Ti/RuO_2电催化氧化法灭藻的效能与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国湖泊富营养化问题日益突出,水体中藻类的大量繁殖,造成生态环境和水质严重恶化,人们的饮用水安全遭受严重威胁,各种除藻杀藻技术成为当前的研究热点。其中电催化氧化技术因其操作简便易于实现自动化、与环境兼容等优点而备受关注。
     本论文建立了中性红染色法和TTC—脱氢酶还原法两种细胞活性测定法,对电催化氧化过程中,藻细胞活性的变化进行了研究。并从藻细胞活性的变化、溶液性质的改变入手研究了电催化氧化的灭藻效能及影响因素。从电流、羟基自由基、溶液pH等方面对电催化氧化灭藻的机制进行了探索。
     藻细胞活性检测方法研究的结果表明:TTC-脱氢酶还原法可以检测铜绿微囊藻细胞活性,并能很好地进行定量化测定。测定的最适条件是:pH=7.5~8.0 Tris-HCl作缓冲液配置0.2%氯化三苯基四氮唑(TTC),将细胞接入其中,于30~35℃培养8h~16h后,用50%乙醇提取细胞中还原生成的三苯甲臜(TPF),再用正己烷萃取去除色素干扰。而中性红染色法主要用于检测藻细胞个体完整性,0.02%中性红染色15min是染色的最佳条件。
     电催化氧化的灭藻效能研究中发现电催化氧化法具有较好的灭藻效果,细胞密度约为4×109~6×109个/L时,在4mA/cm2电流密度下以Na2SO4溶液为电解质处理7min,藻细胞脱氢酶活性大幅下降,TPF吸光值降至0.365,中性红染色率为30.1%,此时藻细胞再接入培养基中培养也无法繁殖生长,彻底失活。
     灭藻效果影响因素研究发现电流密度、反应时间和反应初始藻细胞密度对电催化氧化灭藻过程起着重要作用。增大电流密度、延长反应时间和降低初始细胞密度都能使藻细胞活性变弱,达到良好的灭藻效果。电解质种类对灭藻效果影响不显著,但直接以自然水体作为电解质,电催化氧化过程中藻细胞活性迅速下降,且没有剧毒的副产物生成。电解质离子强度对灭藻效果影响不大。
     电催化氧化灭藻的机制研究结果表明,电催化氧化灭藻是由电流、电场与自由基共同作用完成的,其中羟基自由基起主要作用。电催化氧化藻细胞过程中,溶液pH值的改变对藻细胞活性有一定影响。
Eutrophication is becoming increasingly prominent in china. The massive propagation of algae is seriously worsening the ecological environment and the water quality, threatening the safety of drinking water. Many kinds of technology to eliminate algae and kill algae are the focus of the current research. The electrocatalysis oxidation technology which is simple, easily automation and compatible with the environment, has received many attention.
     Two measuring methods of cell viability which are the neutral red dyeing and the TTC- dehydrogenase activity determination are established in this paper. Study on the change of algae viability in the process of the electrocatalysis oxidation by the methods. From the change of algae viability and solution properties, it studies on the effectiveness and influencing factors of algae inactivation in the process of the electrocatalysis oxidation. The mechanism of algae inactivation by the electrocatalysis oxidation includes the current, hydroxyl radical, the pH value and so on. These aspects have been preliminarily explored.
     The results of research into algae viability detection show that: the method for TTC-dehydrogenase activity can detect the viability of microcystis aeruginosa, and make a quantitative determination well. The optimal conditions of determination is pH=7.5~8.0, Tris-HCl as a buffer solution deploy 0.2% TTC. Cell raise in the slution 8h~16h in 30~35℃, then extract TPF with 50% ethyl alcohol, at last use Hexane as extractant to remove pigment interference. The method of neutral red dyeing is mainly used to detect the integrity of individual algae cells, 0.02% neutral red dyes for 15min is the optimum condition.
