofiber seeding" [J]. J. Am. Chem. Soc., 2004, 126: 4502-4503.
    [135] Virji S, Huang J X, Kaner R B, Weiller B H. Polyaniline nanofiber gas sensors: examination of response mechanisms [J]. Nano. Lett. 2004, 4: 491-496.
    [136] Jenekhe S A, Chen X L. Self-assembly of ordered microporous materials from rod-coil block copolymers [J]. Science, 1999, 283: 372.
    [137] Wang C, Wang Z, Li M, Li H. Well-aligned polyaniline nano-fibril array membrane and its field emission property [J]. Chem. Phys. Lett., 2001, 341: 431-434.
    [138] Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff J H. Preparation of fibers with nanoscaled morphologies: Electrospinning of polymerblends [J]. Polym. Eng. Sci., 2001, 41: 982-989.
    [139] Reneker D H, Chun I. Nanometre diameter fibers of polymer produced by electrospinning [J]. Nanotechnology, 1996, 7: 216-223.
    [140] Sanders E H, Kloefkorn R, Bowlin G L, Simpson D G, Wnek G E. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers [J]. Macromolecules, 2003, 36: 3803-3805.
    [141] Norris I D, Shaker M M, Ko F K, MacDiarmid A G. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends [J]. Synth. Met., 2000, 114: 109-114.
    [142] Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. Nano Lett., 2003, 3: 1167-1171.
    [143] Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano Lett., 2004, 4: 933-938.
    [144] Michaelson J C, McEvoy A J, Kuramoto N. Morphology and growth rate of polyaniline films modified by surfactants and polyelectrolytes [J]. React. Polym., 1992, 17: 197-206.
    [145] Van Dyke L S, Martin C R. Chemistry in adsorbed monolayers. 2. Thermal and photochemical grafting reactions at the polymer-filler interface [J]. Langmuir, 1990, 6: 1123-1132.
    [146] Liang L, Liu J, Windisch C F, et al. Direct assembly of large arrays of oriented conducting polymer nanowires [J]. Angew. Chem. Int. Ed., 2002, 41: 3665-3668.
    [147] Martin C R. Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils [J]. Chem. Mater., 1996, 8: 2382-2390.
    [148] Wei Z X, Wan M X, Lin T, Dai L. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process [J]. Adv. Mater., 2003, 15: 136-139.
    [149] Feng W, Bai X D, Lian Y Q, Liang J, Wang X G, Yoshino K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization [J]. Carbon, 2003, 41: 1551-1557.
    [150] Yan X, Han Z, Yang Y, Tay B. Fabrication of carbon nanotube-polyaniline composites via electrostatic adsorption in aqueous colloids [J]. J. Phys. Chem. C. 2007, 111: 4125-4131.
    [151] Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan A S C. Carbon nanotube–polyaniline hybrid materials [J]. Eur. Polym. J., 2002, 38: 2497-2501.
    [152] Tang B Z, Geng Y H, Lam J W Y, Li B S, et al. Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films [J]. Chem. Mater. 1999, 11: 1581-1589.
    [153] Liu J, Wan M X. Composites of polypyrrole with conducting and ferromagnetic behaviors [J]. J. Polym. Sci. Part A: Polym. Chem. 2000, 38: 2734-2738.
    [154] Deng J, Ding X, Peng Y, Zhang W, Wang J, Long X, Li P, Chan A. Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure [J]. Polymer, 2002, 43: 2179-2184.
    [155] Wan M X, Li J C. Synthesis and electrical-magnetic properties of polyaniline composites [J]. J. Polym. Sci. Part A: Polym. Chem. 1998, 36: 2799-2805.
    [156] Mullane A, Dale S, Macpherson J, Unwin P. Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites [J]. Chem. Commun. 2004, 1606-1607.
    [157] Olliveira M M, Castro E G, Canestraro C D, Zanchet D, Ugarte D, Roman L S, Zarbin A J G. A simple two-phase route to silver nanoparticles/polyaniline structures [J]. J. Phys. Chem. B 2006, 110: 17063-17069.
    [158] Sarma T, Chowdhury D, Paul A, Chattopadhyay A. Synthesis of Au nanoparticle–conductive polyaniline composite using H2O2 as oxidising as well as reducing agent [J]. Chem. Commun. 2002, 1048-1049.
