各种纳米材料对聚合酶链式反应的优化及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种在体外模拟体内DNA复制的核酸扩增技术。该技术是目前最常用、也最重要的分子生物学技术之一。然而,一些瓶颈问题限制了PCR技术的进一步发展,如复杂背景下产物特异性的问题、扩增效率的问题等。鉴于现有的优化剂的单效性及副作用,需由新的技术理论和途径寻找可改进PCR技术的物质。纳米材料是一类具有特殊性能的、尺度为纳米级的新型超细材料。纳米材料的概念形成于80年代中期,由于纳米材料会表现出特异的光、电、磁、热、力学、机械等性能,逐渐成为世界各国研究开发的重点,在信息存储、催化、光吸收、发光、医药等领域展示了广泛的应用前景。能否利用纳米结构催化或调控PCR反应是一个值得尝试的选择。
     本研究组在前期研究中发现,纳米金颗粒参与的PCR(Nano-particle PCR,NP-PCR)能够显著提高产物特异性等PCR的关键指标,纳米材料是否均具有调控PCR过程的作用是个值得探讨的问题。基于这点考虑,本论文以再扩增体系和大鼠Thy-1基因体系为筛选平台,对多种纳米材料的优化作用进行了评估。
     研究结果表明:1)纳米材料对PCR过程的调控具有普遍性,但随物质不同,调控能力有所差异。如金属单质纳米材料、金属氧化物纳米材料、非金属单质纳米材料、非金属氧化物纳米材料及树枝状聚合物(dendrimer)对PCR反应均有很好的优化作用,其中纳米碳粉和表面50%乙酰化的第五代树枝状聚合物优化效果尤其显著。2)纳米材料对PCR的调控作用主要是通过与生物分子之间相互作用实现的。在PCR环境中,采用目测胶体溶液颜色变化、PCR扩增、紫外吸收变化和PCS测量粒径变化等方法研究了纳米材料和PCR各组分的作用。并且分别研究了硬性纳米材料(纳米金、纳米碳粉、纳米二氧化钛等)和软性纳米材料(树枝状聚合物)可能的作用,提出了两种假设。硬性纳米材料更倾向于与DNA聚合酶的静电相互作用,我们认为这可以对PCR反应体系中参与扩增的酶的用量进行调节,从而实现对PCR非特异性扩增的优化。而软性纳米材料能同时与模板、引物、酶作用。我们推测dendrimer能提高局部PCR组分的浓度,从而增加了扩增反应的可能性,提高扩增效率;在引物退火或者延伸阶段初期“引物-酶-模板”复合物形成的时候,dendrimer可能与模板、引物、酶有竞争作用,促进了反应的特异性。
     上述工作的完成将为今后拓展纳米材料在临床检测和诊断中的应用及纳米材料在其他更广泛的生物领域的应用提供实验基础。
Polymerase Chain Reaction (PCR) is an in vitro DNA amplification technology. PCR comes into one of the most common and important molecular biological techniques in the last twenty years. However, this technology still faces several“bottlenecks”, e.g. the low yield, low sensitivity, the low specificity, etc. It is proven that by adding additives, some non-specific amplification problems could be solved to certain extent. However, finding new additives to enhance the specificity and efficiency of PCR is still valuable and remain a great challenge. Nano-material is defined as a solid material characterized by at least one dimension in the nanometer range. Nano-materials are significantly different with other materials because of their special properties such as reactivity, strength and electrical properties, optical characteristics. Since the middle of 1980s, nano-materials have been used in wide potential prospects about information storage, catalysts, photoabsorption, biomedicine, etc.
     In the previous work, our group reported the optimization of PCR by additive nano gold, which could conspicuously improve the key characters of PCR quality, e.g. the specificity. Whether nano-materials have the function of improving PCR process is worthy of discussion. In this thesis, we explore various nano-materials as specificity and efficiency enhancers in PCR, including hard nano-materials (Au-nanoparticles, carbon-nanoparticles, TiO2-nanoparticles, etc.) and soft nano-materials (dendrimer). Two test systems including an error-prone two-round PCR and a non-specific amplification system were employed in this study.
     We found that in the presence of the nano-materials with appropriate concentrations, PCR amplification can be optimized to enhance both specificity and efficiency. We identified nano carbon and one of dendrimers’derivatives (G5.50Ac) were especially potent enhancers, often outperforming conventional enhancer. In addition, we studied the interactions between nano-materials and PCR components in real PCR condition using many methods. We found that hard nano-materials were tend to interact with DNA polymerase, while soft nano-materials could have interaction with DNA polymerase, primers and template at the same time. We supposed that the concentration of DNA polymerase could be adjusted by interacting with hard nano-materials, thereby significantly improving the specificity of PCR. On the other hand, we thought soft nano-materials could greatly condense the concentrations of a variety of PCR components locally to increase the efficiency of amplification; it was also possible that competition might occur between primers, template, DNA polymerase and soft nano-materials during the annealing of the primers to the template or during formation of the synthesis complex consisting of primer, template and DNA polymerase, thereby enhancing the specificity of PCR. The thesis work shows that nano-materials are very useful in enhancing the specificity and efficiency of PCR, and has provided the experimental basis for broadening the application of nano-materials in clinical test and diagnosis.