     Studying on the effectiveness of algae inactivation in the electrocatalysis oxidation, we find the Ti/RuO2 electrocatalysis oxidation system has a better effectiveness of algae inactivation. When cell density is approximately 4×109~6×109/L and current density is 4mA/cm2, use Na2SO4 as electrolyte to treat sample for 7min, the dehydrogenase activity has a sharp decline, and the absorption value of TPF drops to 0.365, the dyeing rate of neutral red is 30.1%. At this time algae cell is unable to reproduce the growth even it is raised again in MA culture medium. We think cell is thoroughly inactivation.
     Studying on factors of algae inactivation in the process of the electrocatalysis oxidation, we find the current density, the reaction time and the cell initial density, play a important role in algae inactivation by the electrocatalysis oxidation. Increasing the current density, extending the reaction time and reducing the density of initial cells, all can make algae activity weak. Electrolyte types for the effectiveness of algae inactivation is not significant, but natural water as the electrolyte, the algae viability in process of the electrocatalysis oxidation rapidly declines and no highly toxic by-product is produced.
     Studying on the mechanism of algae inactivation by the electrocatalysis oxidation, the results show that: the electrocatalysis oxidation is accomplished by the combined action of the current, electric field and free radical. The hydroxyl radical plays a leading role. The change of pH value has little impact on the algae viability.
引文
[1] 安利国. 细胞生物学实验教程[M]. 北京: 科学出版社, 2004.
    [2] 陈石根, 周润琦. 酶学[M]. 上海: 复旦大学出版社, 2001.
    [3] 陈水勇, 吴振明等. 水体富营养化的形成、危害和防治[J]. 环境科学与技术, 1999, 5(2): 11-15.
    [4] 谌丽斌, 梁文艳, 曲久辉等. FDA-PI 双色荧光法检测蓝藻细胞活性的研究[J]. 环境化学, 2005, 24(5): 554-557.
    [5] 迟玉霞. 臭氧—气浮联用新工艺处理含藻水[J]. 城市公用事业, 1998, 12(6): 32-34.
    [6] 方艳芬, 黄应平, 陈和春等.二氧化钛光催化体系中的羟基自由基的测定[J]. 分析化学研究报告, 2006, 34(9): 83-86.
    [7] 冯玉杰, 李晓妍, 尤宏等. 电化学技术在环境工程中的应用[M]. 北京: 化学工业出版社, 2002.
    [8] 高峰, 唐莉娟, 王伦等. 简便荧光法测定 Fenton 反应产生的羟自由基[J]. 应用化学, 2006, 23(4): 453-455.
    [9] 国家环境保护总局. 2006 年中国环境状况公报[EB/OL]. 淡水环境.
    [10] 郝兆山. 电子水处理和静电水处理研究和应用[J]. 河北化工, 1999, 2(1): 31-34.
    [11] 纪永亮. 静电水处理技术发展概况[J]. 工业水处理, 1990, 10(6): 3-6.
    [12] 李凤仙. 腐蚀电池法处理印染废水[J]. 化工环保, 1995, 15(3): 157-161.
    [13] 李建宏, 翁永萍, 陈正林等. 电子水处理器杀菌灭藻效果的研究[J]. 工业水处理, 1998, 18(7): 26-27.
    [14] 李志富, 谭亚东, 许宁等. 电化学法消毒处理医院污水的试验研究[J]. 环境污染治理技术与设备, 2006, 7(3):101-104.
    [15] 梁好, 韦朝海, 赵玲等. 生物载体除藻剂去除海洋赤潮藻[J]. 中国环境科学, 2001, 21(1):15-17.
    [16] 梁文艳, 曲久辉, 雷鹏举等. 管流式电化学氧化灭藻方法研究[J]. 高技术通讯, 2005,15(7): 90-94.
    [17] 梁文艳, 曲久辉, 朱余玲. 管流电氧化杀藻及其影响因素[J]. 环境科学, 2006, 27(3): 452-455.
    [18] 刘伯宁, 乔长晟, 贾士儒. 一种丝状真菌活细胞生物量测定方法的研究[J]. 药物生物技术, 2006, 3(1): 40-44.
    [19] 刘华. 悬浮培养红豆杉细胞活力及存活率与生长周期的关系[J]. 生物学杂志, 2002, 18(1):19-20.
