用户名: 密码: 验证码:
中温制备多晶硅薄膜及相关理论问题的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电池在缓解能源危机和解决环境污染方面有其重要的研究和应用价值。我国当前经济处在高速发展期,能源供需矛盾突出,同时又是太阳能资源比较丰富的国家,发展太阳能电池有迫切的需求和巨大的市场潜力。
     太阳能电池的发展方向在于降低成本和提高效率。本文首先分析了各种太阳能电池的价格、材料二次污染、电池效率等因素,从影响太阳能电池民用化的成本和稳定性方面考虑,认为多晶硅薄膜集晶体硅和非晶硅薄膜材料优点于一身,与现有的太阳能电池生产技术具有兼容性,有可能成为制作太阳能电池的廉价优质材料,在将来极具潜力。根据处理温度不同,我们进一步把制备多晶硅薄膜电池分为高温、中温和低温路线。考虑到以玻璃材料为电池衬底,它在透光性、软化点、廉价、美观、可以与建筑一体化等优点,我们选择中温线路作为制备多晶硅薄膜电池的研究方向。制备大晶粒多晶硅薄膜是提高多晶硅薄膜电池效率的关键,本文将重点研究中温制备大晶粒多晶硅薄膜。
     本文研究用常规高温炉中温制备多晶硅薄膜材料的工艺参数。在550℃-1000℃温区选择不同的晶化温度和时间,发现在中温炉子退火制备多晶硅薄膜的过程中,退火温度与退火时间是相互关联的。对于同样的晶化效果,退火温度高,在较少的时间内晶化;退火温度低,在较长的时间内完成晶化。本文发现在中温炉子退火制备多晶硅薄膜的过程中,出现一系列的晶化效果好的极值点,比如940℃下退火1h,850℃下退火3h等。多晶硅薄膜的晶化效果也与不同条件下沉积的非晶硅薄膜有关。
     对中温光退火制备多晶硅薄膜的研究表明,退火温度与退火时间是相互关联的,同样存在一系列的晶化效果好的极值点,比如850℃下退火5分钟,750℃下退火8分钟等。并且发现700℃和750℃之间存在一个开始晶化温度点。当退火温度低于这个温度时,非晶硅薄膜晶化比较困难;而当退火温度高于这个温度时,非晶硅薄膜则很容易发生晶化。
     本文对比了常规高温炉和光退火两种方法,发现光退火后获得的多晶硅薄膜晶粒分布比较均匀,常规炉子退火后的薄膜晶粒分布不均匀。用两种方法都可以达到一定的晶化效果,都可以获得的相同晶粒大小的多晶硅薄膜,但光退火比常规退火的时间大大缩短。
     我们研究沉积温度对制备大晶粒多晶硅薄膜的影响,用PECVD法在30℃、350℃和450℃沉积的非晶硅薄膜,在相同条件下退火,350℃附近沉积的非晶硅薄膜的结晶颗粒比较低温度30℃沉积的大。这一点与以前认为,“非晶硅薄膜的沉积温度越低,晶化后所得的多晶硅薄膜材料的晶粒就越大”的结论不一致。
     本文研究PECVD沉积非晶硅薄膜的衰变,观察到在自然条件下会发生衰变,因此,中温光退火制备多晶硅薄膜的过程中,应减少中间停留的时间,尽快进入下一步工艺。本文研究了多晶硅薄膜与玻璃衬底的结合问题。发现硅薄膜与玻璃衬底有明显的分离现象,研究选择合适软化点的玻璃衬底,使玻璃的软化点温度与最高退火温度点匹配,可以避免处理过程中玻璃与硅膜相分离。在此基础上总结中温制备大晶硅薄膜的较好技术路线和工艺参数。首先用PECVD法在玻璃衬底和一定温度情况下沉积,然后用光退火制备的多晶硅薄膜。具体沉积工艺参数:真空度5.6×10~(-4)pa,沉积室中电极间距2cm,工作气压133.3Pa,氢稀释比98%、衬底温度350℃、射频功率60W;退火条件:850℃下光退火5分钟。
     最后,本文发现在PECVD沉积硅膜和进行固相晶化过程中,晶粒大小等状态在一定范围内随着退火温度、时间的变化,出现极值点现象。本文对这种现象进行了分析,认为这与微观量子现象有紧密的联系,根据这一想法,提出等能量驱动原理,并计算了光退火制备多晶硅薄膜的过程,与实验结果一致。
The wide use of solar cell exhibits important role to solve the resource crisis and environmental crisis. There exists a huge contradiction between the production and needs in the high developing period of our country. The rich Solar energy and huge market give a very good opportunity to solar cell.