    [159] Majumdar G, Goswami M, Sarma T, Paul A, Chattopadhyay A. Au nanoparticles and polyaniline coated resin beads for simultaneous catalytic oxidation of glucose and colorimetric detection of the product [J]. Langmuir 2005, 21: 1663-1667.
    [160] Sarma T, Chattopadhyay A. Reversible encapsulation of nanometer-size polyaniline and polyaniline-Au-nanoparticle composite in starch [J]. Langmuir 2004, 20: 4733-4737.
    [161] Pillalamarri S, Blum F, Tokuhiro A, Bertino M. One-pot synthesis of polyaniline-metal nanocomposites [J]. Chem. Mater. 2005, 17: 5941-5944.
    [162] Zhang L, Wan M X. Polyaniline/TiO2 composite nanotubes [J]. J. Phys. Chem. B, 2003, 107: 6748-6753.
    [163] Li Z F, Swihart M, Ruckenstein E. Luminescent silicon nanoparticles capped by conductive polyaniline through the self-assembly method [J]. Langmuir 2004, 20: 1963-1971.
    [164] Martin C R. Membrane-based synthesis of nanomaterials [J]. Chem. Mater., 1996, 8: 1739-1746.
    [165] Wang C, Wang Z, Li M, Li H. Well-aligned polyaniline nano-fibril array membrane and its field emission property [J]. Chem. Phys. Lett., 2001, 341: 431-434.
    [166] Virji S, Huang J X, Kaner R B, Weiller B H. Polyaniline nanofiber gas sensors: examination of response mechanisms [J]. Nano. Lett. 2004, 4: 491-496.
    [167] Liu H, Kameoka J, Czaplewski D A, Craighead H G. Polymeric nanowire chemical sensor [J]. Nano Lett., 2004, 4: 671-675
    [168] Janata J, Josowicz M. Conducting polymers in electronic chemical sensors [J]. Nat. Mater., 2003, 2: 19-24.
    [169] Sukeerthi S, Contractor A Q. Molecular sensors and sensor arrays based on polyaniline microtubules [J]. Anal. Chem., 1999, 71: 2231-2236.
    [170] Huang J, Egan V M, Guo H, Yoon J Y, Briseno A L, Rauda I E, Garrell R L, Knobler C M, Zhou F, Kaner R B. Enantioselective discrimination of D- and L-phenylalanine by chiral polyaniline thin films [J]. Adv. Mater., 2003, 15: 1158-1161.
    [171] Jin Z, Su Y X, Duan Y X. An improved optical pH sensor based on polyaniline [J]. Sensor. Actual. B, 2000, 71: 118-122.
    [172] Pringsheim W, Zimin D, Wolfbeis O S. Fluorescent beads coated with polyaniline: a novel nanomaterial for optical sensing of pH [J]. Adv. Mater., 2001, 13: 819-822.
    [173]王兴,碱诱导合成聚苯胺微/纳米结构及应用研究[D]吉林大学化学学院,2006.
    [174] Parthasarathy R V, Martin C R. Template-synthesized polyaniline microtubules [J]. Chem. Mater. 1994, 6: 1627-1632.
    [175] Wang C, Wang Z, Li M, Li H. Well-aligned polyaniline nano-fibril array membrane and its field emission property [J]. Chem. Phys. Lett., 2001, 341: 431-434.
    [176] Michaelson J C, McEvoy A J. Interfacial polymerization of aniline [J]. Chem. Commun. 1994, 1: 79-80.
    [177] Qiu H J, Wan M X. [J]. Synthesis, characterization, and electrical properties of nanostructural polyaniline doped with novel sulfonic acids(4-{n-[4-(4-nitrophenylazo)phenyloxy]alkyl}aminobenzene sulfonic acid) [J]. J. Polym. Sci., Part A: Polym. Chem. 2001, 39: 3485-3497.
    [178] Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir 2002, 18: 917-921.
    [179] Choi S J, Park S M. Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates [J]. Adv. Mater. 2000, 12: 1547-1549.
    [180] Liu J M, Yang S C. Novel colloidal polyaniline fibrils made by template guided chemical polymerization [J]. Chem. Commun. 1991, 1529-1530.
    [181] Lu X F, Yu Y H, Chen L, Mao H P, Wang L F, Zhang W J, Wei Y. Poly(acrylic acid)-guided synthesis of helical polyaniline microwires [J]. Polymer 2005, 46: 5329-5333.