    [20] 吕启忠. 用硫酸铜及改变水的 pH 值去除水中藻类[J]. 中国给水排水, 2000, 16(5): 49-50.
    [21] 马军, 石颖, 刘伟等. 高铁酸盐复合蕴含剂预氧化除藻效能研究[J]. 中国给水排水, 1998,14(5): 9-11.
    [22] 曲久辉, 林谡, 田宝珍等. 高铁酸盐氧化絮凝去除水中腐殖质的研究[J]. 环境科学学报, 1999, 19(5): 510-514.
    [23] 任翱, 郭文艳, 史家栋. 应用微生物组合技术治理富营养化数水体的研究[J]. 上海环境科学, 1999, (11): 490-493.
    [24] 沈玉娟, 常正山, 张永年. 旋毛虫死活快速鉴别的实验研究[J]. 中国兽医寄生虫病, 2003, 11(4): 21-22.
    [25] 时文中, 李灵芝, 余国忠. 电化学氧化含酚废水及其动力学的研究[J]. 水处理技术, 2003, 29(6): 341-344.
    [26] 舒金华, 黄文珏, 高锡芸等. 发达国家禁用(限用)含磷洗衣粉的措施[J]. 湖泊科学, 1998, 10(1): 90-96.
    [27] 汪德耀. 细胞生物学实验指导[M]. 北京: 人民教育出版社, 1981.
    [28] 王桂荣. 过氧化氢氧化除藻效能研究[J]. 武汉城市建设学院报, 2001, 18(2): 21-24.
    [29] 王国祥, 成小英, 濮培民. 湖泊藻型富营养化控制——技术、理论及应用[J], 湖泊科学, 2002, (14)3: 273-282.
    [30] 王占生, 刘文君. 微污染水源饮用水处理[M]. 北京: 中国建筑工业出版社, 2001.
    [31] 吴根福, 沈煌, 应伟军. 用中性红标记酵母原生质体初探[J]. 生物技术, 1995, 5(6):23-25.
    [32] 吴星五, 高廷耀, 李国建. 电化学法水处理新技术——杀菌灭藻[J]. 环境科学学报, 2000, 20(suppl): 75-79.
    [33] 吴星五, 唐秀华, 朱爱莲等. 电化学杀藻水处理实验[J]. 工业水处理, 2002, 22(8): 16-18.
    [34] 武内忠男主编, 朱逢春主译. 新酶组织化学[M], 北京: 人民卫生出版社, 1983: 57~59.
    [35] 徐文英, Wangner M. 二沉池出水的电化学消毒试验研究[J]. 环境工程学报, 2007, 1(7): 35-41.
    [36] 杨革主编. 微生物学实验教程[M]. 北京: 科学出版社, 2004.
    [37] 杨汉民主编. 细胞生物学实验[M]. 北京: 高等教育出版社, 1997, 122~124.
    [38] 杨基成, 曾抗吴, 梁宏等. 臭氧法在城市污水消毒中的应用[J]. 环境科学与技术, 2004, 27(1): 64~65.
    [39] 尹军, 付瑶, 荐志远等. TTC—脱氢酶活性测定仪的研制[J]. 吉林建筑工程学院学报, 2003, 20(02): 1-2.
    [40] 尹军. 消化污泥脱氢酶活性检测的若干问题[J]. 中国给水排水, 2000, (10): 47.
    [41] 余冉, 吕锡武, 稻森悠平. 生物接触氧化预处理水中藻类及其毒素[J]. 中国给水排水, 2002, (12):37-42.
    [42] 苑宝玲, 曲久辉, 张金松等. 高铁酸盐对 2 种水源水中藻类的去除效果[J]. 环境科学, 2001, 22(2): 78-81.
    [43] 曾抗美, 史建福, 齐桂华. 电化学进行饮用水消毒研究[J]. 中国给水排水, 1999, 15(8): 16-18.
    [44] 张杰远, 刁惠芳, 施汉昌. 电化学消毒法的消毒效果实验[J]. 水处理技术, 2002, 28(4): 217-219.
    [45] 张明明, 潘纲. 天然粘土矿物絮凝水华蓝藻的初步研究[C]. 第二届环境模拟与污染控制学术研讨会论文集, 2001 年 11 月 8-10 日, 北京.
