钛及其合金微弧氧化膜的制备表征及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation, Characterization and Property of the Microarc Oxidation of Titanium and Titanium Alloys
  • 作者:龙北红
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2006
  • 导师:于文学 ; 金曾孙
  • 学科代码:080501
  • 学位授予单位:吉林大学
  • 论文提交日期:2006-10-01
摘要
本文采用微弧氧化(MAO)技术在钛及其合金表面制备了MAO膜,研究了工艺参数对MAO膜的生长特性、微结构、相结构等的影响。
     首先,采用自制频率固定的交流MAO膜制备系统,分别研究了恒定电压和恒定电流密度下钛合金MAO过程中电学参量、微结构、相组成等的变化规律。其次,采用频率固定的交流MAO膜的制备系统和多功能MAO膜的制备系统,分别研究了在恒定电压/电流密度以及不同电脉冲频率和占空比作用下工业纯钛MAO过程中膜的生长特性、微观结构和相组成的变化规律。在优化工艺参数的基础上,制备出表面颗粒尺寸在300nm~3μm之间的多孔TiO2薄膜,并研究了颗粒尺寸,相组成等随处理时间的变化规律。
MAO coatings have intensively attracted the attention of many research groups due to its desirable characteristics, especially the coatings on the substrates of titanium and its alloys. Recently years, the performances in all fields and application on the coatings fabricated by MAO have been developing and studying by many units in the world. Because MAO is a complicated process, which is controlled by multifactor, different technical parameters, as-deposited MAO coatings show various properties. Moreover, the experimental and theoretical results are not systematic or complete. Therefore, further research work on preparation and characterization of MAO coatings on the substrates of titanium and its alloys, which are extensively used in many various fields, is needed. In this thesis, evaluated as a new material, MAO coatings on the substrates of titanium and its alloys are studied systematically in which the effect of deposited parameters on coating properties is investigated. It is our goal to fabricate the MAO coatings with the outstanding characteristics. The coatings on titanium and its alloys substrates are prepared by means of a self-made industrial frequency power supply with a real data collecting system of electrical current and voltage. During experiments, the effect of basic deposited parameters on MAO coatings properties is studied, and the parameters are optimized. Simultaneously, the coatings with excellent properties are obtained in the optimized experimental conditions. On the basis of these, the effect of the electrical parameters on characterization of MAO coatings on pure titanium are studied by a self-made multifunctional MAO power supply.
     This thesis consists of three parts. In the first part, the coatings on TC4 titanium alloy substrate are fabricated under the condition of the constant voltage and current density. The variations of the electrics parameter against treatment time are studied during MAO process, and the effects of treating parameters on the coating characterization are also discussed. The results show that the current variations with treating time include obviously
引文
[1] R. P. Young and J. K. Kwang, Optical and electrical properties of Ti: doped ZnO films: observation of semiconductor–metal transition, Solid State Communications, 2002, 123: 147-150.
    [2] Y. C. Zhu, C. X. Ding, Characterization of plasma sprayed nano-titania coatings by impedance spectroscopy, J. Eur. Ceram, Soc. 2000, 20: 127-132.
    [3] E. Comini, M. Ferroni, V. Guidi, G. Faglia, G. Martinelli and G. Sberveglieri, Nanostructured mixed oxides compounds for gas sensing applications, Sensors and Actuators, 2002, B84(1): 26-32.
    [4] H. Ogawa, K. Denpo and A. Miyasaka, Criteria for passivity breakdown of high alloy materials in relation to crevice corrosion nucleation, Corrosion Science, 1990, 31: 459-464.
    [5] 梁芳慧,周廉,钛和钛合金的生物活化现状,[J].稀有金属与工程,2003, 329(7): 241-245.
    [6] D. Devillers, J. Pouilleau and S. Durand-Vidal, et al., Structure and composition of passive titanium oxide films, Mater. Sci. Eng. 1997, B47: 235-243.
    [7] K. A. Gruss, R. F. Davis, Adhesion measurement of zirconium nitride and amorphous silicon carbide coatings to nickel and titanium alloys, Surf. Coat. Technol. 1999, 114: 156-168.
