微电解联合工艺处理酸化压裂废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸化压裂作业是油气田增产的主要措施,被各油田普遍采用,但作业过程中会产生大量的返排液返回至地面,返排液具有颜色深、CODCr值高、酸性强、粘度大、难降解等特点。若将返排废液不经处理而直接排放,将会对环境造成严重的污染。
     针对酸化压裂返排液的水质组成及特点,依据过硫酸铵氧化、微电解处理、Fenton氧化等原理,以CODCr降低率为处理效果的判断依据,提出了“过硫酸铵氧化-微电解-Fenton氧化-沉淀除氟”联合处理工艺,并通过实验优化了各分工艺的实验条件。
     本论文首先以羟丙基瓜尔胶溶液作为酸化压裂模拟废水(CODCr:752mg/L、pH=3.0、c(F-)= 114.3mg/L)开展了“微电解-Fenton氧化”处理工艺研究,通过单因素实验优化的工艺条件为:(1)微电解实验:m(Fe)/m(C)=5:1,t =90min,pH=2.5,其CODCr降低率可达26.3%;(2)联用Fenton氧化对模拟废水进行深度处理,当10%双氧水加入浓度为7.5mL/L,t=75min,pH=4.0时,CODCr总降低率为38.3%。(3)以Ca(OH)2为F-的沉淀分离剂,当加入浓度为20g/L时,废水中剩余F-浓度为8.5mg/L,符合废水排放标准。
     在上述工作的基础上,研究了胜利高清区块樊18-9井压裂废水(CODCr:11007mg/L)的联合处理工艺:(1)通过实验优化了过硫酸铵氧化工艺条件:5%(NH4)2S2O8溶液的加入浓度为25.0mL/L,t=30min、进水pH=3.0,其CODCr降低率可达22%;(2)采用铁碳微电解对过硫酸铵氧化后的压裂废水直接进一步处理,当t=120min、m(Fe)/m(C)=5:1时,其CODCr降低率可达35.8%;为进一步改善处理效果,本论文还研究了镀铜铁碳微电解工艺以及微电解池处理级数对处理效果的影响,当t=120min、m[Fe(Cu)]/m(C)= 6:1、微电解池级数为2时,CODCr降低率则提高至58.7%。(3)双级镀铜铁碳微电解后的出水继续采用Fenton氧化法深度处理,当10%双氧水加入浓度为7.5mL/L,pH=4.0,t =60min时,CODCr降低率可达22.6%。压裂废水经联合工艺处理后,CODCr总降低率可达75.6%。
     本论文的创新性主要为首次提出采用“过硫酸铵氧化-双级镀铜铁碳微电解-Fenton氧化”联合处理工艺深度处理高浓度有机压裂废水,处理效果良好,为酸化压裂废水的处理提供了一种新的方法。同时,通过对比实验对微电解法处理有机废水的工作机理进行了初步探讨,结果表明微电解处理过程是集絮凝、吸附、氧化还原、电富集等因素综合作用的结果,而非简单的絮凝、吸附过程。
Fracturing and acidification were adopted popularly by oilfields in order to enhance oil recovery. The fracturing and acidizing wastewater had dull color, high COD value, high acidity, high viscosity, refractory and etc which was produced in the process of fracturing and acidizing operation. If the wastewater was discharged without being treated, the environment would be seriously polluted.
     This thesis proposed the process integration of“ammoniumpersulfate oxidation– microelectrolysis–Fenton oxidation-defluorination”to treat the fracturing wastewater based on its component, characteristic and according to the mechanism of ammoniumpersulfate oxidation, microelectrolys and Fenton oxidation. The conditions for process were determined on the removal rate of CODCr.
     The job were done in sequence. Firstly, in order to treat the fracturing and acidizing wastewater, the simulate wastewater of HPG (CODCr:752mg/L、pH = 3.0、CF- = 114.3mg/L) was treated by“microelectrolysis-Fenton oxidation”, and the results were: (1) The removal rate of CODCr was 26.3% in the process of microelectrolysis with the process conditions were: m(Fe)/m(C)=5:1, t=90min,pH=2.5. (2) Under the conditions of t=75min, c[10%H2O2(v/v)]= 7.5mL/L, pH=4.0, the total removal rate of CODCr was 38.3%. (3) Using Ca(OH)2 as precipitant, the concentration of fluorion was 8.5mg/L when the concentration of precipitant was 20g/L.