    [46] 张喜勤. 水蚤净化富营养化湖水试验研究[J]. 水资源保护, 1998, 10(4): 32-35.
    [47] 郑国锡著. 细胞生物学[M]. 北京: 高教出版社, 1992, 355~357.
    [48] 郑建军, 钟成华, 邓春光. 试论水华的定义[J]. 水资源保护, 2006, 22(5): 45~47.
    [49] 中山大学生物系生化微生物学教研室. 生化技术导论[M]. 北京: 人民教育出版社, 1981: 268-289.
    [50] 朱南文, 闵航, 陈美慈等. TTC—脱氢酶测定方法的探讨[J]. 中国沼气, 1996, 14(2):3-5.
    [51] Barrera Diaz C, Urefa Nufez F, Campos E, et al. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater [J]. Radio Phys. Chem., 2003, 67: 657-663.
    [52] Beloti V, Barros M A F, Freitas J C D et al 1999. Frequency of 2,3,5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk [J]. Revista de Microbiologia, 1999, 30: 137-140.
    [53] Bergmann H, lourtchouk T, Schops K, et al. New UV irradiation and direct electrolysis-promising methods for water disinfection [J]. Chem. Eng. J., 2002, 85: 111-117.
    [54] Bo-HyeNam, Hyung-JooJin, Se-KwonKim, et al. Quantitative viability of seaweed tissues assessed with 2,3,5-triphenyltetrazolium chloride [J]. Journal of Applied Phycology, 1998, 10: 31-36.
    [55] Brillas E, Mur E, Sauleda R, et al. Aniline Mineralization by AOP's: Anodic oxidation, photocatalysis, Electro-Fenton and photoelectro-Fenton processes [J]. Applied Catalysis B:Environmental. 1998, 16: 31-42.
    [56] Cahizares P, Saez C, Lobato J, et al. Electrochemical treatment of 2, 4-dinitrophenol aqueous wastesusing boron-doped diamond anodes [J]. Electrochimica Acta, 2004, 49: 4641-4650.
    [57] Ca?avate J. Pedro, Luis M. Lubińn. Some aspects on the cryopreservation of microalgae used as food for marine species [J]. Aquaculture, 1995, 136:277-290.
    [58] Capasso Juan M, Cossio Belén R, Berl Tomás, et al. A Colorimetric Assay for Determination of Cell Viability in Algal Cultures [J]. Biomolecular Enginerring, 2003, 20:133-138.
    [59] Chang W-C, Chen M-H, Lee T-M 1999. 2,3,5-triphenyltetrazolium reduction in the viability assay of Ulsa fasciata (Chlorophyta) in response to salinity stress [J]. Botanical Bulletin of Academia Sinica, 40: 207-212.
    [60] Chin Ho Lin, Bing Shiunn Chen, Chih Wen Yu, et al. A Water-based Triphenyltetrazolium Chloride Method for the Evaluation of Green Plant Tissue Viability [J]. 2001, 12: 211-213.
    [61] Christine Rabinovitch, Philip Stewart. Removal and Inactivation of Staphyliciccus epidermidis Biofilms by Electrolysis [J]. Appled and Environmental Microbiology, 2006, 72(9):6364-6366.
    [62] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment [J]. Electrochemical Acta, 1994, 39(11/12): 1857-1862.
    [63] Diao H F, Li X Y, Gu J D, et al. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction [J]. Process Biochemistry, 2004, 39(11): 1421-1426.
    [64] Duncan D R, Widholm J M 2004. Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures [J]. Journal of Plant Physiology, 2004, 161: 397-403.
    [65] Feng C, Sugiura N, Shimada S, et al. Development of a high performance electrochemical wastewater treatment system [J]. Hazard Mater., 2003, B103: 65-78.
    [66] Feng C, Suzuki K, Zhao S,et al. Water disinfection by electrochemical treatment [J]. Bioresource Technol., 2004, 94(1): 21-25.