引文
[1] Roco, M. C. International strategy for nanotechnology research and development. Journal of Nanoparticle Research, 2001, 3 (5-6): 353-360.
    [2] Sharpe, M. Small wonders, big future: the development of environmental nanotechnology. Journal of Environmental Monitoring, 2006, 8 (2): 235-239.
    [3] Tamiya, E. Nanotechnology-driven biotechnological research and development. Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry, 2003, 77 (9): 868-871.
    [4] Douglas, J. S. Application of nanotechnology in Informatics. WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 8, 2005, 363-366.
    [5] Grbac, I., and Ojurovic, R. Application of nanotechnology in the development of new materials, products and technologies in industries based on forestry sector. New Technologies and Materials in Industries Based on the Forestry Sector, Proceedings, 2007, 17-23.
    [6] Whitesides, G. M. The 'right' size in nanobiotechnology. Nature Biotechnology, 2003, 21 (10): 1161-1165.
    [7]朱志祥,汪道新.纳米材料研究现状及发展趋势.实用美容整形外科杂志, 2001, 12 (4): 200-202.
    [8] Permiakov, N. K., Ananian, M. A., Sorokovoi, V. I., and Luskinovich, P. N. [Scanning probe microscopy and medico-biological nanotechnology: history and prospects]. Arkhiv patologii, 1998, 60 (5): 9-13.
    [9]蔡国斌,俞书宏.仿生纳米材料的设计与未来.生物科学, 2008, 20: 331-336.
    [10] Ribrioux, S., Kleymann, G., Haase, W., Heitmann, K., Ostermeier, C., and Michel, H. Use of nanogold and fluorescent-labeled antibody Fv fragments in immunocytochemistry. Journal of Histochemistry & Cytochemistry, 1996, 44 (3): 207-213.
    [11]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景.材料工程, 2000, 3: 42-48.
    [12] Jaiswal, J. K., Goldman, E. R., Mattoussi, H., and Simon, S. M. Use of quantum dots for live cell imaging. Nature Methods, 2004, 1 (1): 73-78.
    [13] Won, J., Kim, M., Yi, Y. W., Kim, Y. H., Jung, N., and Kim, T. K. A magnetic nanoprobetechnology for detecting molecular interactions in live cells. Science, 2005, 309 (5731): 121-125.
    [14]崔亚丽,张连营,苏婧等.组装型金磁微粒的制备及其在免疫学检测中的应用.中国科学B辑化学, 2006, 36 (2): 6.
    [15]Qin, J. H., and Wheeler, A. R. Maze exploration and learning in C-elegans. Lab on a Chip, 2007, 7 (2): 186-192.
    [16] Ning, G., Lu-Yan, W., Wei-Min, X., Tian-Hua, L., and Qian-Li, J. Electrochemical Immuno-Biosensor for the Rapid Determination of Nuclear Matrix Protein 22 (NMP22) antigen in Urine Samples by Co(III) Phthlocyanine/Fe3O4/Au Collide Coimmobilized Electrode. Chinese Journal of Analytical Chemistry, 2007, 35 (11): 1553-1558.
    [17] Taton, T. A., Lu, G., and Mirkin, C. A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. Journal of the American Chemical Society, 2001, 123 (21): 5164-5165.
    [18] Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., and Triller, A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 2003, 302 (5644): 442-445.
    [19] Zaytseva, N. V., Montagna, R. A., and Baeumner, A. J. Microfluidic biosensor for the serotype-specific detection of Dengue virus RNA. Analytical Chemistry, 2005, 77 (23): 7520-7527.
    [20] Cho, J. W., Kang, D. Y., Jang, Y. H., Kim, H. H., Min, J., and Oh, B. K. Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 313 655-659.
    [21] Okuno, J., Maehashi, K., Kerman, K., Takamura, Y., Matsumoto, K., and Tamiya, E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosensors & Bioelectronics, 2007, 22 (9-10): 2377-2381.
    [22] Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U., and Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005, 23 (10): 1294-1301.
    [23] Zhao, G., Xu, J. J., and Chen, H. Y. Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. ElectrochemistryCommunications, 2006, 8 (1): 148-154.