     secondly, the fracturing wastewater (initial CODCr:11007mg/L) was treated by the process integration, and the results as follows: (1) The removal rate of CODCr was 22% in the process of oxidation by ammoniumpersulfate under the condition of the reaction time was 30min, c[5%(NH4)2S2O8 (m/m)]=25.0mL/L, pH=3.0. (2) After oxidation operation, the fracturing wastewater was treated by microelectrolysis with the conditions of t=120min, m(Fe)/m(C)= 5:1, and the removal rate of CODCr was about 35.8%. In order to improve the ratio of CODCr removal, copper was electroplated on the surface of iron particles, under the optimum conditions of t=120min, m[Fe(Cu)]/m(C)=6:1, the times was 2, the removal rate of CODCr could reach to 58.7%. The results showed that the removal rate of CODCr was increased by about 20% compared with microeleclysis above. (3) The fracturing wastewater was given to the Fenton reagent oxidation after the reaction of catalytic copper microelectrolysis. The conditions of the advanced oxidation were that: c[10%H2O2(v/v)]=7.5mL/L, pH=4.0, t= 60min, and the removal rate of CODCr 22.6% was got. The total removal rate of CODCr could reach to 75.6% by the process integration (final CODCr:2750mg/L).
     The innovations of this thesis were that the fracturing wastewater treated by the“four-stages”process integration was implemented for the first time, then a convenient way of treating fracturing and acidizing wastewater was offered. And the mechanism of microelectro- lysis involved flocculation, adsorption, oxidation-reduction, and electro-enrichment which worked coordinately was testified initially.
引文
[1]卫秀芬.压裂酸化措施返排液处理技术方法探讨[J].油田化学,2007,24(4):384-388
    [2]周荣丰,肖华,卢亮,等.催化铁内电解-生化法处理印染废水[J].环境科学研究,2005, 18(2):74-77.
    [3]张敬,姜斌,李鑫钢,等.一种处理含重金属离子电镀水的新工艺[J].精细化工,2005,22(4):294-297
    [4]陈浩玺,姜伟,贾伟玲.“微电解-UASB-CASS”在医药化工废水处理中的应用[J].安全健康和环境,2006,6(10):37-39
    [5]侍爱秋.农药废水综合处理技术的研究[J].化学工程师,2007,(10):47-49
    [6]单明军,闵玉国,沈雪,等.微电解法进行焦化脱氮的研究[J].燃料化工,2007,38(1):38-41
    [7]杨卫身,周集体,杨凤林.微电解法处理印染废水的研究[J].环境保护科学,1996,22(3):30-33
    [8] Jin Yizhong, Zhang Yuefeng, Li Wei. Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment [J]. Journal of Zhejiang University Science, 2002, V3(4):401-404
    [9]贾胜娟,杨春风,赵东胜. Fenton氧化技术在废水处理中的研究与应用进展[J].工业水处理,2008,28(10):5-9
    [10]李春程.微电解-Fenton法处理含油废乳化液[J].环境工程,2008,26(3):51-53
    [11]江怀友,李治平,卢颖,等.世界海洋油气酸化压裂技术现状与展望[J].中外能源,2009,14(11):45-49
    [12]景小强,耿春香,赵朝成.胜利油田井下压裂废水处理实验研究[J].油气田环境保护,2008,18(1):11-13
    [13]王宝峰.碳酸盐岩储层酸化液添加剂综述[J].钻井与完井液,1995,12(2):74-78
    [14]曹朋青.压裂液体系研究的进展与展望[J].内江科技,2008,29(11):126-127
    [15]方娅.油气井酸化工作液增稠剂[J].钻采工艺,1993,16(3):69-74
    [16]黄瑛.国内外酸化技术发展近况[J].钻井液与完井液,2000,17(1):31-35
    [17]陈庚良.酸化液化学添加剂的发展动向[J].油田化学,1990,7(3):279-283
    [18]闫健,张宁生,刘晓娟,等.长庆油田低渗油藏酸化液添加剂的筛选[J].精细石油化工进展,2006,7(2):23-25
    [19]李宾元,唐愉拉,李洪建.压裂、酸化液添加剂性能及效果分析[J].石油钻采工艺,1990,16(6):87-93