    [67] Finkelstein E, Rosen M G, Aauckman J. Spin trapping of superoxide and hydroxyl radical: practical aspects[J]. Archives of Biochemistry and Biophysics. 1980, 200(1): 1-16.
    [68] Gajdek Piotr. Decomposition of microcystin-LR by Fenton oxidation [J]. Toxicon, 2001, 39(10): 1575-1578.
    [69] Grahl T, Markl H. Killing of microorganisms by pulse electric fields. Application Microbiol Biotechnol[J], 1996,45(1):148-157;
    [70] Grimm J, Bessarabov D, Sanderson R. Review of Electro-assisted methods for water purification [J]. Desalination, 1998, 115: 285-294.
    [71] Guillou S, Murr N E. Inactivation of Saccharomyces cerevisisiae in solution by low-amperage electric treatmen t[J]. Appl Microbiol, 2002, 92: 860-865.
    [72] Gwo Jin-Chywan, Chiu Ju-Yu, Chou Chin-Cheng, et al. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae)[J]. Cryobiology, 2005, 50: 338-343.
    [73] Hamada A, Hakoda M, Utsumi H. Disinfection of virus in water by active oxygen species. Water Science Technology [J], 1993, 28(7): 239-242.
    [74] Huang C P, Dong C, Tang Z. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment [J]. Waste Management, 1993, (13): 361-377.
    [75] Ingrid C, Jamie B. Toxic cyanobacteria in water [M], London and New York: E&FN Spon Publisher, 1999.
    [76] Ishikawa E, Bae S-K, Miyawaki O et al 1997. Freezing injury of cultured rice cells analyzed by dielectric measurement [J]. Journal of Fermentation and Bioengineering, 1997, 83(3): 222-226.
    [77] Jackson V C, Mickelson J K, Stringer K, et al. Electrolysis-Induced Myocardial Dysfunction [J]. Journal of Pharmacological Methods, 1986, 15:305-320.
    [78] Jayalath J P, Padmasiri, Fonseka S A. Horizontal Flow Roughing Filter as a Pretreatment System for Algae Synedra [J]. Water Supply, 1995, 13(3-4): 201-204.
    [79] Jeanine D P, Edzwald J K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environ. Sci. and Technol., 2001, 35: 3661-3668.
    [80] Jiang Jiaqian, Nigel J D, Graham. Removal of Algae and AriHalomethane(THM) Precursors by Coagulation [J]. Water Treatment, 1992, (7): 155-168.
    [81] John Gifford. Effects of potassium permanganate in direct filtration systems for THM precursor removal [J]. Water Research, 2003, (10): 145-159.
    [82] Joonseon Jeong, Jee Yeon Kim, Jeyong Yoon. The Role of Reactive Oxygen Species in the Electrochemical Inactivation of Microorgannisms [J]. Environmental Scinece and Technology. 2006, 40: 6117-6122.
    [83] Jooseon Jeong, Jee Yeon Kim, Min Cho, et al. Inactivation of Escherichia coli in the electrochemical disinfection process using a Pr anode [J]. Chemospere, 2007, 67: 652-659.
    [84] Juan M Capasso, Belen R Cossio, Tomas Berl, et al. A colorimetric assay for determination of cell viability in algal cultures. Biomolecular Engineering [J]. 2003, (20): 133-138.
    [85] Kairesalo T, Laine S, Luokkanen E, et al. Direct and indirect mechanisms behind successful biomanipulation [J]. Hydrobiologia, 1999, 395/396:99-106.
    [86] Katayame-Hirayama K 1986. Inhibition of the activities of β-galactosidase and dehydrogenases of activated sludge by heavy metals [J]. Water Research, 1986, 20(4): 491-494.
    [87] Kevin P Drees, Morteza Abbaszadegan, Rainam Maier. Comparative Electrochemical Inactivation of Bacteria and Bacteriophage [J]. Water Research, 2003(37): 2291-2300.
    [88] Kerwick M I, Reddy S M, Chanberlain A H L. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection[J]? Electrocheimical Acta, 2005, 50: 5270-5277.
    [89] K?rbahti B K, Tanyola? A. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor [J]. Water Research, 2003, 37: 1505-1514.