    [24] Wilson, M. S. Electrochemical immunosensors for the simultaneous detection of two tumor markers. Analytical Chemistry, 2005, 77 (5): 1496-1502.
    [25] Okuda, T., Kawakami, S., Akimoto, N., Niidome, T., Yamashita, F., and Hashida, M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. Journal of Controlled Release, 2006, 116 (3): 330-336.
    [26] Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., Patri, A. K., Thomas, T., Mule, J., and Baker, J. R. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research, 2002, 19 (9): 1310-1316.
    [27] Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun, 2004, 314 (1): 46-53.
    [28] Kreuter, J., Shamenkov, D., Petrov, V., Ramge, P., Cychutek, K., Koch-Brandt, C., and Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target, 2002, 10 (4): 317-325.
    [29] Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., and Wan, L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 2006, 163 (2): 109-120.
    [30] Kornberg, A., Kornberg, S. R., and Simms, E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochimica et biophysica acta, 1956, 20 (1): 215-227.
    [31]Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230 (4732): 1350-1354.
    [32] Mullis, K. B., and Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in enzymology, 1987, 155: 335-350.
    [33] Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239 (4839): 487-491.
    [34] Lee, M. S., Chang, P. C., Shien, J. H., Cheng, M. C., and Shieh, H. K. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. Journal of virological methods, 2001, 97 (1-2): 13-22.
    [35] Gilbert, L. L., Dakhama, A., Bone, B. M., Thomas, E. E., and Hegele, R. G. Diagnosis of viral respiratory tract infections in children by using a reverse transcription-PCR panel. Journal of clinical microbiology, 1996, 34 (1): 140-143.
    [36] Cadwell, R. C., and Joyce, G. F. Mutagenic PCR. PCR methods and applications, 1994, 3 (6): S136-140.
    [37] S.,迪. C. W.德. G. PCR技术实验指南. In科学出版社:北京, 1998.
    [38] Abu Al-Soud, W., and Radstrom, P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. Journal of clinical microbiology, 2000, 38 (12): 4463-4470.
    [39] Harris, S., and Jones, D. B. Optimisation of the polymerase chain reaction. British Journal of Biomedical Science, 1997, 54 (3): 166-173.
    [40] Promega. Protocols & Applications Guide: Nucleic Acid Amplification. 2004.
    [41] Angers, M., Cloutier, J. F., Castonguay, A., and Drouin, R. Optimal conditions to use Pfu exo (-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic acids research, 2001, 29 (16): e83.
    [42] Kermekchiev, M. B., Tzekov, A., and Barnes, W. M. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic acids research, 2003, 31 (21): 6139-6147.
    [43] Ellsworth, D. L., Rittenhouse, K. D., and Honeycutt, R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques, 1993, 14 (2): 214-217.
    [44] Williams, J. F. Optimization strategies for the polymerase chain reaction. BioTechniques, 1989, 7 (7): 762-769.
    [45] Eckert, K. A., and Kunkel, T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic acids research, 1990, 18 (13): 3739-3744.
    [46] McConlogue, L., Brow, M. A., and Innis, M. A. Structure-independent DNA amplification by PCR using 7-deaza-2'-deoxyguanosine. Nucleic acids research, 1988, 16 (20): 9869.
    [47] Kang, J., Lee, M. S., and Gorenstein, D. G. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. Journal of biochemical and biophysical methods, 2005, 64 (2): 147-151.
    [48] Desmettre, P. Diagnosis and prevention of equine infectious diseases: present status,potential, and challenges for the future. Advances in veterinary medicine, 1999, 41: 359-377.
    [49] Hengen, P. N. Methods and reagents - Optimizing multiplex and LA-PCR with betaine. Trends in Biochemical Sciences, 1997, 22 (6): 225-226.
    [50]Rabodonirina, M., Cotte, L., Boibieux, A., Kaiser, K., Mayencon, M., Raffenot, D., Trepo, C., Peyramond, D., and Picot, S. Detection of Pneumocystis carinii DNA in blood specimens from human immunodeficiency virus-infected patients by nested PCR. Journal of clinical microbiology, 1999, 37 (1): 127-131.
    [51] Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic acids research, 1991, 1991, 19 (14): 4008.
    [52] Kellogg, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P. D., and Chenchik, A. TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques, 1994, 16 (6): 1134-1137.
    [53] Scalice, E. R., Sharkey, D. J., and Daiss, J. L. Monoclonal antibodies prepared against the DNA polymerase from Thermus aquaticus are potent inhibitors of enzyme activity. Journal of immunological methods, 1994, 172 (2): 147-163.
    [54] Kermekchiev, M. B., Tzekov, A., and Barnes, W. M. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic acids research, 2003, 31 (21): 6139-6147.