    [20]李彦林,闫继英,吴勇,等.国内近期压裂液添加剂发展趋势[J].新疆石油科技,2004,14(1):15-19
    [21]方娅,马卫. 90年代压裂液添加剂的现状及展望[J].石油钻探技术,1999,17(3):42-46
    [22]卢拥军.国内外压裂液添加剂及产品简介[J].钻井液与完井液,1998,15(3):33-43
    [23]崔明月.水基压裂液添加剂的应用与评价[J].油田化学,1997,14(4):377-383
    [24]王松,刘罡,胡三清,等.河南油田酸化废液处理的室内研究[J].钻井液与完井液,2004,21(1):30-32
    [25]万里平,赵立志,孟英峰,等.油田酸化废水CODCr去除方法的研究[J].石油与天然气化工,2001,30(6):318-320
    [26]朱权云.气田废水处理及基本看法[J].石油与天然气化工,1990,19(1):48-53
    [27]黄浪,马自俊,蔡永生,等.镀铜铁屑/H2O2法预处理油田酸化废水[J].工业水处理,2006,26(4):28-30
    [28]钟显,谭佳,赵立志,等.压裂返排液预处理的实验研究[J].内蒙古石油化工,2005,31(11):66-67
    [29]张宏.残余压裂液无害化处理技术的实验研究[J].化学与生物工程,2004,21(2):38-39
    [30]万里平,李治平,王传军,等.油田压裂液无害化处理实验研究[J].河南油田,2002,16(6):39-43
    [31]刘军,赵立志,李健,等.生物法处理压裂返排液实验研究[J].石油与天然气化工,2002,31(5):281-282
    [32]田栓魁,孟凡彬,王万福,等.压裂返排废水的处理方法及其装置[P].中国专利:03147870.0,2005-01-19
    [33]吴芳云,周爱国.环境保护和石油工业[M].北京:石油工业出版社,1999,43-54
    [34]严滨,傅海燕,柴天,等.微电解在处理印染废水中的应用研究[J].厦门理工学院学报,2008,16(1):18-22
    [35]罗旌生,曾抗美,左晶荣,等.铁碳微电解法处理染料生产废水[J].水处理技术,2005,31(11):67-70
    [36] Epolito W. J., Hanbae Y., Bottomley L. A., et al. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4[J]. Journal of Hazardous Materials, 2008,V160(3):594-600
    [37]徐丽娜,赵华章,叶正芳,等.生物-微电解组合工艺处理染料废水研究[J].环境工程学报,2007,1(12):10-14
    [38] Yang Xiaoyi, Xue Yu, Wang Wenna. Mechanism, kinetics and application studies on enhanced activated sludge by interior micro-electrolysis[J]. Bioresource Technology, 2008, V3(100):649-653
    [39]邓喜红,王超.微电解+物化+生化处理印染废水工程实例[J].环境科学与管理,2008,33(3):120-122
    [40]李峥,吴效东,程鸣,等.微电解法处理电镀废水[J].安全与环境工程,2003,10(3):35-37
    [41] Li Tiancheng, Jiang Bin. Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro-electrolysis and biofilm[J]. Chinese J. Chem. Eng, 2000, V11(2):146-150
    [42]张子间,刘家弟,卢杰,等.微电解-生物法处理酸性重金属矿山地下水[J].金属矿山,2006,5(4):69-72
    [43]伊向艺,卢洲.用微电解氧化还原法处理油田废弃液[J].钻井液与完井液,2005,22(4):55-57
    [44]李健,赵立志,刘军.压裂返排液达标排放的实验研究[J].油气田环境保护,2002,12(3):26-28
    [45]何焕杰,王永红,詹适新,等.铁屑微电解法深度处理油田钻井污水[J].化工环保,2003,23(6):344-348
    [46]李智,陈风雷.钻井污水处理的实验研究[J].广东微量元素科学,2006,13(9):61-63
    [47]蒋珍菊,赵立志,陈洪.微电解法在油气田废水治理中的应用[J].四川师范学院学报,2001,22(4):351-355
    [48]孙婷,吕永涛,白平,等.海绵铁微电解法去除生活污水中CODCr的研究[J].甘肃科技,2008,24(9):57-58
    [49]熊昌贵,李凯,胡胜,等.微电解处理垃圾渗沥液的实验研究[J].工业安全与环保,2006,32(8):27-29
    [50]朱超英,马荣骏,罗电宏.微电解法处理制糖及啤酒工业废水[J].矿冶工程,2003,23(6):43-45
    [51]梁少晖,张美婷,朱江,等. Fe-Cu-C三元固定床微电解法处理酸性品红燃料废水[J].应用化工,2007,36(9):941-944
    [52]万里平,赵立志.加碳焙烧法对Fe/C微电解改性的研究[J].石油与天然气化工,2003,32(4):254-256
    [53]乔俊莲,郑广宏,刘敏.铝碳微电解法处理碱性5BN模拟废水的研究[J].工艺用水与废水,2008,39(3):49-51
    [54]詹伯军.铁碳微电解流化床设备[P].中国专利:02252471.1,2002-08-29
    [55]曲久辉,刘海宁,刘会娟,等.一种转鼓式微电解废水处理反应装置[P].中国专利:200410098587.0,2004-12-15
    [56] Wang L. C., Wen R. Q., Ding H. R. Treatment of non-degradable organic wastewater with Fenton reagent and its application[J]. Environment Protection Science, 2001, V27(105):112-141
    [57] Chamarro E., Marco A., Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability[J]. Water Reseach, 2003,V35(4):1047-1051