    [8] J. C. Walton, G. Cragnolino and S. K. Kalandros, A numerical model of crevice corrosion for passive and active metals, Corrosion Science, 1996, 38: 1-18.
    [9] G. Engelhardt, M. Urquidi-Macdonald and D. D. Macdonald, A simplified method for estimating corrosion cavity growth rates, Corrosion Science, 1996, 38: 1613-1635.
    [10] D. J. Blackwood and S. K. M. Chooi, Stability of protective oxide filmsformed on a porous titanium, Corrosion Science, 2002, 44: 395-405.
    [11] T. Grogler, E. Zeiler, A. Franz, O. Plewa, S.M. Rosiwal, R.F. Singer, Erosion resistance of CVD diamond-coated titanium alloy for aerospace applications, Surf. Coat. Technol. 1999, 112: 129-132.
    [12] M. Sasase, S. Isobe, K. Miyake, T. Yamaki and I. Takano, Surface morphology of TiOx films prepared by anion-beam-assisted reactive deposition method, Thin Solid Films, 1996, 281-282: 431-435.
    [13] Y. Itoh, A. Itoh, H. Azuma, T. Hioki, Improving the tribological properties of Ti–6Al–4V alloy by nitrogen-ion implantation, Surf. Coat. Technol. 1999, 111: 172-176.
    [14] N. D. Tomashov, P. M. Altovskij, Corrosion and Protection of Titanium, MashGIZ, Moscow, 1963, in Russian.
    [15] A. Bloyce, P. -Y. Qi, H. Dong, T. Bell, Surface modification of titanium alloys for combined improvements in corrosion and wear resistance, Surf. Coat. Technol. 1998, 107: 125-132.
    [16] G. A. Markov, M. K. Mironva, O. G. Potapova and A. Lzvetiya, Kademiij Nauk, Neogranicheskie Materialy, 1983, 19(7): 110-118.
    [17] V. S. Rudnev, T. P. Yarvaya, V. P. Morozova, A. S. Rudnev and P. S. Gordienko, Microplasma oxidation of aluminum alloy in aqueous electrolytes with polyphosphate-Mg2+ complex anions, J. Protection of Metals, 1999, 35(5): 473-479.
    [18] Magurova, Yu Liya, Vladimivovna, Application of Oxide Coating to Metal in Eletrolyte Solutions by Microplasma methods, J. Revista de Metalurgia (Madrid) 36, 5 Sep 2000 Cent National de Investigaciones Metalurgicas, 323-330.
    [19] T. B. Van, S. D. Brown and G. P. Wirtz, Anode spark reaction products in aluminate, tungstate and silicate, J. Bulletins American Ceramic Society, 1977, 56(6): 563-566.
    [20] K. H. Dittrich, W. Krysmann, P. Kurze and H. S. Schneider, Structure and Properties Of ANOF Layers, J. Crystal Res. Technol., 1984, 19(1): 93-99.
    [21] A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov et al, Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment, Surf. Coat. Technol., 1996, 86-87: 516-521.
    [22] V. Mahyshev, Micro-arc Oxidation, A New Method for Strenghening Aluminum Surfaces, Matelloberfkarche, 1995, 49(8): 606-608.
    [23] A. Günterschulze and H. Betz, Elektroliticheskie Kondensatory (Electrolytic Capacitors), Moscow: Obornizidat, 1938.
    [24] Z. W. Liu, K. W. Jun, H. S. Roh, S. C. Baek and S. E. Park, Pulse study on the partial oxidation of methane over Ni/Al2O3 catalyst, J. Molecular Catalysis A2002, 189: 283-293.
    [25] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Charactersiation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Technol., 2000, 130: 195-206.
    [26] A. L. Yerokhin, V. V. Lyubimov and A. N. Ryzhov, Electrochemical & Electrophysical Treatment of Materials, TulGTU, Tula, 1993, P.5. in Russian.
    [27] N. D. Tomashov, M. N. Tyukina and F. P. Zalivalov, Tolstosloinoe anodirovanie alyuminya I ego splavov (Thick-Layer Anodizing of Alumium and Its Alloys), Moscow: Mashinostroenie, 1968.