    [55] Nagai, M., Yoshida, A., and Sato, N. Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. Biochemistry and molecular biology international, 1998, 44 (1): 157-163.
    [56] Bachmann, B., Luke, W., and Hunsmann, G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic acids research, 1990, 18 (5): 1309.
    [57] Kovarova, M., and Draber, P. New specificity and yield enhancer of polymerase chain reactions. Nucleic acids research, 2000, 28 (13): e70.
    [58] Sarkar, G., Kapelner, S., and Sommer, S. S. Formamide can dramatically improve the specificity of PCR. Nucleic acids research, 1990, 18 (24): 7465.
    [59] Chou, Q. Minimizing deletion mutagenesis artifact during Taq DNA polymerase PCR by E.coli SSB. Nucleic acids research, 1992, 20: 4371.
    [60] Li, H., Huang, J., Lv, J., An, H., Zhang, X., Zhang, Z., Fan, C., and Hu, J. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angewandte ChemieInternational Ed, 2005, 44 (32): 5100-5103.
    [61] Li, M., Lin, Y. C., Wu, C. C., and Liu, H. S. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic acids research, 2005, 33 (21): e184.
    [62]王延华. PCR理论与技术.北京:科学出版社, 2005; 3-94.
    [63]王群.纳米银颗粒增强聚合酶链式反应长片段DNA反复扩增的特异性.天津科技大学学报, 2007, 6: 1-4.
    [64]李峰.纳米碳管.新型碳材料, 2000, 9: 79-80.
    [65] Zhang, Z. Z., Wang, M. C., and An, H. J. An aqueous suspension of carbon nanopowder enhances the efficiency of a polymerase chain reaction. Nanotechnology, 2007, 18 (35): 355706.
    [66] Kim, S. H., Park, O. H., Nederberg, F., Topuria, T., Krupp, L. E., Kim, H. C., Waymouth, R. M., and Hedrick, J. L. Application of block-copolymer supramolecular assembly for the fabrication of complex TiO2 nanostructures. Small (Weinheim an der Bergstrasse, Germany), 2008, 4 (12): 2162-2165.
    [67] Li, B. J., Yang, D. H., Wu, S. Q., Li, B. S., Meng, H., Jiang, S. P., Liu, G. J., Zhao, Y. H., Cui, H. B., Zhou, X. M., and Zhong, Z. H. [Application of nano-sized TiO2 photocatalysis to air purification and sterilization]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 2008, 42 (11): 831-835.
    [68] Pol, V. G., Langzam, Y., and Zaban, A. Application of microwave superheating for the synthesis of TiO2 rods. Langmuir, 2007, 23 (22): 11211-11216.
    [69] Wang, J., Jiang, Z., Zhang, L., Kang, P., Xie, Y., Lv, Y., Xu, R., and Zhang, X. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrasonics sonochemistry, 2009, 16 (2): 225-231.
    [70]李世强,朱虹,朱融融等.纳米TiO2对PCR体系中DNA合成的影响及其机理研究.中国科学B辑:化学, 2008, 3: 248-253.
    [71] Eom, S. H., Senthilarasu, S., Yoon, S. C., Lee, J., and Lee, S. H. Nano-scale ZnO buffer layer for inkjet-printed polymer solar cells. Journal of nanoscience and nanotechnology, 2008, 8 (10): 5113-5117.
    [72] Umar, A., Rahman, M. M., Kim, S. H., and Hahn, Y. B. ZnO nanonails: synthesis and their application as glucose biosensor. Journal of nanoscience and nanotechnology, 2008, 8 (6): 3216-3221.
    [73] Zhang, Z., Yuan, Y., Fang, Y., Liang, L., Ding, H., and Jin, L. Preparation of photocatalytic nano-ZnO/TiO(2) film and application for determination of chemical oxygen demand. Talanta, 2007, 73 (3): 523-528.
    [74] Nie, L., Gao, L., Feng, P., Zhang, J., Fu, X., Liu, Y., Yan, X., and Wang, T. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small (Weinheim an der Bergstrasse, Germany), 2006, 2 (5): 621-625.
    [75] Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45 (4): 855-863.
    [76] Li, H., and Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (39): 14036-14039.
    [77] Haber, A. L., Griffiths, K. R., Jamting, A. K., and Emslie, K. R. Addition of gold nanoparticles to real-time PCR: effect on PCR profile and SYBR Green I fluorescence. Analytical and bioanalytical chemistry, 2008, 392 (5): 887-896.
    [78] Vu, B. V., Litvinov, D., and Willson, R. C. Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption. Anal Chem, 2008, 80 (14): 5462-5467.