     The development of solar cells is showing a tendency to improve efficiency and reduce cost. The material price, pollution and cell efficiency were analyzed. Polycrystalline silicon thin film possesses the excellences of both crystalline silicon and amorphous thin film silicon. It not only is compatible with the existing solar cell technology but also promise cheap and excellent material for solar cell. The fabricating procession was divided into three kinds: low temperature, middle temperature and high temperatures according to the process temperature. Because the glass material has good transmission, suitable soft point, cheap, aesthetic and integrated with building easily, middle temperature procession was considered a suitable direction. Fabricating polycrystalline silicon thin films with large grain size is the key technique to increase cell efficiency. To achieve this aim, polycrystalline silicon thin films at middle temperature were focused in this thesis.
     A better parameters to fabricating polycrystalline silicon thin films at middle temperature by conventional furnace annealing were studied. Different annealing temperature and time were found to be connected in 550°C-1000°C. The high annealing temperature was corresponding short time, the low annealing temperature was corresponding long time in the procession of getting the same crystalline effect. It was found that there existed a series of critical point in the procession, for example, annealed at 940℃for 1h, annealed at 850℃for 3h, et. al. The crystalline effect was dependent on the deposit condition too.
     The performance of annealing procession by rapid thermal annealing was investigated, annealing temperature and time were connected too. There existed a series of critical point in the procession, for example, annealed at 850℃for 5 min, annealed at 750℃for 8min, et. al. and there exists a start crystalline temperature point between 700℃and 750℃, it is difficult to be crystallized beyond the temperature, however, it is easy to be crystallized above the temperature.
     It was found that the poly-silicon thin film fabricated by FA were roughness and requires very long annealing times compared with RTA. The similar size of poly-silicon thin film so is obtain; the thin film made by pulsed rapid thermal method is smoothly and perfect structure. The effect of deposit temperature was investigated. The amorphous silicon thin film deposited at 30℃, 350℃and 450℃, annealed at same condition, it was found that the poly-silicon deposited at 350℃had bigger grain size that those at other temperatures. This was not coincident with the old idea: the lower depositing temperature, the bigger grain size of the poly-silicon.
     The decay of amorphous silicon deposited by PECVD was studied. The decay was found in nature, so the delay in the procession should be avoided. The match of polycrystalline silicon thin films and glass substrate was studied too. It was found that there was separation between silicon thin films and glass substrate, and choose glass with suitable soft point could avoid the separation phenomena.
     Draw a conclusion, a better parameters was found in fabrication of polycrystalline silicon thin film on glass at middle temperature: amorphous silicon film to be annealed were deposited at a certain temperature on glass substrate and fused quartz by plasma enhanced chemical vapor deposition (PECVD) method, using SiH_4, H_2 mixture. The gas flow ratios was 2%, the chamber pressure 1 Torr, substrate temperatures 350℃and the radio-frequency power 50W. Then the a-Si thin films are crystallized in a rapid thermal processor, the time-temperature budget of the process is 850℃-5min.
     Finally, it was found that the critical point phenomena was shown between polycrystalline silicon size and the annealing temperature and time in the solid phase crystallize procession. The phenomena was investigated at the angle of the micro quantum state, according to which the principle of equal energy driving was put up and the rapid thermal procession was calculated, the result was corresponding to the experiment.
引文
[1] 耿新华,南开大学稳步推进非晶硅太阳电池产业化,天津科技,2001(3) 29.
    [2] 李海雁,杨锡震,太阳能电池,大学物理,Vol.22 No.9 Sap.2003.
    [3] 秦桂红,严彪,唐人剑,多晶硅薄膜太阳能电池的研制及发展趋势,上海有色金属,2004,25(1)38-42.
    [4] 赵玉文,太阳电池新进展,物理,2004 33(2)99-105.