    [28] G. A. Markov, USSR Inventor’s Certificate no.526961, Byull. Izobret., 1976, 32: 163.
    [29] A. V. Nikolaev, G. A. Markov and B. I. Peshchevitskii, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1977, Issue 5, 12: 32-36.
    [30] R. Hradsovsky, O. Kozako, US Patent 383499, 1974.
    [31] R. Hradsovsky, US Patent 4082626, 1978.
    [32] 张欣宇,石玉龙,等离子体微弧氧化技术及其应用,[J].青岛化工学院学报,2002, 23(1): 69-73。
    [33] V. N. Malyshev, N. V. Malysheva, Proceedings of Russian Conference‘Anode’88’, KAI, Kazan, 1988, P.88, in Russian.
    [34] A. L. Yerokhin, A. A. Voevodin, V. V. Lyubimov and J.Zabinski, Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys, Surf. Coat. Technol., 1998, 110: 140-146.
    [35] P. A. Dearnley, J. Gummersbach, H. Weiss, A. A. Ogwu and T. J. Davies, The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure, 1999, Wear 225-229: 127-134.
    [36] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya and S.L. Sinebrukhov, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol., 2001, 145: 146-151.
    [37] X. Nie, A. Wilson, A. Leyland and A. Matthews, Deposition of duplex Al2O3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique, Surf. Coat. Technol. 2000, 121: 506-513.
    [38] J. Tian, Z. G. Luo, S. K. Qi and X. J. Sun, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy, Surf. Coat. Technol., 2002, 154: 1-7.
    [39] L. R. Krishna, K.R.C. Somaraju and G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Sur. Coat. Technol., 2003, 163-164: 484-490.
    [40] Hanhua Wu, Z.S.Sun Jin, B.Y.Long, et al, Characterization of microarc Oxodation Process on Aluminium Alloy, Chinese Physics Letter, 2003, 20(10): 1815-1819.
    [41] S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya and S. L. Sinebryukhov, Wear- and Heat-Resistant Microplasma Protective Coatings on Aluminum, Protection of Metals, 1999, 35(5): 480-483.
    [42] S.V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya and S. L.Sinebrukhov, Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge, Surf. Coat. Technol., 2000, 123: 24-28.
    [43] N. M. Chigrinova, V. E. Chigrinov, and A. A. Kukharev, The Heat Protection of Highly Forced Diesel Pistons by Anodic Microarc Oxide Coating, Protection of Metals, 2000, 36(3): 269-274.
    [44] A.V. Apelfeld, O. V. Bespalova, A. M. Borisov and O. N. Dunkin, Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys, Nulc. Instr. and Meth., 2000, B161-163: 553-557.
    [45] X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland and A. L. Yerokhin, A. Matthews, Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis, Surf. Coat. Technol., 2002, 149: 245-251.
    [46] R.L. Twite and G.P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Progress in Organic Coating, 1998, 33: 91-100.
    [47] K. Shimizu, G. M. Brown, K. Kobayashi and P. Skeldon, A route towards the enhanced understanding of the corrosion and filming and filming behaviour of aluminium and its alloys, Corros. Sci., 1998, 40(7): 1049-1072.
    [48] L. Anicai, A. Meghea, and T. Visan, Analysis of electrochemical colored aluminum anodic films in AgNO3-based electrolytes by diffuse reflectance spectra, Metal Finishing 1998, 10: 10-13.
    [49] S. Yongqing, Electrolytic coloring of Aluminium in ferrous sulfate solution, Aluminum Finishing, 2000, 12: 61-62.
    [50] M.F. Shaffei, S.S Abd El-Rehim, N.A. Shaaban and H.S. Huisen, Electrolytic coloring of anodic aluminum for selective solar absorbing films: use of additives promoting color depth and rate, RenwableEnergy, 2001, 23: 489-495.
    [51] P. S. Gordienko, S. V. Gnedenkov, Micro Arc Oxidation of Titanium and its Alloys, Dalnauka, Vladivostok, 1997 in Russian.