    [79] Zhao, W., Lee, T. M., Leung, S. S., and Hsing, I. M. Tunable stabilization of gold nanoparticles in aqueous solutions by mononucleotides. Langmuir, 2007, 23 (13): 7143-7147.
    [80] Yang, J., Pong, B. K., Lee, J. Y., and Too, H. P. Dissociation of double-stranded DNA by small metal nanoparticles. Journal of inorganic biochemistry, 2007, 101 (5): 824-830.
    [81] Mi, L. J., Zhu, H. P., Zhang, X. D., Hu, J., and Fan, C. H. Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR. Chinese Science Bulletin, 2007, 52 (17): 2345-2349.
    [82] Ostuni, E., Grzybowski, B. A., Mrksich, M., Roberts, C. S., and Whitesides, G. M. Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir, 2003, 19 (5): 1861-1872.
    [83] Zheng, M., Davidson, F., and Huang, X. Y. Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. Journal of the American Chemical Society, 2003, 125 (26): 7790-7791.
    [1] Bachmann, B., Luke, W., and Hunsmann, G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic acids research, 1990, 18 (5): 1309.
    [2] Hengen, P. N. Methods and reagents - Optimizing multiplex and LA-PCR with betaine. Trends in Biochemical Sciences, 1997, 22 (6): 225-226.
    [3] Kovarova, M., and Draber, P. New specificity and yield enhancer of polymerase chain reactions. Nucleic acids research, 2000, 28 (13): e70.
    [4] Nagai, M., Yoshida, A., and Sato, N. Additive effects of bovine serum albumin, dithiothreitol, and glycerol on PCR. Biochemistry and molecular biology international, 1998, 44 (1): 157-163.
    [5] Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22 (1): 47-52.
    [6] Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie-International Edition, 2001, 40 (22): 4128-4158.
    [7] Penn, S. G., He, L., and Natan, M. J. Nanoparticles for bioanalysis. Current opinion in chemical biology, 2003, 7 (5): 609-615.
    [8] Schultz, D. A. Plasmon resonant particles for biological detection. Current opinion in biotechnology, 2003, 14 (1): 13-22.
    [9] Zhao, X. J., Bagwe, R. P., and Tan, W. H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Advanced Materials, 2004, 16 (2): 173-176.
    [10] Wang, C., Zhang, Y., Seng, H. S., and Ngo, L. L. Nanoparticle-assisted micropatterning of active proteins on solid substrate. Biosensors & bioelectronics, 2006, 21 (8): 1638-1643.
    [11] Li, H., Huang, J., Lv, J., An, H., Zhang, X., Zhang, Z., Fan, C., and Hu, J. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angewandte ChemieInternational Ed, 2005, 44 (32): 5100-5103.
    [12] Sato, K., Hosokawa, K., and Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society, 2003, 125 (27): 8102-8103.
    [13] Li, H., and Rothberg, L. J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126 (35): 10958-10961.
    [14] Mena, M. L., Yanez-Sedeno, P., and Pingarron, J. M. A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Analytical biochemistry, 2005, 336 (1): 20-27.
    [15]Moses, S., Brewer, S. H., Lowe, L. B., Lappi, S. E., Gilvey, L. B., Sauthier, M., Tenent, R. C., Feldheim, D. L., and Franzen, S. Characterization of single- and double-stranded DNA on gold surfaces. Langmuir, 2004, 20 (25): 11134-11140.
    [16] Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., and Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug delivery, 2004, 11 (3): 169-183.
    [17] Shyu, R. H., Shyu, H. F., Liu, H. W., and Tang, S. S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon, 2002, 40 (3): 255-258.
    [18] Hiraki, A., and Hirak, H. Unique carbon-nano-structure for high quality electron-emitter to be employed in a variety of applications. Revista Mexicana De Fisica, 2008, 54 (2): 44-50.
    [19] Ittisanronnachai, S., Orikasa, H., Inokuma, N., Uozu, Y., and Kyotani, T. Small molecule delivery using carbon nano-test-tubes. Carbon, 2008, 46 (10): 1361-1363.
    [20] Liu, X. H., Zhao, Y., Liu, Z., Wang, D. J., Wu, J. G., and Xu, D. F. Preparation and Characterization of Modified Nano Carbon Black/Polyurethane Composites. Chemical Journal of Chinese Universities-Chinese, 2008, 29 (10): 2096-2100.
    [21] Eom, S. H., Senthilarasu, S., Yoon, S. C., Lee, J., and Lee, S. H. Nano-scale ZnO buffer layer for inkjet-printed polymer solar cells. Journal of nanoscience and nanotechnology, 2008, 8 (10): 5113-5117.
    [22] Umar, A., Rahman, M. M., Kim, S. H., and Hahn, Y. B. ZnO nanonails: synthesis and their application as glucose biosensor. Journal of nanoscience and nanotechnology, 2008, 8 (6): 3216-3221.