    [5] 潘玉良,施浒立,光伏发电系统最大输出功率探索,微电子与基础产品,2001,27(9)50-53.
    [6] 刘恩科等,光电池及其应用,北京:科学出版社1989 73.
    [7] Lodhi M A K., Energy Converse. Mgmt.,1997,38(18) 1881.
    [8] Arnulf Jager Waldau PVNET European Road map for PV R & D, Italy: European Communities, 2004.
    [9] 李仲明,极富发展前景的多晶硅薄膜太阳电池,新材料产业,2003 7 14-16.
    [10] M. Cudzinovic and B. Sopori, Control of Back Surface Reflectance from aluminum alloyed contacts on silicon solar ceils, Proceedings 25th IEEE Photovoltaic Specialists Conference, May 1996.
    [11] Joong Hyun Park, Do Young Kim, Jae Kyung No et al., High temperature crystallized poly-Si on Mo substrates for TFT application, Thin Solid Films 427 (2003) 303-308.
    [12] 薛钰芝,张力,林纪宁,太阳能光伏技术的研究与发展,大连铁道学院学报,2003 24(4)71-74.
    [13] 中国资源综合利用协会可再生能源专业委员会,中国光伏发电的技术现状及展望,可再生能源,2002 103(3)5-8.
    [14] 蒋荣华,削顺珍,硅基太阳能电池与材料,新材料产业,2003 116(7)8-13.
    [15] 梁宗存,沈辉,李戬洪,太阳能电池研究进展,能源工程,2000 4 8-11.
    [16] 毛爱华,太阳能电池研究和发展现状,包头钢铁学院学报,2002 21(1) 94-98.
    [17] 王文采,太阳能电池,现代物理知识,2000 No15,90(6)3-6.
    [18] 王长贵,世界光伏发电技术现状与发展趋势,新能源,2000 22(1)44.
    [19] 张扬,高辉,太阳能利用与环境可持续发展是统一框架下的系统工程——美洲百万太阳能屋顶计划启示,新能源,2000 22(9)51.
    [20] 王强,夏朝风,浅析太阳能光伏技术的发展,新能源,2000 22(2)44.
    [21] 杨维菊,美国太阳能热利用考察及思考,世界建筑,2003(8)83-85.
    [22] 新绿色电源——太阳能电池,世界电子元器件,2001 4 38-40.
    [23] P. Migliorato, in H.E. Maes, R.P. Mertens, R.J. Van Overstraeten (eds), Eur. Solid State Device Research Conf., Leuven 14-17 Sept. 1992, Elsevier, Amsterdam, 1992, 89.
    [24] I. Sakata, F. Aratani, K. Ishiyama, et al. PV Roadmap Toward 2030 in Japan. 15th PVSEC p31,2005.
    [25] 梁宗存,沈辉,李戬洪等,太阳能电池及材料研究,材料导论,2000 8(14) 38-40.
    [26] Linder J, Allison J, The violet cell: an improved silicon solar cell, COMSAT Thehnical review, 1973, 3 1-22.
    [27] Mandelkon J, Lomneck J H, A new electric field effect in silicon solar cell, Applied Physics 1973 44 4781-4787.
    [28] Verlinden P J, Swanson R Met al., High-efficiency, point-contact silicon solar cells for Fresnel lens concentrator modules, In: Proceedings of the 23rd IEEE Photovolatic Specialists Conference. Louisville: 1993.58-64.
    [29] M ason, N.B., Bruton, T.M., Balbuena, M.A., Laser grooved buried grid silicon solar cells—from pilot line to 50 MWp in 10 years, In: Conference Record of PV in Europe, Rome, Italy, 2002. pp. 227-229.
    [30] Blaker A W, Green M A, Oxidation condition dependence of surface passivation in high efficiency silicon solar cell, Applied Physics Letters, 1985, 47(8): 818-820.
    [31] Blaker A W, Green M A, 20% efficiency silicon solar cells, Applied Physics Letters, 1986, 48(3) 215-217.
    [32]Blaker A W, Wang A, Milne A M, et al. , 22.8% efficient silicon solar cells, Applied Physics Letters, 1989, 55(13) 1363-1365.
    [33]Blaker A W, Zhao J, Green M .A, 24% efficient silicon solar cell,Applied Physics Letters, 1990, 57(6) 603-604.