    [52] V. S. Rudnev, T. P. Yarovaya,D. L. Boguta and I. V. Lukiyanchuk, The 3rd Russ.-Korean Intern. Symp. On Sci. and Technol, Novosibirsk, Russia, 22-25 June. Abstracts, 1999, 2:629-635.
    [53] Y. Han, S. H. Hong and K. Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation, Surf. Coat. Technol., 2003, 168: 249-258.
    [54] A. G. Vlyssides, M. Loizidou, P. K. Karlis and A. A. Zorpas, Electrochemical oxidation of a textile dyewastewater using a Pt/Ti electrode, J. Hazard. Mater. 1999, B70: 41-52.
    [55] X. H. Wu, Z. H. Jiang, H. L. Liu and X. D. Li, TiO2 ceramic films prepared by micro-plasma oxidation method for photodegradation of rhodamine B, Mater.Chem. Phys. 9722 (2002) 1-5.
    [56] A. G. Vlyssides, P. K. Karlis, N. Rori and A. A. Zorpas, Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes, J. Hazar. Mater. 2002, B95: 215-226.
    [57] K. W. Kim, E. H. Lee, Y. J. Kim and M. H. Lee, A study on characteristics of an electrolytic–photocatalytic reactor using an anode coated with TiO2, J. Photochem. Photobio. A:Chem., 2003, 161: 11-20.
    [58] X. Nie, A. Leyland and A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coat. Technol., 2000, 125: 407-414.
    [59] X. G. Wang, F. Zhang and C. G. Li, Improvement of blood compatibility of artificial heart valves via titanium oxide film coated on low temperature isotropic carbon, Surf. Coat. Technol. 2000, 128-129: 36-42.
    [60] Y. X. Leng, J. Y. Chen, Z. M. Zeng and X. B. Tian, Properties of titanium oxide biomaterials synthesized by titanium plasma immersion ion implantation and reactive ion oxidation, Thin Solid Films, 2000, 377-378: 573-577.
    [61] Y.X. Leng, P. Yang, J.Y. Chen and H. Sun, Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation, Surf. Coat. Technol., 2001, 138: 296-300.
    [62] H. B. Hu, C. J. Lin, R. Hu and Y. Leng, A study on hybrid bioceramic coatings of HA-poly (vinyl acetate) co-deposited electrochemically on Ti–6Al–4V alloy surface, Mater. Sci. Eng., 2002, C20: 209-214.
    [63] H. B. Faramarz, O. Mohammad, Analysis of thickness dependence of the sensitivity in thin resistive gas seneors, Sens. Actuators B, 2003, 6977: 1-6.
    [64] Q. Fang, D.G. Chetwynd, J.A. Covington and C. S. Toh, Micro-gas-sensor with conducting polymers, Sens. Actuators B, 2002, 84: 66-71.
    [65] X. Zhang, A. Mehra, A. A. Arturo and I. A. Waitz, Igniter and temperature sensors for a micro-scale combustion system, Sens. Actuators A, 2003,103: 253-262.
    [66] 宋希剑,秦东,微弧氧化涂层性质及应用,[A].材料研究与应用新进展[C].98中国材料研讨会,1999.6
    [67] 薛文斌,邓志威,来永春等,铝合金微弧氧化陶瓷膜的形成过程及其特性, [J].电镀与精饰,1996,(4): 3-6
    [68] 薛文斌,邓志威,来永春等,铝合金微弧氧化过程中能量转化的实验研究, [J].表面技术,1997,26(3): 21- 23
    [69] 薛文斌,邓志威,来永春等,铝合金微弧氧化陶瓷膜的相分布及其形成, [J].材料研究学报,1997,11(2): 169-172
    [70] 薛文斌,邓志威,来永春等,镁合金微等离子体氧化膜的特性,[J].材料科学与工艺,1997, 5(2): 8 9-172
    [71] 左洪波,孔庆山,尚久琦等,离子体增强电化学表面陶瓷化技术,[J].材料保护,1995, 28 (7): 21-22
    [72] Y. M. Wang, B. L. Jiang, T. Q. Lei and L. X. Guo, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Mater. Lett., In Press, Corrected Proof (2004).
