光纤传感在海水盐度测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水盐度在海洋动力学以及海洋与大气相互作用中扮演着至关重要的角色。盐度的变化与海洋环境及周围陆地的变化有很强的内在联系。鉴于此,对海水盐度的精确测量、研究海洋学、海陆间的相互作用以及军事等方面有着十分重要的研究价值和实际意义。
     光纤传感器与传统的传感器相比,具有全光器件、易弯曲、防电磁干扰,远距离传感、分布传感、稳定、可重复使用、可在恶劣条件下工作,高灵敏度,高分辨率和响应速度快等优点。因此光纤传感器正越来越引起人们的重视并逐渐成为研究和应用的热点。考虑到光纤传感器的实际用途,我们在本论文中主要研究了以下内容:
     首先,介绍了阶跃光纤中不同模式以及各个模式所携带功率的计算方法。数值模拟了在不同参数条件下,纤芯基模的空间光场分布。结果表明,当包层折射率增大时,消逝波所携带的功率也相应的增加。当纤芯半径增大时,消逝波含有的功率减小。
     其次对不同参数的单模消逝波传感器进行了理论模拟,计算出了不同参数之间的耦合系数。利用已有条件设计并制作了消逝波传感器,并对浓度为0%~4%,间隔为0.4%氯化钠溶液进行了实验研究。实验结果表明,虽然单模消逝波传感器的灵敏度很高,但是制作困难,容易受外界条件影响,对实验设备要求很高。
     最后根据模式的耦合理论,分析了光纤型Mach-Zehnder液体浓度传感器的传感原理。结合飞秒微加工系统设计并制作了光纤型Mach-Zehnder传感器,通过改变其传感臂的方法,对浓度为0%~4%,间隔为0.4%的氯化钠溶液的盐度进行测量。结果表明随着光纤间距的增大,传感器的灵敏度增加。
Seawater salinity plays a critical role in both ocean dynamics and the interaction between the ocean and the atmosphere. The variation of sea salinity has a intrinsic relationship with that of the surrounding terrene. Because of its importance, the precise measurement of salinity provides significant value in the fields of ocean dynamics, climate changes, sea-land interaction, and military both theorically and pratically.
     Compared with traditional sensors, optical fiber sensors can offer unique advantages such as all fiber devices, flexibility, immunity to electromagnetic interferences, far distance and distributed sensing, stability, repeatability, durability against harsh environments, high sensitivity, high resolution, and fast response. Due to its specific characteritcs, fiber sensors become a hot spot in the researching field. Considering its widespread applications, we set optical fiber sensor as our subject for this thesis.
     Firstly by using the electromagnetic theory of light, vector modes and linearly polarlized modes in the step index fiber were thoroughly presented. We numerically simulated the fundermental mode inside a step-index fiber under different parameters. It shows that the light power for the evanescent wave increases with the increasing of the outer fractive index and decreases with the increasing of fiber core diameter.
     Secondly single-mode evanescent wave fiber sensor was numerically simulated under different parameters. A newly designed evanescent wave fiber sensor was fabricated under laboratory condition and NaCl solutions with salinities of 0%~4% and interval of 0.4% were tested. The results showed that despite the high sensitivity, single-mode evanescent wave fiber was vulnerable to the outside environment which makes both manufactuing and maintenance rather difficult.
     At last the principle of Mach-Zehnder interferometer was demonstrated in detail based on the coupled-mode theory. A novel M-Z liquid refractive index sensor was fabricated by the assistance of femtosecond micromachining. NaCl solutions with salinities of 0%~4% and interval of 0.4% were tested using the M-Z sensor. The results indicate that the sensitivity increases with the increasing distance between two fibers.