    [34]M.A.Green, Silicon Solars: Advanced Principles and Practice Bridge Printery, Sydney 1995.
    [35]Schmidt, W., Woesten, B., Kalejs, J. P.,. Manufacturing technology for ribbon silicon (EFG) wafers and solar cells. Prog. Photovoltaics 10, 2002. 129 - 140.
    [36]Seidensticker, R. G., Dendritic web silicon for solar cell application J. Cryst. Growth 1977, 39, 17-22.
    [37]Martin A. Green Crystalline and thin-film silicon solar cells: state of the art and future potential Solar energy 74(2003) 181-192.
    [38]Siemer K, Klaer J, Luck I et al, Efficient CuInS_2solar cells from a rapid thermal process (RTP). Solar Energy Materials and Solar Cells 2001 67(1-40) 159-166.
    [39]Hedstrom J, Ohlsen H. ZnO/Cds/Cu(In, Ga)Se_2 thin-film solar cells with improved performance. Proceedings of the 23~(rd) IEEE Photovoltaic Spcialists Conference ,1993, 364-371.
    [40]Shafarman WN, Klenk R McCandless BE , Device and material characterization of Cu(InGa)Se_2solar cells with increasing band gap, Journal of Applied Physics 1996 79 7324-7328.
    [41]Paulson PD, Haimbodi MW, Marsillac S, et al. , CuIn_(1-x)Al_xSe_2 thin-films and solar cells, Journal of Applied Physics 2002 91 10153-10156.
    [42]Engelmann M, McCandless BE, Birkmire RW, Formation and analysis of graded CuIn(Se_(1-y)S_y)_2 films, Thin Solid Films 2001 387(1-2) 14-17.
    
    [43]K. L. Chopra, P. D. Paulson, V. Dutta, Thin Film Solar Cells: An Overview Prog. Photovolt: Res. Appl. 2004 12 69-92.
    [44]De Vos A, Parrot JE, Baruch P, Landsberg PT et al., Bandgap effects in thin-film heterojunction solar cells, Proceedings of the 12th European Photovoltaic Solar Energy Conference, 1994 1315-1318.
    [45] Petritsch K., Organic Solar Cell Architecture Thesis submitted to Technisch-Naturwissenschaftliche Fakultat, der Technischen Universitat Graz, Austria, 2002.
    [46] Shaheen SE, Brabec CJmSariciftci NS et al., 2.5% efficient organic plastic Solar cells, Applied Physics Letters 2001 78:841-843.
    [47] A.V. Shah, H. Schade, M. Vanecek et al., Thin-film Silicon Solar Cell Technology Prog, Photovollt:Res. Appl. 2004.
    [48] 段启亮,ZAO导电膜的制备及特性研究,郑州大学硕士论文2005年6月.
    [49] Lechner. p, Schade, H, Photovoltaic thin-film technology based on hydrogenated amorphous silicon, Prog. Photovoltiacs 2002 10,85-98.
    [50] Ayra R.R.,Carlson D.e., Amorphous silicon PV module manufacturing at BP Solar. Prog. Photovoltaics 2002 10,67-68.
    [51] Schmela. M., We decide where the market is, Photon Int. January. 22-24.
    [52] Mokoto Konagai, Thin film solar cells program in Japan, Technical Digest of the International PVSEC-14. Sangkok, Thailand, 2004 657-660.
    [53] 卢景霄,硅太阳电池稳步走向薄膜化,太阳能学报,2006,27(5):444-450.
    [54] 2006年中国太阳能电池行业分析及投资咨询报告.
    [55] 沈辉 曾祖勤,太阳能光伏发电技术,化学工业出版社,2005年9月第5版,第27-28页.
    [56] 沈辉,2006年中国太阳级硅材料及太阳电池研讨会.
    [57] Wenham, S.R., Willison, M.R., Narayanan, S., Green, M.A., Efficiency improvement in screen printed polycrystalline silicon solar cells by plasma treatment, In: Conf. Record, 18th IEEE Photovoltaic Specialists Conf., Las Vegas, 1985. USA, pp. 1008-1013.
    [58] 耿新华,非晶硅太阳能电池,[A]雷永泉等编,新能源材料,[M]天津:天津大学出版社,2000年272-303.