    [73] G. A. Markov, M. K. Mironova and O. G. Potapova, Izvestiya Akadem iij Nauk, Neorgan ic heskie Materialy, 1983, 19(7): 1110-1115.
    [74] W. Krysmann, D. Kurze and H. G. Dittrich, Process Characterristics and Parameters of Oxidation by Spark Discharge (ANOF), J. Cryst Res Technol, 1984, 19(7): 973-979.
    [75] 薛文斌,邓志威,来永春等,有色金属表面微弧氧化技术评述,[J]. 金属热处理,2000, 1: 1-3.
    [76] 刘风岭,骆更新,毛立信,微弧氧化与材料表面陶瓷化,[J]. 材料保护, 1998, 31(3): 22-24。
    [77] 王永康,熊仁章,盛磊等,铝基复合材料表面微弧氧化涂覆陶瓷膜研究,[J]. 兵器材料科学与工程,1998, 21(4): 25-30。
    [78] 沈宁一,《表面处理工艺手册》,上海科学技术出版社,1991。
    [79] A. V. Timoshenko, B. K. Opara and Y. V. Magurova, Formation of Protective Wear-resistent Oxide Coating on Aluminium Alloys by the Microplasma Methods From Aqueous Electrolyte Solutions, Process Interational Corrosion Congress, 1993, 1: 280-293.
    [80] W. B. Xue, Z. W. Deng, R. Y Chen and T. H. Zhang, Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy, Thin Solid Films, 2000, 372: 114-117.
    [81] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122: 73-93.
    [82] G. P. Wirtz, S. D. Brown and W. M. Kriven, Ceramics Coating by Anodic Spark Deposition, J. Mater. Mauf. Process, 1991, 6(1): 87-155.
    [83] K. H. Dittrich and L. G. Leoard, Microarc oxidation of aluminum alloy components, J.Crys. Res. Technol., 1985, 20(1): 93-96.
    [84] S. Ikonopisov, Theory of electrical breakdown during formation of barrier anodic films, J. Electrochim. Acta, 1977, 22(10): 1077-1082.
    [85] J. M. Albella, I. Montero, J. M. Martinez-Duart, A theory of avalanche breakdown during anodic oxidation, J. Electrochim. Acta, 1987, 32(2): 255-258.
    [86] A. L. Yerokhin, V. V. Lyubimov and R. V. Ashitkov, Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloy, Ceram. Inter., 1998, 24: 1-6.
    [87] K. A. NAUGOL’NYKH, and N. A. ROJ, Electriccheskie Razrjadv v vode. Nauka, Moscow, 1971.
    [88] L. Young, Space charge in formation of anodic oxide films, Acta Metallurgica, 1956, 4(1): 100-101.
    [89] J. Yahalom, J. Zahavi, Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti J. Electrochim. Acta, 1970, 15(9): 1429-1435.
    [90] J. Yahalom, Experimental evaluation of some electrolytic breakdown hypotheses, J. Zahavi, J. Electrochim. Acta, 1971, 16(5): 603-607.
    [91] G. C. Wood, C. Pearson, The theory of avalanche breakdown in solid dielectrics, J. Corros. Sci., 1967, 7(2): 119-125.
    [92] A. K. Vijh, Sparking voltages and side reactions during anodization of valuemetals in terms of electron tunneling, J. Corros. Sci., 1971, 11(6): 411-417.
    [93] R. S. Alwitt, A. K. Vijh, Statistics of electron avalanches in the proportional counter, J. Electrochem. Soc., 1969, 116(3): 388-390.
    [94] S. Ikonopisov, Electronic conduction of anodized aluminium electrodes, J. Electrochim. Acta, 1969, 14(8): 716-771.
    [95] S. Ikonopisov, L. Andreeva, Anodization of molybdenum in glycol-borate electrolyte–A peculiar kinetics of insulating film formation, J. Electrochem. Soc., 1973, 120(10): 1361-1368.