引文
1 C. K. Ho, A. Robinson, D. R. Miller, Ma. J. Davis. Overview of Sensor and Environmental Monitoring. Sensor. 2005,5:4~37
    2邓小红.光纤消逝波吸收传感器的参数设计与分析.中国科学院硕士学位论文. 2005:1~5
    3 K. T. V. Grattan, B. T. Meggitt. Optical Fiber Sensor Technology: Volume 2: Devices and Technology. Springer, 1998:1~37
    4 Enbang Li. Temperature Compensation of Multimode-Interference-Based Fiber Devices. Optcs Letters. 2007, 32(14):2064~2066
    5 Enbang Li, Gang-Ding Peng, Xin Ding. High Spatial Resolution Fiber-Optic Fizeau Interferometric Strain Sensor Based on an in-fiber Spherical Microcavity. Applied Physics Letters. 2008, 92:101117
    6段萌萌,陈长乐,雷松鹤,雷晓梅.吸收式光纤温度传感器的研究.光子学报. 2006, 35(8):1207~1210
    7 Yun-Jiang Rao, Ming Deng, De-Wen Duan, Xiao-Chen Yang, Tao Zhu, Guang-Hua Cheng. Micro Fabry-Perot Interferometers in Silica Fibers Machined by Femtosecond Laser. Opt. Express. 2007, 15(21):14123~14128
    8 Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, K. S. Chiang. Laser-micromachined Fabry-Perot Optical Fiber Tip Sensor for High-resolution Temperature-independent Measurement of Refractive Index. Opt. Express. 2008, 16(3):2252~2263
    9 V. A. Gordienko, Vector-phase Methods in Acoustics. Moscow, Nauka.1989
    10张仁和,倪明.光纤水听器的原理与应用.物理. 2004, 33(7):503~507
    11张在宣, I. S. Kim,王剑锋,刘红林,于向东,郭宁.在单模光纤中放大的反思托克斯拉曼背向散射的温度效应.光学学报. 2004, 24(5):609~613
    12杨三青.井下光纤式压力温度复合传感器设计.仪表技术与传感器. 2000, 3:6~7
    13 Feng Fei, Qiao Xue-guang, Jia Zhen-an, Wang Jin, Zhang Lei. Techniques of Fiber Grating Sensors by High Temperature and High Pressure. Transducer and Microsystem Technologies. 2008, 27(6):9~11
    14史晓峰,李铮,蔡志权.分布式光纤测温系统及其测温精度分析.测控技术. 2002, 21(1):9~12
    15 Jiyong Sun, Shanglian Huang, Jie Zhang, Zhihai Zhang, Lingna Shi. Transmitting Fabry-Perot Light Modulator for Display Application. Acta Optica Sinica. 2007, 27(12):2240~2244
    16 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics andElectronics. Physical Review Letters. 1987, 58(20):2059~2062
    17 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters. 1987, 58(23):2486~2489
    18 T.A.Birks, J. C. Knight, P. St. J. Russell. Endlessly Single-mode Photonic Crystal Fiber. Opt. Lett.1997, 22(13):961~963
    19 M. Morisawa, Y. Amemiya, H. Kohzu, C. X. Liang, S. Muto. Plastic Optical Fibre Sensor for Detecting Vapout Phase Alcohol. Measurement Science and Technology. 2001,12:877~881
    20 M. J. Renn, D. Montogamey, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell. Laser-Guided Atoms in Hollow-Core Optical Fibers. Physical Review Letters. 1995, 75(18):3253~3256
    21 P. H. Paul, G. Kychakoff. Fiber-optic Evanescent Field Absorption Sensor. Applied Physics Letters. 1987,51(1):12~14
    22 A. Safaai-Jazi, J. V. Petersen. Evanescent Field Fiber-optic Chlorine Sensor. Optical & Laser Technology. 1994,26(6):399~402
    23 B. D. Gupta, C. D. Singh, A. Sharma. Fiber-optic Evanescent Fiber Absorption Sensor, Effect of Lanching Condition and the geometry of the Sensing region. Optical Engineering. 1994,33(6):1864~1868
    24 C. D. Singh, B. D. Gupta. Detection of Gases with Porous-clad Tapered Fiber. Applied Optics. 1995,34(6):1091~1023
    25 C. O. Egalon, E. A. Mendoza, etc. Modeling an Evanescent Field Absorption Optical Fiber Sensor. Optical Engineering. 1995,34:3583
    26 S. K. Khijwania, B. D. Gupta. Fiber Optic Evanescent Field Absorption Sensor with High Sensitivity and Linear Dynamic Range. Optics Communications. 1998, 152(4-6):259:262
    27 S. Sunmida, S. Okazaki. Distributed Hydrogen Determination with Fiber-optic Sensor. Sensor and Actuators B. 2005,108:508~514
    28 J. Villatoro, D. M. Hernandez. Fast Detection of Hydrogen with Nano Fiber Tapers Coated with Ultra Thin Palladium Layers. Opt. Lett. 2005. 13(13): 5087~5092
    29 P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur. Evanescent Field-based Opical Fiber Sensing Device for Measuring the Refractive Index Liquids in Microfluidic Channels. Optics Letters. 2005,30(11): 1273~1275