    [182] Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir 2002, 18: 917-921.
    [183] Zhang Z M, Wei Z X, Wan M X. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecules 2002, 35: 5937-5942.
    [184] Long Y Z, Chen Z J, Wang N L, et al. Electricalconductivity of a single conducting polyaniline nanotube [J]. Appl. Phys. Lett. 2003, 83: 1863-1865.
    [185] Liang L, Liu J, Windisch Jr C F, Exarhos G J, Lin Y H. Direct assembly of large arrays of oriented conducting polymer nanowires [J]. Angew. Chem. Int Ed 2002, 41: 3665-3668.
    [186] Liu J, Lin Y, Liang L, Voigt J, Huber D, Tian Z, Coker E, Mckenzie B, Madermott M. Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures [J]. Chem. Eur. J. 2003, 9: 604-611.
    [187] Norris I D, Shaker M M, Ko F K, MacDiarmid A G. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends [J]. Synth. Met., 2000, 114: 109-114.
    [188] Pinto N J, Carrión P, Qui?ones J X. Electroless deposition of nickel on electrospun fibers of 2-acrylamido-2-methyl-1-propanesulfonic acid doped polyaniline [J]. Mater. Sci. Eng. A 2004, 366: 1-5.
    [189] Dong H, Prasad S, Nyame E, Jones Jr W E. Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates [J]. Chem. Mater. 2004, 16: 371-373.
    [190] Zhang X Y, Goux W J, Manohar S K. Synthesis of polyaniline nanofibers by "nanofiber seeding" [J]. J. Am. Chem. Soc. 2004, 126: 4502-4503.
    [191] Huang J X, Virji S, Weiller B H, Kaner R B. Polyaniline nanofibers: facile synthesis and chemical sensors [J]. J. Am. Chem. Soc., 2003, 125: 314-315.
    [192] Huang J, Kaner R B. A general chemical route to polyaniline nanofibers [J]. J. Am. Chem. Soc., 2004,126: 851-855.
    [193] Zhang X Y, Roch C Y K, Jose A, Manohar S K. Nanofibers of polyaniline synthesized by interfacial polymerization [J]. Synth. Metal. 2004, 145: 23-29.
    [194] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors [J]. Science 2001, 294: 1317-1320.
    [195] Rueckes T, Kim K, Joselevich E, Tseng G Y, Cheung C L, Lieber C M. Nanotube-based nonvolatile random access memory for molecular computing [J]. Science 2000, 289: 94-97.
    [196] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K J, Dai H J. Carbon nanotubes as chemical sensors [J]. Science 2000, 287: 622-625.
    [197] Virji S, Huang J X, Kaner R B, Weiller B H. Polyaniline nanofiber gas sensors: examination of response mechanisms [J]. Nano. Lett. 2004, 4: 491-496.
    [198] Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science 2001, 293: 1289-1292.
    [199] Star A, Gabriel J C P, Bradley K, Gruner G. Electronic detection of specific protein binding using nanotube FET devices [J]. Nano. Lett. 2003, 3: 459-463.
    [200] Tang J S, Jing X B, Wang B C, Wang F S. Infrared spectra of soluble polyaniline [J]. Synth.Met. 1998, 24: 231-238.
    [201] Qiu H J, Wan M X, Matthews B, Dai L M. Conducting polyaniline nanotubes by template-free polymerization [J]. Macromolecules 2001, 34: 675-677.
    [202] Skotheim T A, Elsenbaumer R L, Reynolds J R. Eds.,‘‘Handbook of Conducting Polymers’’, 2nd edition [M]. MarcelDekker, New York 1997.
    [203] Yu Y H, Mao H P, Chen L, Lu X F, Zhang W J, Wei Y. Synthesis of a novel“oligoaniline:“Dumbbell-shape”oligoaniline[J]. Macromol. Rapid. Commu. 2004, 25: 664-668.
    [204] Anderson M R, Mattes B R, Reiss H, Kaner R B. Conjugated polymer films for gas separations [J]. Science 1991, 252: 1412-1415.
    [205] Majidi M R, KaneMaguire L A P, Wallace G G. Enantioselective electropolymerization of aniline in the presence of (+)- or (?)-camphorsulfonate ion: a facile route toconducting polymers with preferred one-screw-sense helicity [J]. Polymer 1994, 35: 3113-3115.