    [96] A. K. Vijh, Electrical properties of non-metallic deposits, Surf. Coat. Technol., 1976, 4(1): 7-30.
    [97] V. Kadary, N. Klein, Reverse avalanche breakdown in gated diodes, J. Electrochem. Soc., 1980, 127(1): 139-151.
    [98] V. Kadary, N. Klein, Experimental determination of the electron-avalanche and the electron-ion recombination coefficient, J. Electrochem. Soc., 1980, 127(1): 152-155.
    [99] J. M. Albella, I. Montero, Electron injection sand avalanche during the anoxic oxidation of tantalum, J. Electrochem. Soc., 1984, 131: 1101-1104.
    [100] I. Montero, J. M. Albella, J. M. Martinez-Duart, Anodization and breakdown model of Ta2O5 films, J. Electrochem. Soc., 1985, 132(4): 814-818.
    [101] V. A. Denisenko, V.A. Pokrovskii, N.I. Osipova, et al. Mass spectrometric investigation of TiO2 films obtained by microarc oxidation, Protection of Metals, 1989, 25(6): 765-766.
    [102] M.P. Kandinskii, P.S. Gordienko, A.M. Ziatdinov, X-Ray electron study of titanium coatings prepared in phosphate electrolyte by the microarc oxidation method, Zhurnal Neorganicheskoi Khimii,1989, 34(4): 823-826.
    [103] 薛文斌,邓志威,等.钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构,[J].金属热处理,2000, (2): 5-7.
    [104] 薛文斌,邓志威,等. Ti-6Al-4V在NaAlO2溶液中微弧氧化陶瓷膜的组织结构研究,[J].材料科学与工艺,2000, (9): 41-45.
    [105] 姜兆华,吴晓宏,等. Na3PO4-Na2B4O7体系中钛合金微等离子体氧化陶瓷膜研究,[J].稀有金属,2001,(3):151-153.
    [106] 王亚明,蒋百灵,等. Na2SiO3系溶液中Ti6Al4V微弧氧化陶瓷膜的结构与力学性能,[J]. 稀有金属材料与工程,2004, 33(5): 502-506.
    [107] J.P. Schreckenbach, G. Marx, F. Schlottig, et al. Characterization ofanodic spark-converted titanium surfaces for biomedical application, Journal of Materials Science-Materials in Medicine. 1999, 10(8): 453-457.
    [108] Y. Han, S. H. Hong, and K. W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation, Surf. Coat. Technol., 2002, 154(4): 314-318.
    [109] 憨勇,徐可为,微弧氧化生成含钙磷氧化钛生物薄膜的结构,[J]. 无机材料学报,2001, 16(5): 952-956.
    [110] 赵树萍,吕双坤,郝文杰,《钛合金及其表面处理》,哈尔滨工业大学出版社,2003.
    [111] Y. Han, S. H. Hong, and K. W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation, Surf. Coat. Technol., 2002, 154: 314-318.
    [112] Y. Han, S. H. Hong and K. W. Xu, Synthesis of nanocrystalline titania films by micro-arc oxidation, Mater. Lett., 2002, 56: 744-747.
    [113] W. B. Xue, C. Wang, R. Y. Chen and Z. W. Deng, Structure and properties characterization of ceramic coatings produced on Ti–6Al–4V alloy by microarc oxidation in aluminate solution, Surf. Coat. Technol., 2002, 52: 435-441.
    [114] 吴汉华,冯欣荣,龙北玉,多功能微弧氧化电源的研制,[J].仪表技术与传感器,2004.
    [115] V. I. Belevantsev, O. P. Terleeva, G. A. Markov et al, Micro-plasma electrochemical process review, Zashch Met., (in Russian), 1998, 34(5): 469-475.
    [116] A. V. Timoshenko, Y. V. Magurova, Microplasma oxidation of Al-Cu alloys, Zashch Met., 1995, 31(5): 523-529(in Russian).
    [117] E. M. Drobyshevsk, B. G. Zhukovit, Radiation and equilibrium composition of the plasma in a pulsed discharge in an electrolyte, Zh Tckh Fiz, 1977, 47: 255-262.