    [58] Li Z. M., Shea P. J., Comfort S. D. Nitrotoluene destruction by UV-catalyzed Fenton o xidation[J]. Chemosphere, 1998,V36(36):1849-1865
    [59]孔旭辉,贾宇宇,马军,等.微电解-Fenton联合工艺处理硝基苯废水效能研究[J].水处理技术,2009,35(1):74-78
    [60]陈迎春,经建生,田亮,等.过硫酸铵的热不稳定性分析[J].消防理论研究,2005,24(4):408-411
    [61]陈郁,全夔.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):24-26,37
    [62]文善雄,边虎,赵瑛,等.浅谈微电解技术研究进展[J].甘肃科技,2006,22(5):138-139
    [63]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24
    [64]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水治理中的应用[J].工业水处理, 1998,18(6):4-6
    [65]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):69-73
    [66]张卓,李芬芳,吴爱明.铁屑微电解法在化工废水处理中的研究与应用[J].杭州化工,2006,36(4):18-20
    [67] Fenton H. J. Oxidation of tartaric Acid in the Presence of Iron[J]. Journal of the Chemic- al Society, 1894,V65(10):899-910
    [68] Lin S. H., Lo C. C. Fenton process for treatment of desizing wastewater[J]. Water Rese- ach, 1997,V8(31):2050-2056
    [69] Rivasand F. J., Beltran F. J. Oxidation of Hydroxygenzo acid by Fenton’s reagent[J]. Water Reseach, 2001,V35(2):386-397
    [70] Jin Xie. Application of Iron-Chips in Industry Wastewater[J]. Industry Water Treatment, 1989,V9(6):73-76
    [71] Walling C. Fenton’s reagent revisited[J]. Accounts Chemistry Reseach, 1975,V8(4):125- 131
    [72] Kremer M. L. Complex visas’Free Radical mechanism for the catalytic decomposition of H2O2 by Fe2+[J]. Internation Journal of Chemical Kinetics, 1985,V17(12):1299-1314
    [73] Wink D.A., Nims R. W., Deserters M. F., et al. A Kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitroso- dimethylamine: evidence for an oxidative pathway not involving hydroxyl radical[J]. Chemical Research in Toxiclogy, 1991,V4(5):510-512
    [74] Kremer M. L., Stein G.. The catalytic decomposition of hydrogen peroxide by ferric per- chlorate[J]. Transactions of the Faraday Society, 1959,V55(5):959-973
    [75] Walling C., Gamil M., Taliawi E., et al. Fenton's reagent IV Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals[J]. Journal of the American Chemical Society, 1974,V96(1):130-139
    [76] Walling C., Knto S. I. The oxidation of alcohols by Fenton’s reagent[J]. Journal of the American Chemical Society, 1971,V93(17):4275-4281
    [77]包木太,王娜,陈庆国,等. Fenton法的氧化机理及在废水处理中的应用进展[J].化工进展,2008,27(5):660-665
    [78]陈胜兵,何少华,娄金生,等. Fenton试剂的氧化作用机理及其应用[J].环境科学与技术,2004,27(3):105-108
    [79]李峰.微电解-Fenton试剂处理垃圾渗滤液研究[D].广州:中山大学,2007
    [80]魏复盛.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002:211-212
    [81]彭书传,魏凤玉. H2O2-Fe2+法处理β-萘磺酸钠生产废水的研究[J].工业水处理,1998,18(1):23-25
    [82] Neyens E., Baeyens J. A review of classic Fenton,s peroxidation as an advanced oxidati- on technique[J]. Journal of Hazardous Materials, 2003,V98(1):33-50
    [83]赵德明,史惠祥. Fe/C微电解法-H2O2组合工艺处理对氯硝基苯废水[J].城市环境与城市生态,2002,15(1):32-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700