    [23] Zhang, Z., Yuan, Y., Fang, Y., Liang, L., Ding, H., and Jin, L. Preparation of photocatalytic nano-ZnO/TiO(2) film and application for determination of chemical oxygen demand. Talanta, 2007, 73 (3): 523-528.
    [24] Kim, S. H., Park, O. H., Nederberg, F., Topuria, T., Krupp, L. E., Kim, H. C., Waymouth, R. M., and Hedrick, J. L. Application of block-copolymer supramolecular assembly for the fabrication of complex TiO2 nanostructures. Small (Weinheim an der Bergstrasse, Germany), 2008, 4 (12): 2162-2165.
    [25] Li, B. J., Yang, D. H., Wu, S. Q., Li, B. S., Meng, H., Jiang, S. P., Liu, G. J., Zhao, Y. H., Cui, H. B., Zhou, X. M., and Zhong, Z. H. [Application of nano-sized TiO2 photocatalysis to air purification and sterilization]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 2008, 42 (11): 831-835.
    [26] Pol, V. G., Langzam, Y., and Zaban, A. Application of microwave superheating for the synthesis of TiO2 rods. Langmuir, 2007, 23 (22): 11211-11216.
    [27] Wang, J., Jiang, Z., Zhang, L., Kang, P., Xie, Y., Lv, Y., Xu, R., and Zhang, X. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrasonics sonochemistry, 2009, 16 (2): 225-231.
    [28] Bose, A. C., Kalpana, D., Thangadurai, P., and Ramasamy, S. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. Journal of Power Sources, 2002, 107 (1): 138-141.
    [29] Mori, T., Hoshino, S., Neramittagapong, A., Kubo, J., and Morikawa, Y. Novel activity of SnO2 for methanol conversion: Formation of methane, carbon dioxide, and hydrogen. Chemistry Letters, 2002, (3): 390-391.
    [30] Nayral, C., Viala, E., Colliere, V., Fau, P., Senocq, F., Maisonnat, A., and Chaudret, B. Synthesis and use of a novel SnO2 nanomaterial for gas sensing. Applied Surface Science, 2000, 164: 219-226.
    [31] Chen, D. Y., Wei, D. Y., Xu, J., Han, P. G., Wang, X., Ma, Z. Y., Chen, K. J., Shi, W. H., and Wang, Q. M. Enhancement of electroluminescence in p-i-n structures with nano-crystalline Si/SiO2 multilayers. Semiconductor Science and Technology, 2008, 23 (1), 015013.
    [32] Liu, Y. L., Wang, J., Sun, M., and Liu, C. L. Study on the effect of nano-SiO2 in ULSI silicon substrate chemical mechanical polishing process. Journal of Nanomaterials, 2006,1: 5.
    [33] Wang, H. R., Gong, Y., Lu, W. C., and Chen, B. L. Influence of nano-SiO2 on dilational viscoelasticity of liquid/air interface of cetyltrimethyl ammonium bromide. Applied Surface Science, 2008, 254 (11): 3380-3384.
    [34] Tomalia, D. A., Baker, H., Dewald, J. R., Hall, M., Kallos, G., Martin, S. R., Roeck, J., Ryder, J., and Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal, 1985, 17: 117-132.
    [35] De Jesus, O. L. P., Ihre, H. R., Gagne, L., Frechet, J. M. J., and Szoka, F. C. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate Chemistry, 2002, 13 (3): 453-461.
    [36] Donald A. Tomalia, A. M. N. W. A. G., III. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Ed, 1990, 29(2): 138-175.
    [37] Esfand, R., and Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today, 2001, 6 (8): 427-436.
    [38] Eichman, J. D., Bielinska, A. U., Kukowska-Latallo, J. F., and Baker, J. R., Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical science & technology today, 2000, 3 (7): 232-245.
    [39] Moghimi, S. M., Hunter, A. C., and Murray, J. C. Nanomedicine: current status and future prospects. Faseb J, 2005, 19 (3): 311-330.
    [40] Tomalia, D. A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science, 2005, 30 (3-4): 294-324.
    [41] Shi, X., Banyai, I., Rodriguez, K., Islam, M. T., Lesniak, W., Balogh, P., Balogh, L. P., and Baker, J. R., Jr. Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges. Electrophoresis, 2006, 27 (9): 1758-1767.
    [42]李世强,朱虹,朱融融等.纳米TiO2对PCR体系中DNA合成的影响及其机理研究.中国科学B辑:化学, 2008, 3: 248-253.
    [43] Li, M., Lin, Y. C., Wu, C. C., and Liu, H. S. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic acids research, 2005, 33 (21): e184.