    [206] Xia Y N, Wiesinger J M, MacDiarmid A G, Epstein A J. Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method [J]. Chem. Mater. 1995, 7: 443-445.
    [207] Chao D M, Chen J Y, Lu X F, Chen L, Zhang W J, Wei Y. SEM study of the morphology of high molecular weight polyaniline [J]. Synth. Met. 2005, 150: 47-51.
    [208] Lu X F, Yu Y H, Chen L, Mao H P, Zhang W J, Wei Y. Preparation and characterization of polyaniline microwires containingCdS nanoparticles [J]. Chem. Commu. 2004, 1522-1523.
    [209] Tsutsumi H, Yamashita S, Oishi T J. Preparation of polyaniline-poly (p-styrenesulfonic acid) composite by post-polymerization and application as positive active material for a rechargeable lithium battery [J]. J. Appl. Electrochem. 1997, 27: 477-481.
    [210] Chao D M, Cui L L, Li Z C, Lu X F, Mao H, Zhang W J, Wei Y. Electroactive copolymers with oligoanilines in the main chain via oxidative coupling polymerization [J]. Macromol. Chem. Phys. 2006, 207: 1691-1696.
    [211] Otero T F, Rodriguez J, Angulo E, Santamarias C. Artificial muscles from bilayer structures [J]. Synth. Met. 1993, 57: 3713-3717.
    [212] Kaynak A, Unsoworth J, Clout R, Mohan A, Bears G. A study of microwave transmission, reflection, absorption, and shielding effectiveness of conducting polypyrrole films [J]. J. Appl. Polym. Sci. 1994, 54: 269-278.
    [213] Mermillod M, Tanguy J, Petiot F. A studies of chemically synthesized polypyrrole as electrode material for battery applications [J]. J. Electrochem. Soc. 1986, 133: 1073-1079.
    [214] Sangodkar H, Sukeerthi S, Srinivasa R S, Lal R, Contractor A Q. A biosensor array based on polyaniline [J]. Anal. Chem. 1996, 68: 779-783.
    [215] Nguyen M T, Kasai P, Miller J L, Diaz A F. Synthesis and properties of novel water-soluble conducting polyaniline copolymers [J]. Macromolecules 1994, 27: 3625-3631.
    [216] Nguyen M T, Diaz A F. Water-soluble poly(aniline-co-o-anthranilic acid) copolymers [J]. Macromolecules 1995, 28: 3411-3415.
    [217] Malinauskas A, Holze R. UV-VIS spectroelectrochemical detection of intermedite species in the electropolymerization of an aniline derivative [J]. Electrochim. Acta. 1998, 43: 2413-2422.
    [218] Wen T C, Sivakumar C, Gopalan A. In situ, UV-Vis spectro- electrochemical studies on the initial stages of copolymerization of aniline with diphenylamine-4-sulphonic acid [J]. Electrochim. Acta. 2001, 46: 1071-1085.
    [219] Schemid A L, Lira L M, Córdoba de Torresi S I. On the electrochemical and spectroscopic properties of a soluble polyaniline parent copolymer [J]. Electrochim. Acta. 2002, 47: 2005-2011.
    [220] Kwalchuk E P, Whittingham S, Skolozdra O M. Co-polymers of aniline and nitroanilines. Part I. Mechanism of aniline oxidation polycondensation [J]. Mater. Chem. Phys. 2001, 69: 154-162.
    [221] Leger J M, Beden B, Lamy C, Et al. Investigation of the early stages of the electropolymerization of o-toluidine by UV-Vis reflectance spectroscopy [J]. Synth. Met. 1994, 62: 9-15.
    [222] Zhang L J, Wan M X. Self-assembly of polyaniline-from nanotubes to hollow microspheres [J]. Adv. Func. Mater. 2003, 13: 815-820.
    [223] Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir 2002, 18: 917-921.
    [224] Huang J X, Virji S, Weiller B H, Kaner R B. Polyaniline nanofibers: facile synthesis and chemical sensors [J]. J. Am. Chem. Soc., 2003, 125: 314-315.
    [225] Zhang Z M, Wan M X. Nanostructures of polyaniline composites containing nano-magnet [J]. Synth. Met. 2003, 132: 205-212.