    [59] Kimura, K., 1984. Recent developments in polycrystalline silicon solar cells. Tech. Digest of the Int. PVSEC-1, Kobe, Japan, pp. 37-42.
    [60] Nasch P M, et al. The way to high-efeiciency, iow cost solar cells through thin wafer slicing by means of wire saw, the 19th European Photovoltaic Solar Energy Conference, France, Paris, 2004.
    [61] Martin A. Green, Third Generation Photovoltaics Advanced Solar Energy Conversion(2003) Springer-Verlag, 160pp. ISBN:3-540-40137-7.
    [62] M.A. Green. Present and future of crystalline silicon solar cells: Technical Digest of the International PVSEC-14.
    [63] M.A. Green. Crystallinend and thin film silicon solar cells: state of the art and future potential. Solar Energy. 2003, 74(2):181.
    [64] Paul A. Basore. Large-area deposition for crystalline silicon on glass module. The 3rd world conf. on PV energy convertion. Osaka, 2003.
    [65] Paul A. Basore. Polt production of thin-film crystalline silicon on glass module. The 29th IEEE PVSC. New Orleans, 2002.
    [66] 谢秀琴,戴贤辉,谢世豪,TFT-LCD无碱玻璃基板材料介绍,化工咨询月刊,1999.07.10.
    [67] 梁宗存,沈 辉,许宁生,晶体硅薄膜电池制备技术及研究现状,材料科学与工程学报,Vol.21 No.4 Aug.2003.
    [68]吴国庆,21世纪的能源——太阳能电池,化学教育,1999年第3期.
    [69] J.W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon Press, Oxford, 1975.
    [70] 廖华,薄膜太阳电池及其硅衬底材料的制备和电子辐照研究,四川大学博士学位论文2003第13、14页.
    [71] 廖华,林理彬,刘祖明,多晶硅薄膜太阳电池厚度和晶粒尺寸对其性能的影响,太阳能学报,2003,24(2):264-568.
    [72] P. Doshi, Arohatgi, M. ropp, et al., Solar Energy Materials and Solar Cells 41/42(1996)31-39.
    [73] 童志义,国外薄膜生长设备发展动态,电子工业专用设备,1995年第1期,第1-8页.
    [74] M. Gartner, M. Modreanu, M. Iwane et al., Microstructural information from optical properties of LPVCVD silicon films annealed at low temperature, J. Appl. Rhys, 1996,79(2):2677-2681.
    [75] M. Heintze, R. Zedlitz, et al., Amorphous and microcrystalline silicon by hot wire chemical vapor deposition, Appl. Phys.,1996,79:2699-2706.
    [76] H. Mase, M. Kondo, A. Matsuda, Microcrystalline silicon solar cells fabricated on polymer substrate, Solar Energy Materials &Solar Cells 74 (2002) 547-552.
    [77] T. Takagi, R. Hayashi, G. Ganguly, Gas-phase diagnosis and high-rate growth of stable a-Si: H, Thin Solid Films 345(1999)75-79.
    [78] Makoto Fukawa, Susumu Suzuki, Lihui Guo, et al., High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF plasma, Solar Energy Materials &Solar Cells 66(2001)217-223.
    [79] Teng, L. H, Anderson, W.A, Thin film transistors on nanocrystalline silicon directly deposited by a microwave plasma CVD, Solid-State Electronics Volume: 48, Issue: 2, February, 2004, pp. 309-314.
    [80] 黄创君,林璇英,林揆训等,低温制备高质量多晶硅薄膜技术及其应用,《功能材料》2001,32(6).
    [81] Cicala, G., Capezzuto, P., Bruno Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF_4-H_2-He at low temperature, Thin Solid Film, 1999,337 pp. 59-62.
    [82] Sudarsan T S著,范玉殿等译,表面改性技术工程师指南,清华大学出版社,1992.
    [83] C. C. Tsai, R. Thompson, C. Doland, F.A. Ponce, G. B. Anderson, B. Wacker, Mater. Res. Soc. Symp. Proc. 118 (1988) 49-53.
    [84] W. B. Jackson, N.N. Amer, A.C. Boccara, D. Fournier, Appl. Opt. 20 (1981) 1333-1338.