    [1] Li, H., Huang, J., Lv, J., An, H., Zhang, X., Zhang, Z., Fan, C., and Hu, J. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angewandte Chemie International Ed, 2005, 44 (32): 5100-5103.
    [2] Li, M., Lin, Y. C., Wu, C. C., and Liu, H. S. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Research, 2005, 33 (21): e184.
    [3] Mi, L. J., Zhu, H. P., Zhang, X. D., Hu, J., and Fan, C. H. Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR. Chinese Science Bulletin, 2007, 52 (17): 2345-2349.
    [4] Quinten, M., and Kreibig, U. Optical properties of aggregates of small metal particles. Surface Science, 1986, 172 (3): 557-577.
    [5] Link, S., and El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 2000, 19 (3): 409-453.
    [6] Li, H. X., and Rothberg, L. J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126 (35): 10958-10961.
    [7] Stutz J., and Platt, U. Numerical analysis and estimation of statistical error of differential spectroscopy measurement with least2squares methods. Applied Optics, 1996, 35 (30): 6041-6053.
    [8]王文星,陈启凡,张丽,徐淑坤.胶体金标记牛血清白蛋白及其在电场中的迁移行为.东北大学学报, 2007, 28 (2): 301-304.
    [9] Huang, J. H., Zhang, X. D., Wang, C. M., Wang, L. H., Li, H. K., Cao, X. Y., Zhang, A. L., Li, X. L., Fan, C. H., and Hu, J. Size and Surface Effect of Gold Nanoparticles (Aunps) in Nanogold-Assisted Pcr. Surface Review and Letters, 2008, 15 (6): 757-762.
    [10] Grabar, K. C., Allison, K. J., Baker, B. E., Bright, R. M., Brown, K. R., Freeman, R. G., Fox, A. P., Keating, C. D., Musick, M. D., and Natan, M. J. Two-Dimensional Arrays of Colloidal Gold Particles:  A Flexible Approach to Macroscopic Metal Surfaces, 1996, 12: 2353-2361.
    [11] Li, H. X., and Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (39): 14036-14039.
    [12] Kim, Y., Eom, S. H., Wang, J., Lee, D. S., Suh, S. W., and Steitz, T. A. Crystal structure of Thermus aquaticus DNA polymerase. Nature, 1995, 376 (6541): 612-616.
    [13] da Silva, M. A., and Arruda, M. A. Mechanization of the Bradford reaction for the spectrophotometric determination of total proteins. Analytical biochemistry, 2006, 351 (1): 155-157.
    [14] Zhao, W., Lee, T. M., Leung, S. S., and Hsing, I. M. Tunable stabilization of gold nanoparticles in aqueous solutions by mononucleotides. Langmuir, 2007, 23 (13): 7143-7147.
    [15] Jena, B. K., and Raj, C. R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Analytical chemistry, 2006, 78 (18): 6332-6339.
    [16] Maxwell, D. J., Taylor, J. R., and Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc, 2002, 124 (32): 9606-9612.
    [17] Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F., and Willner, I. "Plugging into Enzymes":nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299 (5614): 1877-1881.
    [18] Li, H., and Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (39): 14036-14039.
    [19] Hunter, R. J. foundations of colloid science. New York: Oxford University Press, 2001.
    [20] Shaw, D. J. Colloid and surface chemistry. Oxford: Butterworth-Heinemann, 1991.
    [21] Bloomfield, V. A., Crothers, D. M., Jr., & Tinoco, I. Nuclei Acids: Structures, Properties, and Functions. Sausalito, CA: University Science Books, 1999.
    [22] Graham, D., Mallinder, B. J., and Smith, W. E. Surface-Enhanced Resonance Raman Scattering as a Novel Method of DNA Discrimination. Angewandte Chemie International Ed, 2000, 39 (6): 1061-1063.
    [23] Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K., and Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir, 2005, 21 (20): 9303-9307.
    [24] Bogatyrev, V. A., Dykman, L. A., Krasnov, Y. M., Plotnikov, V. K., and Khlebtsov, N. G. Differential Light Scattering Spectroscopy for Studying Biospecific Assembling of Gold Nanoparticles with Protein or Oligonucleotide Probes. Colloid Journal, 2002, 64 (6): 671-680.
    [1] De Jesus, O. L. P., Ihre, H. R., Gagne, L., Frechet, J. M. J., and Szoka, F. C. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate Chemistry, 2002, 13 (3): 453-461.
    [2] Zheng, J., Zhang, C., and Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical review letters, 2004, 93 (7): 077402.
    [3] Kim, C., Park, E., Song, C. K., and Koo, B. W. Ferrocene end-capped dendrimer: synthesis and application to CO gas sensor. Synthetic Metals, 2001, 123 (3): 493-496.