    [90] Lambert T W, Hokmes C F B, hrudey S E. Microcystin class of toxins: health effectsand safety of drinking water supplies [J]. Environ Rev, 1994, (2): 167-186.
    [91] Lazarova.V, Savoye.P, Janex.M.L et al. Advanced Wastewater Disinfection Technologies. State of the Art and Perspectives[J].Water Sci.Tech.1999,40(4-5): 203~213.
    [92] Lin C H, Chen B S, Yu C W et al 2001. A water-based triphenyltetrazolium chloride method for the evaluation of green plant tissue viability [J]. Phytochemical Analysis, 12: 211-213.
    [93] Liu W K, Brown M R W, Elliott T S J. Mechanisms of the bactericidal activity of low amperage electric current[J]. Antimicrob Chemother, 1997, 39: 687~695.
    [94] Mahmoud N S, and Ghaly A E, Biotechnol Prog. Influence of Temperature and pH on the Nonenzymatic Reduction of Triphenyltetrazolium Chloride [J]. 2004, 20: 346-353.
    [95] Mark W Tenney, Wayne F, Echelberger. J R., et al. Alga Flocculation with Synthetic Organic Polyelectrolytes [J]. Applied Microbiology, 1969, 19(6): 963-971.
    [96] Matsunage T, Nakasono S, Kitajima Y, et al. Electrochemical disinfection of bacteria in drinking eater using activated carbon fibers [J]. Biotech. Bioeng., 1993, 43(5): 429-433.
    [97] Matsunage T, Nakasono, S, Takamuku T, et al. Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes [J]. Appl. Environ. Microbiol., 1992, 58(2): 686-689.
    [98] Moss B, Stersfield J, Irvine K. Development of Daphnid communities in Diatom and Cyanophyte Dominated Lakes and their Relevance to lake Reservior by biomani-pulation [J]. Applied Ecology, 1991, (28): 586-602.
    [99] Motheoa, A J, Pinhedo L. Electrochemical degradation of humic acid [J]. Sci. Total Environ, 2000, 256: 67-76.
    [100] Naumczyk J, et al. Electrochemical treatment of textile wastewater [J]. Water Sci.Technol, 1996, 33(7): 17-24.
    [101] Panizza M, Cerisola G. Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine [J]. Electrochimica Acta, 2003, 48: 1515-1519.
    [102] Patermaraxis G, Fountoukidis E. Disinfection of water by electrochemical treatment[J]. Water Research, 1990, 24(12): 1491-1496.
    [103] Perrow M R, Meijer M, Dawidowicz P, et al. Biomanipulation in shallow lake: state of the art [J]. Hydrobiologia, 1997, 342/343: 355-365.
    [104] Petruevski B, Breemen ANV, Alaerts G. Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration [J]. J WSRT--Aqua. 1996, 45(5): 316-326.
    [105] Phoenix Vernon R, Adams Dave G., Konhauser Kurt O. Cyanobacterial viability during hydrothermal biomineralisation [J]. Chemical Geology, 2000, 169:329–338.
    [106] Pinhedo L, Pelegrini R, Bertazzoli R, et al. Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode [J]. Appl Cataly B: Environ, 2004, 57: 75-81.
    [107] Polearo A M, et al. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment [J]. J.Appl.Electrochem., 1999, 29: 147-152.
    [108] Polcaro A M, Vacca A, Mascia M, et al. Characterization of a stirred tank electrochemical cell for water disinfection processes [J]. Electrocheimica. Acta., 2007, 52: 2595-2602.
    [109] Rajeshwar K, Lbanez J G, Swain G M. Electrochemistry and the Environment [J], Appl. Electrochem., 1994, 24(10): 1077-1091.
    [110] Regel Rudi H, Ferris John M, Ganf George G, et al. Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek [J]. Aquatic Toxicology, 2002, 59:209-223.
    [111] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidation of chlorinated phenols. Environmental Science Technology [J]. 1994,33(9): 1453-1457.
    [112] Sandrine L. Demonstration of the production of oxygen-centered free radicals during electrolysis using ESR spintrapping techniques: effects on cardiac function in the isolated rat heart [J]. Free Radical Biology & Medicine, 1998, 24(4): 573~579.