    [85] A. Achiq, R. Rizk, R. Madelon, F. Gourbilleau, P. Voivenel, Philos. Mag. B79(1999) 777-785.
    [86] D. Z. Peng, H.W. Zan, P.S. Shih, et al., Comparison of poly-Si deposited by UHVCVD and LPCVD and its application for thin lm transistors, Vacuum 67 (2002) 641-645.
    [87] 仲伯强,黄慈祥,潘惠英,用催化CVD法研制优质a-Si薄膜,半导体光电1997年12月,第18卷第16期第414-417页.
    [88] 薛清 利用快速退火从非晶硅薄膜中生长纳米硅晶粒,量子电子学报,2006年23卷4期第565-568页.
    [89] 张凤鸣,多晶硅薄膜太阳电池,太阳能学报,2003年8月第4期.
    [90] Y. Z. Wang, S. J. Fonash, O. O. Awadelkarim et al., Crystallization of a-Si: H on glass for active layers in thin film transistors: Effects of glass coating, J. Electrochem. Soc, 1999, 146: 291.
    [91] 杜开瑛,饶海波,由低温退火轻掺杂控制a-Si:H膜的固相晶化成核,物理学报,1994年6月第6期.
    [92] Radnoczi G, RobertssonA, Hentzell H. T. G et al., Al induced crystallization crystallization of a-Si, Appl. Phys. 1991,69, 6394-6399.
    [93] D. Toet, B. Koopmans, P. V. Santo et al, Growth of polycrystalline silicon on glass by selective laser induced nucleation, Appl. Phys. Lett., 1996, 69:3719.
    [94] 娆若河,林璇瑛,吴萍等,PCVD法制备多晶硅薄膜中退火过程的研究,功能材料,1998,10 449-450.
    [95] 吴萍,娆若河,林璇瑛等,a-Si:H薄膜固相晶化法制备大晶粒多晶硅薄膜,汕头大学学报,1999,14(1)19-22.
    [96] 董会宁,杜开瑛,谢茂浓等,非晶硅的两步快速退火固相晶化,四川大学学报,1995,32(1)95-96.
    [97] 陈城钊,方健文,林璇瑛等,a-Si:H薄膜固相晶化法制备多晶硅薄膜,浙江师范大学学报,2002,25(3)247-249.
    [98] A. Szekeres, M. Gartner, F. Vasiliu, et al. Crystallization of a-Si:H films by rapid thermal annealing. Journal of Non-Crystlline Solids, 1998, 227: 954-957.
    [99] S. Hasegawa, S. Sakamoto, T. Inokuma, et al. Structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane. Applied Physics Letter, 1993, 62(11): 1218-1220.
    [100] J. Cazaux. Electron-and X-ray-induced Electron Emissions from Insulator. P olymerlnt ernational. 2001,50: 74 8 755.
    [101] 周秋云,俞英.分析化学研究简报,2003.3(8):976.
    [102] 李树棠编.晶体X射线衍射学基础.冶金工业出版社.1990:131-148.
    [103] Byeong Yeon Moon, Jae Hyoung Youn, Sung Hwan Won et al., Polycrystalline silicon film deposited by ICP-CVD. Solar Energy Materials & Solar Cells, 69 (2001) 139-145.
    [104] 王英华,X光衍射技术原理,原子能出版社,256,1993.
    [105] 王阳元,T.l.卡明斯《多晶硅薄膜及其在集成电路中的应用》科学出版社(1988).
    [106] Qiyuan Wang, Yude Zan, Jianhua Wang, et al. Comparison of properties of solid phase epitaxial silicon on sapphire films recrystallized by rapid tyermal annealing and furnace annealing. Material Science and Engineering, 1995, B29:43-46.
    [107] A. Szekeres, M. Gartner, F. Vasiliu, et al. Crystallization of a-Si: H films by rapid thermal annealing. Journal of Non-Crystalline Solids, 1998,227-230:954-957.
    [108] S. Girginoudi, C. Girginoudi, N. Georgoulas, et al. Deposition and crystallization of a-Si thin films by rapid thermal processing. Materials Science in Semiconductor Processing, 1998, 1: 287-292.
    [109] 吴自勤,王兵 薄膜生长,北京:科学出版社,1988年8月第175-181页.