    [118] 薛文斌,邓志威,来永春,陈如意, LY12 铝合金微弧氧化的尺寸变化规律,[J].中国有色金属学报,1997, 7(3): 140-143.
    [119] V. V. Bakovets, L. P. Dologovesova, G. L. Nikiforova, Oxidiized films Produced by treatment of aluminum alloys in concentrated sulfuric acid in an anodic spark system, J. Zasheh Met, 1986, 22(3): 440-444.
    [120] 刘建平,旷亚非,微弧氧化技术及其发展,[J].材料导报,1998, 12(5): 27-29.
    [121] S. I. Bulyshev, V. A. Fedorov, The kinetic of coating formation in microarc oxidation process, J. Fiz Khim obrob Mater., 1993, 17(6): 93-95.
    [122] M. Vladimi, Mikrolich bogen oxidation, J. Ober flchen technik, 1995, 49(8): 606-610.
    [123] R. H. Radcorsky, Loated Valve Metal Article Formed By Spark Anodizing, US, Pat., 3956080, 1976.
    [124] R. H. Radcorsky, Method of Loating Aluminum With Alkali Metal Molybdenate-Alkali Metal Silicate or Alkali Metal Tungstenate-Alkali Metal Silicate and Electrolytic Solutions Therepor, US, Pat., 5275713, 1991.
    [125] S. D. Brown, T. B. Van, Analysis of phase distribution for ceramic coating formed by microarc oxidation on aluminum alloy, J. Am. Ceram. Soc., 1977, 54(3): 384-387.
    [126] Рузнев В С, Горзченкоис . Здеметнъи Состав пленок, Полученньх На Сплаве Аломиния В Фосфатном Злектролите Микролаз ме ннъдм Анодрованием[J]. Журнал Лоиклалнои Химии, 1993, 66(7): 1456-1460.
    [127] P. Kurze, W. Krysmann, J. Schreckenbach, T. Schwarz and K. Rabending, Colored ANOF Layers On Aluminum, Crrest. Res. Technol., 1987, 22(1): 53-58.
    [128] 李欣,董作人等,发明专利,专利号:1050389, 1997.
    [129] G. L. Yang, X. Y. Lü and Y. Z. Bai et al, The Effect Density on the Phase composition and microstructure properties of micro-arc Oxidation coating, Journal of Alloys and Compounds, 2002, 1:196-200.
    [130]左洪波,孔庆山,束术军,能量密度对LD31合金表面蓝色PECC 陶瓷装饰膜层成分及性能的影响,[J]. 材料保护,1999, 32(5): 20-24
    [131] 赵树萍,钛及其合金微弧氧化的应用,[J]. 国外金属热处理,1996, 6
    [132] DONG H, BLOYCEA, MORTON P H, et al. Surface engineering to improve tribological performance of Ti6Al4V, [J ]. Surface engineering. 1997, 13(5): 402-406.
    [133] PATEL J L, SAKA N. Microplasmic Coatings[J ]. Am Ceram Soc Bull. 2001, 80(4): 27-29.
    [134] I. N. Frantsevich, A. N. Pilyankevich, V. A. Lavrenko, A. I. Volfson, Anodic Oxide Coatings on Metals and Anodic Protection, Naukova Dumka, Kiev, 1985, in Russian.
    [135] Y. Ishikawa and Y. MatsumotoA, Electrodeposition of TiO2 photocatalyst into nano-pores of hard alumite, Electrochimica Acta 2001, 46(18): 2819-2824.
    [136] V. V. Bakovets, Anodic oxidation of titanium at high voltages, Inorganic Mater., 1987, 23(7): 1226-1232, in Russian.
    [137] J. G. Yu, X. J. Zhao, Q. N. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method, Mater. Chem. Phys. 2001, 69: 25-31.
    [138] M. Shirkhanzadeh, Fabrication and characterization of alkoxy-derived nanophase TiO2 coatings, Nanostrut. Mater. 1995, 5: 33-40.
    [139] T. Sonoda, M. Kato, Effects of discharge voltage on Ti-O film formation on Ti-6Al-4V alloy by reactive DC sputtering, Thin Solid Films 1997, 303: 196-199.