    [113] Sas H. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations [C]. Academic Verlag Richarz. St. Augustin, 1989.
    [114] Schmidt Wido, Hambsch Beate, Petzoldt Heike. Classification of algaogenic organic matter concerning its contribution of the bacterial regrowth potential and by-product formation. Water Science and Technology [J]. 1998, 37(2): 91-96.
    [115] Seip K L. Phosphorous and nitrogen limitation of algal biomass across trophic gradients [J]. Aquatic Sciences, 1994, 56(1): 16-28.
    [116] Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik D L, Fox J L eds. Water Quality Management through Biological Ways [M]. Gainesville: University Press of Florida, 1975.
    [117] Sharma Virender K. Potassium Ferrate(Ⅵ ): an environmentally friendly oxidant [J]. Advances in Environment Research, 2002, 6(2): 145-151.
    [118] Steponkus P L, Lanphear F 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury [J]. Plant Physiology, 1964, 42: 1423─1426.
    [119] Steynberg M C, Guglielmi M M, Geldenhuys C, et al. Chlorine and chlorine dioxide: pre-oxidants used as algocide in potable water plants. Journal of Water Supply: Research and Technology–Aqua [J]. 1996, 45(4): 162-170.
    [120] Stūrīte I, Henriksen T M, Breland T A 2005. Distinguishing between metabolically active and inactive roots by combined staining with 2,3,5-triphenyltetrazolium chloride and image colour analysis [J]. Plant and Soil, 271: 75-82.
    [121] Szekeres A, Kiss I, Bejerano T T, et al. Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system [J]. Water Research, 2001, 35: 715-719.
    [122] Szpyrkowiez L, et al. Electrochemical Treatment of Tannery Waste Water Using Ti/Pt and Ti/Pt/Ir Electrodes [J]. Wat. Res., 1995, 29(2):517-524.
    [123] Szpyrkowicz L, Juzzolino C, Daniele S, et al. Electrochemical destruction of thiourea dioxide in an undivided parallel plate electrodes batch reactor [J]. Catalysis Today, 2001, 66: 519-527.
    [124] Tarafdar P-K J C 2003. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes [J]. Biology & Fertility of Soils, 2003, 38: 186-189.
    [125] Terry Patricia A, Stone Wendy. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans [J]. Chemosphere, 2002, 47:249-255.
    [126] Towill L E, Mazur P 1974. Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures [J]. Canadian Journal of Botany, 1974, 53: 1097-1102.
    [127] Tripathi B.N, Mehta S.K, Amar Anshu, et al. Oxidative stress in Scenedesmus sp. During short- and long-term exposure to Cu2+ and Zn2+ [J]. Chemosphere, 2006, 62: 538-544.
    [128] Tsuruo Nakayama, Hitoshi Wake, Kinichi Ozawa, et al. Use of a Titanium Nitride for Electrochemical Inactivation of Marine Bacteria [J]. Environ. Sci., 2004, 32: 798-801.
    [129] Ursvon Gunten. Ozonation of Drinkingwater: Part II. Disinfection and by-Product Formation in Presence of Bromide Iodide or Chlorine [J]. Water Research, 2003(37): 1469-1487.
    [130] Virender K S. Oxidation of ammonia by Ferrate ( Ⅵ) [J]. Environ. Sci. Health, 1998, A33(4): 635-650.
    [131] Welch E B, Barbiero R P, Bouchard D, et al. Lake trophic state change and constant algal composition and diversion [J]. Ecological Engineering, 1992, (1): 173-190.
    [132] Yao C C, Haag W R. Rate constants for direst reaction of ozone with several drinking water contaminates [J]. Water Research, 1991, 25(4): 761-773.
    [133] Zimmer, et al. Electrochemical process for decomposition of organic matter in waste water [J]. Wiss. Z Tech. Vnic. Dresden, 1997, 46(4): 80-85.
    [134] Zhou Cunsheng, Yin Jun. A method for measurement of TTC-dehydrogenase activity [J]. Acta Sci Circumst, 1996, 16(4): 400-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700