    [4] Koo, B. W., Song, C. K., and Kim, C. CO gas sensor based on a conducting dendrimer. Sensors and Actuators B-Chemical, 2001, 77 (1-2): 432-436.
    [5] Scott, R. W., Wilson, O. M., and Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. The journal of physical chemistry, 2005, 109 (2): 692-704.
    [6] Esfand, R., and Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today, 2001, 6 (8): 427-436.
    [7] Patri, A. K., Majoros, I. J., and Baker, J. R. Dendritic polymer macromolecular carriers for drug delivery. Current opinion in chemical biology, 2002, 6 (4): 466-471.
    [8] Eichman, J. D., Bielinska, A. U., Kukowska-Latallo, J. F., and Baker, J. R., Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical science & technology today, 2000, 3 (7): 232-245.
    [9] Moghimi, S. M., Hunter, A. C., and Murray, J. C. Nanomedicine: current status and future prospects. Faseb J, 2005, 19 (3): 311-330.
    [10] Bosman, A. W., Janssen, H. M., and Meijer, E. W. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev., 1999, 99(7): 1665-1688.
    [11] Imae, T., Funayama, K., Aoi, K., Tsutsumiuchi, K., Okada, M., and Furusaka, M. Small-Angle Neutron Scattering and Surface Force Investigations of Poly(amido amine) Dendrimer with Hydroxyl End Groups. Langmuir, 1999, 15(12): 4076-4084.
    [12] Wang, Y. M., Song, Y., Kong, D. L., and Yu, Y. T. Fluorescence study on the interactions of PAMAM dendrimers and their derivatives with bovine serum albumin. Chinese Science Bulletin, 2005, 50 (21): 2436-2441.
    [13] Orberg, M. L., Schillen, K., and Nylander, T. Dynamic light scattering and fluorescence study of the interaction between double-stranded DNA and poly(amido amine) dendrimers. Biomacromolecules, 2007, 8 (5): 1557-1563.
    [14] Maiti, P. K., and Bagchi, B. Structure and dynamics of DNA-dendrimer complexation: role of counterions, water, and base pair sequence. Nano letters, 2006, 6 (11): 2478-2485.
    [15] Shi, X. Y., Wang, S. H., Sun, H. P., and Baker, J. R. Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter, 2007, 3 (1): 71-74.
    [16] Gun'ko, V. M., Klyueva, A. V., Levchuk, Y. N., and Leboda, R. Photon correlation spectroscopy investigations of proteins. Advances in colloid and interface science, 2003,105: 201-328.
    [17] Pecora, R. Dynamic light scattering: application of photon correlation spect roscopy. New York: Plenum Press, 1985; 272-273.
    [18] Shi, X., Banyai, I., Rodriguez, K., Islam, M. T., Lesniak, W., Balogh, P., Balogh, L. P., and Baker, J. R. Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges. Electrophoresis, 2006, 27 (9): 1758-1767.
    [19] Shi, X. Y., Banyai, I., Islam, M. T., Lesniak, W., Davis, D. Z., Baker, J. R., and Balogh, L. P. Generational, skeletal and substitutional diversities in generation one poly (amidoamine) dendrimers. Polymer, 2005, 46 (9): 3022-3034.
    [20] Shi, X. Y., Lesniak, W., Islam, M. T., Muniz, M. C., Balogh, L. P., and Baker, J. R. Comprehensive characterization of surface-functionalized poly (amidoamine) dendrimers with acetamide, hydroxyl, and carboxyl groups. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2006, 272 (1-2): 139-150.
    [21] Varadaraj, K., and Skinner, D. M. Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene, 1994, 140 (1): 1-5.
    [22] Rees, W. A., Yager, T. D., Korte, J., and von Hippel, P. H. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry, 1993, 32 (1): 137-144.
    [23] Chevet, E., Lemaitre, G., and Katinka, M. D. Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic acids research, 1995, 23 (16): 3343-3344.
    [24] Bielinska, A. U., Kukowska-Latallo, J. F., and Baker, J. R., Jr. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochimica et Biophysica Acta, 1997, 1353 (2): 180-190.
    [25] Gabellieri, E., Strambini, G. B., Shcharbin, D., Klajnert, B., and Bryszewska, M. Dendrimer-protein interactions studied by tryptophan room temperature phosphorescence. Biochimica et Biophysica Acta, 2006, 1764 (11): 1750-1756.
    [26] Klajnert, B., Stanislawska, L., Bryszewska, M., and Palecz, B. Interactions between PAMAM dendrimers and bovine serum albumin. Biochimica et Biophysica Acta, 2003, 1648 (1-2): 115-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700