    [110] 吴自勤,张人佶,物理学进展,北京:科学出版社,1994年第435页.
    [111] Z. Zang, Q. Niu, C. K. Shih. "Electronic Growth" of Metallic Overlayers on Semiconductor Substrates, Phys. Rev. Lrtt. 80 (1998) 5381.
    [112] 周世勋,量子力学教程,北京:高等教育教育出版社,1979年2月第5页.
    [113] R. B. Bergmann, Optical in Situ monitoring of solid phase crystallization of amorphous silicon, Journal of Crystal Growth 165(1996) 341.
    [114] A. T. Voutsas, M. K. Hatalis, J. Boyce, et al. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. Journal of Applied Physics, 1996, 73(12): 6999-7006.
    [115] 田增英.来自西方的知识— 精细陶瓷及应用[M],北京:科学普及出版社,1993.3-5.
    [116] 邱关明,黄良钊,张希艳.稀土光学玻璃[M],北京:兵器工业出版社,1989.172.
    [117] 满金仓,医用微型玻璃电极,大连轻工学院2000年硕士毕业论文,第46-48页.
    [118] http://www.bgif.com.cn/property.htm
    [119]李 瑞,多晶硅薄膜制备工艺研究,郑州大学2005年硕士毕业论文,第46-48页.
    [120] Akihisa Matsuda, Microcrystalline silicon Growth and device application, Journal of Non-Crystalline Solids 338-340 (2004)7-12
    [121] Hideki Matsumura, Hironobu Umemoto, Atsushi Masuda, Cat-CVD how different from PECVD in preparing amorphous silicon, Journal of Non-Crystalline Solids 338-340)2004: 19-26.
    [122] Akihisa Matsuda, Madoka Takai, Tomonori Nishimoto, et al.,Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate, Solar Energy Materials & Solar Cells 78 (2003)3-26.
    [123] MichioKondo, Microcrystalline materials and cells deposited by RF glow discharge, Solar Energy Materials & Solar Cells 78(2003) 543 -566.
    [124] M. Rojas-Lopez, V.L. Gayou, R. E. Perez-Blanco etal., Raman studies of aluminum induced microcryatallization of n+ Si:U films produced by PECVD, Thin Solid Films 445(2003)32-37.
    [125] 王恩哥,薄膜生长中的表面动力学(Ⅰ),物理学进展,Vol.23,No.1,2003年3月第1-56页.
    [126] 于振瑞 耿新华 孙云等,掺硼非晶硅材料固相晶化的研究,太阳能学报,第15卷第2期1994年4月第132-136页.
    [127] 余楚迎 林璇英 姚若河等,Si:H薄膜结构对多晶硅薄膜性能的影响,功能材料2000,31(2)157-158.
    [128] Subhendu Guha, Jeffrez Zang, Arindam et al., High qualitz amorphous silicon materials and cells grown with hydrogen dilution, Solar Energy and Solar Cells 78 (2003) 329-347.
    [129] 张晓丹,朱峰,侯国付等,VHF-PECVD沉积微晶硅薄膜的电学特性和结构特性研究,Vol.20,No.2,2005年4月,第114-117页.
    [130] S. Suzuki, M. Kondo, A. Matsuda, Growth of device grade μm-Si film at over 50A/s using PECVD, Solar Energy Materials and Solar Cells 74(2002) 489-495.
    [131] 朱锋 赵颖 张晓丹等,P-nc-Si:H薄膜材料及在微晶硅薄膜太阳电池上应用,光电子·激光,第15卷第4期,2004年4月,第381-384页.
    [132] 扬恢东 吴春亚 黄君凯等VHF-PECVD法高速率沉积氢化微晶硅薄膜,太阳能学报,第25卷第二期,2004年4月,第127—131页.
    [133] 耿新华,于振瑞,孙钟林等,多晶硅薄膜后晶化的研究,光电子技术,Vol.15,No.2,1995年6月,第154-159页.
    [134] 余云鹏 林璇英 林舜辉等,PECVD法低温制备晶化硅薄膜及其机制浅析,汕头大学学报(自然科学版)第19卷第2期,2004年5月,第13-17页.