    [226] Long Y Z, Chen Z J, Wang N L, Ma Y J, Zhang Z, Zhang L J, Wan M X. Electrical conductivity of a single conducting polyaniline nanotube [J]. Appl. Phys. Lett. 2003, 83: 1863-1865.
    [227] Tang B Z, Geng Y, Lam J W Y, Li B, Jing X B, Wang X H, Wang F S. Pakhomovand A B, Zhang X X. Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films [J]. Chem. Mater. 1999, 11: 1581-1589.
    [228] Miyauchi S, Aiko H, Sorimashi Y, Tsubata I. Cellulose triacetate prepared from low-grade hardwood dissolving pulp and its insoluble residues in acetylation mediums [J]. J. Appl. Polym. Sci. 1989, 37: 289-297.
    [229] Shen P K, Huang H T, Tseung A C C. A study of tungsten trioxide and polyaniline composite films [J]. J. Electrochem. Soc. 1992, 139: 1840-1845.
    [230] Peng X G, Zhang Y, Zou B S, Xiao L Z, Li T J, Yang J. Formation of nanoparticulate iron(III) oxide-stearate multilayer through Langmuir-Blodgett method [J]. J. Phys. Chem. 1992, 96: 3412-3415.
    [231] Deng J G, He C L, Peng Y X, Wang J H, Long X P, Li P, Chan A S C. Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure [J]. Synth. Met. 2003, 139: 295-301.
    [232] Lu X F, Yu Y H, Chen L, Mao H P, Gao H, Wang J, Zhang W J, Wei Y. Aniline dimer–COOH assisted preparation of well-dispersed polyaniline–Fe3O4 nanoparticles [J]. Nanotechnology 2005, 16: 1660-1665.
    [233] Gao J B, Li K, Sun H, Yu Y H, Wang C, Wu Z W, Zhang W J, Ji Y P. The synthesis of phenyl-capped trianiline and teraaniline by a modified-pseudo-high dilution technique and their UV-Vis spectral studies [J]. Chem. J. Chin. Univ. 2000, 21: 315-320.
    [234] JCPPS Power Diffraction File International Center for Diffraction Data, Fe3O4, Newtown Square, PA, 1980.
    [235] Klong H P, Alexander L E. X-ray diffraction procedures for crystalline and amorphous materials. New York: Wiley, 1954.
    [236] Neoh K G, Kang E T, Tan K L. Thermal degradation of leucoemeraldine, emeraldine base and their complexes [J]. Thermochim. Acta. 1990, 171: 279-291.
    [237] Ogura K, Sgiigi H, Nakayama M, Ogawa A. Metallo-supramolecular block copolymer micelles: improved preparation and characterisation [J]. J. Polym. Sci. Part A: Polym. Chem. 1999, 37: 4458-4465.
    [238] Jeevananda T, Siddaramaiah, Seetharamu S, Saravanan S, Lawrence D’Souza. Synthesis and characterization of poly (aniline-co-acrylonitrile) using organic benzoyl peroxide by inverted emulsion method [J]. Synth. Met. 2004, 140: 247-260.
    [239] Wei Y, Hsueh K F. Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity [J]. J. Polym. Sci. Part A: Polym. Chem. 1989, 27: 4351-4363.
    [240] Iijima S. Helical microtubules of graphitic carbon [J]. Nature 1991, 354: 56-58.
    [241] Ajayan P M, Zhou Q Z. Applications of carbon nanotubes [J]. Top. Appl. Phys. 2001, 80: 391-425.
    [242] Jin Z, Pramoda K P, Xu G, Goh S H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (m ethyl meth-acrylate) composites [J]. Chem. Phys. Lett. 2001, 337: 43-49.
    [243] Jia Z J, Wang Z Y, Xu C L, Liang J, Wei B Q, Wu D H, Zhu S W. Study on poly(methyl methacrylate)/ carbon nanotube composites [J]. Mater. Sci. Eng. A 1999, 271: 395-401.
    [244] Barraza H J, Pompeo F, O’Rear E A, Resasco D E. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J]. Nano Lett., 2002, 2: 797-802.
    [245] Gao M, Huang S M, Dai L M, Wallace G, Gao R P, Wang Z L. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers [J]. Angew. Chem. Int. Ed., 2000, 39: 3664-3667.
    [246] Ge J J, Hou H Q, Li Q, Graham M J, Greiner A, Reneker D H, Harris F W, Cheng S Z D. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets [J]. J. Am. Chem. Soc., 2004, 126: 15754-15761.