    [140] M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi and S. B. Moosavi, In vitro corrosion behavior of bioceramic, metallic, and bioceramic–metallic coated stainless steel dental implants, Dental Mater. 2003, 19(3): 188-198.
    [141] R. Ebert, M. Schaldach, In Proceeding of World Congress on Medicine Physics Biomedical Engineering, Hamburg, 1982, P307.
    [142] N. Huang, P. Yang, X. Chen, et al., Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition, Biomaterials 1998, 19: 771-776.
    [143] H. M. Lin, C. H. Keng, C. Y. Tung, Gas-sensing properties of nanocrystalline TiO2, Nanostruct. Mater. 1997, 9: 747-750.
    [144] L. F. Dong, Z. L. Cui, Z. K. Zhang, Gas sensing properties of nano-ZnO prepared by arc plasma method, Nanostruct. Mater. 1997, 8: 815-823.
    [145] R. P. Wijesundera and W. Siripala, Preparation of CuInS2 thin films by electrodeposition and sulphurisation for applications in solar cells, Solar Energy Materials and Solar Cells, 2004, 81(2): 147-154.
    [146] J. Hampshire, P. J. Kelly and D. G. Teer, The structure of co-deposited aluminium–titanium alloy coatings, Thin Solid Films, 2004, 447-448(30): 418-424.
    [147] P. R. Mishra, P. K. Shukla, A. K. Singh and O. N. Srivastava, Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process, International Journal of Hydrogen Energy, 2003, 28(10): 1089-1094.
    [148] J Sch reckenbach, F Sch lo ttig, et al1 P repareation and microstructure characterization of anodic spark deposited barium titanate conversion layers 1999, (14) 4: 1437- 1443.
    [149] 赵树萍, 钛合金及其表面处理[M], 哈尔滨工业大学出版社, 2003, 191.
    [150] Technical Bulletin, Microarc Oxidation (MAO) Process, METALAST International, Inc. September 14, 2000.
    [151] 姜兆华,吴晓宏,王福平,辛世刚,Na3PO4—Na2B4O7 体系中钛合金微等离子氧化陶瓷膜研究,[J]. 稀有金属,2001, 25(2): 151-153.
    [152] 莫畏,邓国珠,罗方承,钛冶金[M],冶金工业出版社,1998: 84-85.
    [153] 徐存荣, 周海晖等, 铝合金不对称正负脉冲硬质阳极氧化研究, 电镀与精饰, 2003, 25(1): 4-6.
    [154] 龙北红,吴汉华,龙北玉等. 处理电压对钛合金微弧氧化膜相结构的影响. 吉林大学学报(理学版),2005, 43(2): 190-193.
    [155] A. L. Yerokhin, L. O. Snizhko and N. L. Gurevina et al, Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy, Surf. Coat. Technol., 2004, 177-178: 779-783.
    [156] 吴汉华, 铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究, 吉林大学博士学位论文 [M], 2004.
    [157] Y. M. Wang, B. L. Jiang, T. Q. Lei and L. X. Guo, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Mater. Lett., 2004, 58: 1907-1911
    [158] 吴汉华,于凤荣,李俊杰,吕宪义,金曾孙,铝合金微弧氧化陶瓷膜形成过程中的特性研究,[J]. 无机材料学报,2004, 19(3): 1-6.
    [159] 邵学俊,董平安,魏益海,无机化学(下册),武汉:武汉大学出版社, 1996.
    [160] 王亚明, 雷延权, 氧化处理时间对Ti6Al4V微弧氧化陶瓷膜的影响[J], 材料科学与工艺, 2003, 11(3): 243-247.
    [161] 王亚明,蒋百灵,雷廷权,郭立新,曹跃平,电参数对Ti6Al4V合金微弧氧化陶瓷膜结构特性的影响,[J]. 无机材料学报,2003, 18(6): 1325-1330.
    [162] Wang Y M, Jia D C, Guo L X, et al. Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy, Mat. Chem. Phys., 2005, 90: 128-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700