    [135] 饶瑞,a-Si薄膜的低温晶化机理及其在TFT中的应用研究,华中科技大学博士毕业论文2001:35、38.
    [136] 黄君凯,杨恢东,弱硼掺杂补偿对氢化微晶硅薄膜制备与特性的影响,半 导体学报,第26卷第6期,2005年6月,第1164-1167页.
    [137] Min-Cheol Lee, Kee-Chan Park, In-Hyuk Song, etal., Effects of selective Si ion implantation on laser annealing of dehydrogenated a-Si film, Journal of Non-Crystalline Solids 299-302)2002: 715-720.
    [138] 陈光华,邓金祥等编,新型电子薄膜材料,北京:化学工业出版社,2002年9月第67页.
    [139] 廖燕平,准分子激光晶化多晶硅的研究,准分子激光晶化多晶硅的研究,中国科学院长春精密机械与物理研究所2004年硕士毕业论文,第36页.
    [140] H. L. Hwang, K. C. Wang, R. C. Hsu etal., Microstructure evolution of hydrogenated thin films at different hydrogen incorporation, Applied Surface Science 113-114 (1997) 741-749.
    [141] M. Kondo, T. Ohe, K. Saito etal., Morphological study of kinetic roughening on amorphous and microcrystalline silicon surface. Journal of Non-Crystalline Solids 227-230(1998)890-895.
    [142] 吴自勤,王兵,薄膜生长,北京:科学出版社,2001,9第67-69页.
    [143] S. Hasegawa, S. Sakamoto, T. Inokuma, et al. Structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane. Applied Physics Letter, 1993, 62(11):1218-1220.
    [144] Akihisa Matsuda, Microcrystalline silicon, Growth and device application Journal of Non-Crystalline Solids 338-340(2004) 5-6.
    [145] Akihisa Matsuda, Madoka Takai, Tomonori Nishimoto et al., Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate. Solar Energy Materials & Solar Cells, 78 (2003) 3-26.
    [146] Michio Kondo, Hiroyuki Fujiwara, Akihisa Matsuda, Foundamental aspects of low-temperature growth of microcrystalline silicon, Thin solid films 430(2003) 130-134.
    [147] R. Dewarrat, J. Robertson, Surface diffusion of SiH_3 radicals and growth mechanism of A-Si: H and microcrystalline Si, Thin Solid Films 427 (2003) 11-15.
    [148] T. Kitagawa, M. Kondo, A. Matsuda, In situ observation of low temperature growth of crystalline silicon using reflection high-energy electron diffraction, Journal of Non-Crystalline Solids 266-269 (2000) 64-68.
    [149] Akihisa Matsuda, Growth mechanism of microcrystalline silicon obtained from reactive plasmas, Thin solid films 337(1999) 1-6.
    [150] T. Akasaka, I. Shimizu, In situ real time studies of the formation of polycrystalline silicon films on glass grown by a layer-by-layer technique Appl. Phys. Lett. 66(25), 19 June(1995) 3441-3443.
    [151] R. W. Collins, A. S. Ferlauto, Advances in plasma-enhanced chemical vapor deposition of silicon films at low temperatures Current Opinion, Solid State and Materials Science 6(2002) 425-437.
    [152] 孔光临,光膨胀效应,物理,第27卷(1998)第5期第257-258页.
    [153] R. Singh, M. Fakhruddin, K.F. Poole, Rapid photo thermal processing as a semiconductor manufacturing technology for the 21th century, Applied Surface Science 168 (200) 198-203.
    [154] 贾嵩,光热退火非晶硅薄膜材料低温晶化技术的实验研究,2000南开大学硕士毕业论文,第23-24页.
    [155] Xiaotao Liu, Jianzhong Cui, Yanhui Guo, et al., Phase formation and growth in Al-Mg couple with an electromagnetic field, Materials Letters, 2004, 58: 1520-1523.
    [156] Masato Morifuji, Katsuhiko Kato, Quantum coherence and formation of quantized states in Semiconductors, PhysicaE 21 (2004) 1126-1130.
    [157] 褚圣麟,原子物理学,北京:高等教育出版社,1979年6月第一版,1983年8月第6次印刷,第42页.
    [158] Hypar. Phy. Astr. Georia. State Unver Superphysics CV. Version.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700