    [247] Salalha W, Dror Y, Khalfin R L, Cohen Y, Yarin A L, Zussman E. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning [J]. Langmuir, 2004, 20: 9852-9855.
    [248] Kong H, Gao C, Yan D Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products [J]. Macromolecules, 2004, 37: 4022-4030.
    [249] Qu L W, Lin Y, Hill D E, Zhou B, Wang W, Sun X F, Kitaygorodskiy A, Suarez M, Connell J W, Allard L F, Sun Y P. Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films [J]. Macromolecules 2004, 37: 6055-6060.
    [250] Ago H, Petritsch K, Shaffer M S P, Windle A H, Friend R H. Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films [J]. Adv. Mater. 1999, 11: 1281-1283.
    [251] Kymakis E, Amaratunga G A. Single-wall carbon nanotube/conjugated polymer photovoltaic devices [J]. Appl. Phys. Lett. 2002, 80: 112-114.
    [252] Woo H S, Czerw R, Webster S, Carroll D L, et al. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: therole of carbon nanotubes in a hole conducting polymer [J]. Synth. Met. 2001, 116: 369-372.
    [253] MacDiarmid A G, Chiang J C, Richter A F. Polyaniline: a new concept in conducting polymers [J]. Synth. Met. 1987, 18: 285-290.
    [254] Cao Y, Smith P, Heeger A J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers [J]. Synth. Met. 1992, 48: 91-97.
    [255] Zhang X T, Zhang J, Wang R M, Liu Z. F. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties [J]. Carbon 2004, 42: 1455-1461.
    [256] Long Y Z, Chen Z J, Zhang X T, Zhang J, Liu Z F. Synthesis and electrical properties of carbon nanotube/polyaniline composites [J]. Appl. Phys. Lett. 2004, 85: 1796-1798.
    [257] Ramamurthy P C, Malshe A M, Harrell W R, Gregory R V, Mcguire K, Rao A M. Polyaniline/single-walled carbon nanotube composite electronic devices [J]. Solid State Electron. 2004, 48: 2019-2024.
    [258] Wei Z X, Wan M X, Lin T, Dai L M. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process [J]. Adv. Mater. 2003, 15: 136-139.
    [259] Sainz R, Benito A M, Martnez M T, Galindo J F, Sotres J, Baro A M, Corraze B, Chauvet O, Maser W K. Soluble self-aligned carbon nanotube/polyaniline composites [J]. Adv. Mater. 2005, 17: 278-281.
    [260] Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites [J]. Carbon 2005, 43: 734-740.
    [261] Borole D D, Kapadi U R, Mahulikar P P, Hundiwale D G. Electrochemical behaviour of polyaniline, poly(o-toluidine) and their copolymer in organic sulphonic acids [J]. Mater. Lett. 2004, 58: 3816-3822.
    [262] Kulkarni M V, Viswanath A K, Mulik U P. Studies on chemically synthesized organic acid doped poly(o-toluidine) [J]. Mater. Chem. Phys. 2005, 89: 1-5.
    [263] Ram M K, Adami M, Sartore M, Salerno M, Paddeu S, Nicolini C. Comparative studies on Langmuir–Schaefer films of polyanilines [J]. Synth. Met. 1999, 100: 249-259.
    [264] Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites [J]. Carbon 2005, 43: 734-740.
    [265] Fujita I, Ishiguchi M, Shiota H, Danj T, Kosai K. Spectroscopic study of polytoluidines in the UV-visible and IR regions [J]. J. Appl. Polym. Sci. 1992, 44: 987-992.
    [266] Nalwa H S. Handbook of Organic Conductive Molecules and Polymers, Vol. 4, Wiley, New York, USA, 1997.
    [267] Bessière A, Duhamel C, Badot J C, Lucas V, Certiat M C. Study and optimization of a flexible electrochromic device based on polyaniline [J]. Electrochim. Acta. 2004, 49: 2051-2055.
    [268] Aribizzani C, Mastragastino M, Paraventi R. Electronically conducting polymers and activated carbon: Electrode materials in supercapacitor technology [J]. Adv. Mater. 1996, 8: 331-334.
    [269] Novak P, Muller K, Santhanam K S V, Hass O. Electrochemically active polymers for rechargeable batteries [J]. Chem. Rev. 1997, 97: 207-281.