    30 Liang Wei, Yanyi Huang, Yong Xu, R. K. Lee, A. Yariv. High Sentive Fiber Bragg Grating Refractive Index Sensors. Appl. Phys. Lett. 2005,86(15):151122-1~151122-3
    31 A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu. Suspended-core Holey Fiber for Evanescent-field sensing. Optical Engineering. 2007, 46(1): 010503-1~010503-3
    32 L. Rindorf, O. Bang. Highly Sensitive Refractometer with a Phtonic-crystal fiber long-period grating. Optics Letters. 2008,33(6):563~565
    33 J. Arrue.etc. Analysis of the Use of Tapered Graded index Polymer Optical Fiber for Refractive-index Sensors. Optics Express. 2008, (16)21:16616~ 16631
    34 J. P. Riley, G. SKirro. Chemical Oceangraphy, 2nd ed, Vol, 1, Academic Press, London. 1975
    35 W. Catherine, S. Eddie, M. Jerry. Measurement of Salinity in the Coastal Ocean : A Review of Requirement and Technologies. Marine Technology Society Journal. 2000, 34(2): 26:33
    36 Liqiu Men, Ping Lu, Qiying Chen. A Multiplexed Fiber Bragg Grating Sensor for Simultaneous Salinity and Temperature Measurement. Journal of Applied Physics. 2008, 103: 053107
    37李玉泉,崔敏.光波导理论与技术.人民邮电出版社. 2002: 92~101
    38张伟刚.光纤光学原理及应用.南开大学出版社. 2008: 73~77
    39 S. K. Khijwania, B. D. Gupta. Fiber Optic Evanescent Field Absorption Sensor : Effect of Fiber Parameters and Geometry of the Probe. Optical and Quantum Electronics. 1999, 31: 625~626
    40 P. B. Tarsa, P. Rabinowitz, K. K. Lehmann. Evanescent Field Absorption in a Passive Optical Fiber Resonator Using Continuous-wave Cavity Ring-down Spectroscopy. Chemical Physics Letters. 2004, 383: 297-303
    41 O. S. Wofbeis. Fiber-optic Chemical Sensors and Biosensors. Anal. Chem. 2004,76: 3269~3284
    42 W. C. Michie, B. Culshaw, M. Konstantaki, I. Mckenzie, S. Kelly, N. B. Graham, C. Moran. Distributed Ph and Water Detection Using Fiber-optic Sensors and Hydrogels. Jonurnal of Lightwave Technology. 1995, 13(7): 1415~1420
    43 Z. B. Tian, S. S. H. Yam, H. P. Loock. Refractive Index Sensor Based on an Abrupt Taper Michelson Interferometer in a Single-mode Fiber. 2008, 33(10): 1105~1107
    44 A. Banerjee, S. Mukherjee, R. K. Verma, etc. Fiber Optic Sensing of Liquid Refractive Index. Sensor and Actuators B. 2007,123: 594~605
    45 Enbang Li. Temperature Compensation of Multimode-interference-based Fiber Devices. Optics Letters. 2007,32(14): 2064~2066
    46 A. A. Said, M. Dugan, S. D. Man, D. Iannuzzi. Carving Fiber-top Cantilevers with Femtosecond Laser Micromachining. J. Micromech. Microeng. 2008, 18: 035005-1~035005-4
    47赵勇,廖延彪.海水盐度和温度实时监测的新型光纤传感器研究.光学学报. 2002, 22(10)~1241~1244
    48 K. Okamoto. Fundamental of Optical Waveguide. 2nd ed, Academic Press. 195~196
    49韩艳华.飞秒激光在透明材料中诱导光功能微结构.哈尔滨工业大学理学硕士学位论文. 2006: 20
    50 S. Qu, H. Zeng, C. Zhao et al. One-off Holographic Writing of Double micrograting in Ag20-doped Glass by a Single Femtosecond Laser Pulse. Chemical Physical Letter. 2004, 384: 382~385
    51 K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano and H. Hosono. Fabrication of Surface Relief Grating on Transparent Dielectric Materials by Two-beam Holographic Method Using Infraed Femtosecond Laser Pulses. Appl. Phys. B. 2000,71: 119~121
    52 K. Kawamura, N. Sarukura, M. Hirano, N. Ito and H. Hosono. Periodic Nanostructure Array in Crossed Holographic Grating on Silica Glass by Two Interfered Infrare-femtosecond Laser Pulses. Appl. Phys. Lett. 2001, 79(9):1228~1230
    53 K. Kawamura, M. Hirano, T. Kamiya and H. Hosono. Holographic Writing of Volume-type Micrograting in Silica Glass by a Single Chirped Laser Pulse. Appl. Phys. Lett. 2002,81(6):1137~1139
    54 Jan-Hendrik Klein-Wiele, P. Simon. Fabrication of Periodic Nano-structures by Phase-controlled Multiple-beam Interference. Appl. Phys. Lett. 2003, 83(23): 4707~4709
    55 M. Yamaji, H. Kawashima, J. Suzuki, and Shuhei Tanaka. Three Dimensional Micromachining Inside a Transparent Material by Single Pulse Femtosecond Laser Through a Hologram. Appl. Phys. Lett. 2008, 93(4): 0411161~041116-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700