    [270] MacDiarmid A G, Chiang J C, Richter A F. Polyaniline: a new concept in conducting polymers [J]. Synth. Met. 1987, 18: 285-290.
    [271] Cao Y, Smith P, Heeger A J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers [J]. Synth. Met. 1992, 48: 91-97.
    [272] Mathew R J, Yang D L, Mattes B R. Effect of elevated temperature on the reactivity and structure of polyaniline [J]. Macromolecules 2002, 35: 7575-7581.
    [273] Wei Z X, Zhang Z M, Wan M X. Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes [J]. Langmuir 2002, 18: 917-921.
    [274] Ghosh P, Siddhanta S K, Haque S R, Chakrabariti A. Stable polyaniline dispersions prepared in nonaqueous medium: synthesis and characterization [J]. Synth. Met. 2001, 123: 83-89.
    [275] Han D X, Chu Y, Yang L K, Liu Y, Lv Z X. Reversed micelle polymerization: a new route for the synthesis of DBSA–polyaniline nanoparticles [J]. Colloids. Surf. A 2005, 259: 179-187.
    [276] Yang C H, Wen T. C. [J]. Electrochemical copolymerization of aniline and 2,5-diaminobenzensulfonic acid on IrO2-coated titanium electrode [J]. J. Electrochem. Soc. 1994, 141: 2624-2632.
    [277] Yang C H, Wen T C. Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-Coted titanium electrode [J]. J. Appl. Electrochem. 1994, 24: 166-178.
    [278] Yang C H, Wen T. C. Modified polyaniline via electrochemical copolymerization of aniline and para-phenylenediamine derivatives [J]. J. Electrochem. Soc. 1997, 144: 2078-2081.
    [279] Wen T C, Huang L M, Gopalan A. Electrochemical synthesis of a polyaniline-based conducting copolymer with -S-S- links [J]. J. Electrochem. Soc. 2001, 148: D9-D17.
    [280] Chen W C, Wen T C, Gopalan A. Electrochemical and spetroelectrochemical evidences for copolymer formation between 2-amino diphenylamine and aniline [J]. J. Electrochem. Soc. 2001, 148: E427-434.
    [281] Chao D M, Lu X F, Chen J Y, Zhao X G, Wang L F, Zhang W J, Wei Y. New method of synthesis of electroactive polyamide with amine-capped aniline pentamer in the main chain [J]. J. Polym. Sci. Part A: Polym. Chem. 2006, 44: 477-482.
    [282] Darowicki K, Kawula J. Darowicki k and Kawula J 2004 Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization [J]. Electrochim. Acta. 2004, 49: 4829-4839.
    [283] Hu C C, Chu C H. Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions [J]. J. Electroanal. Chem. 2001, 503: 105-116.
    [284] Csahok E, Vieil E, Inzelt G. In situ dc conductivity study of the redox transformations and relaxation of polyaniline films [J]. J. Electroanal. Chem. 2000, 482: 168-177.
    [285] Rado?evi? V H, Kvastek K, Kralji?-Rokovi? M. Impedance spectroscopy of oxidized polyaniline and poly(o-ethoxyaniline) thin film modified Pt electrodes [J]. Electrochim. Acta. 2006, 51: 3417-3428.
    [286] Young D C. Computational Chemistry, John Wiley&Sons Inc. 2001.
    [287] Frisch M J, Trucks G W, Schlegel H B, G. E. Et al. Gaussian 03; Revision C.02 ed.; Gaussian, Inc.: Wallingford, CT, 2004.
    [288] Vorotyntsev M A, Badiali L P, Inzelt G. Electrochemical impedance spectroscopy of thin films with two mobile charge carriers: effects of the interfacial charging [J]. J. Electroanal. Chem. 1999, 472: 7-19.
    [289] Tarola A, Dini D, Salatelli E, Andreani F, Decker F. Electrochemical impedance spectroscopy of polyalkylterthiophenes [J]. Electrochim. Acta. 1999, 44, 4189-4193.
    [290] Niu L, Li Q H, Wei F H, Chen X, Wang H. Electrochemical impedance and morphological characterization of platinum-modified polyaniline film electrodes and their electrocatalytic activity for methanol oxidation [J]. J. Electroanal. Chem 2003, 544: 121-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700